
tion processing task such as filtering out spuri-
ous input fluctuation (25), generating temporal
programs of expression (3, 25) or accelerating
the throughput of the network (2, 26). Recently,
the same network motifs were also found in the
transcription network of yeast (7, 27). It is im-
portant to stress that the similarity in circuit
structure does not necessarily stem from circuit
duplication. Evolution, by constant tinkering,
appears to converge again and again on these
circuit patterns in different nonhomologous sys-
tems (25, 27, 28), presumably because they
carry out key functions (see Perspective (29)
STKE). Network motifs can be detected by
algorithms that compare the patterns found in
the biological network to those found in suitably
randomized networks (25, 27). This is analo-
gous to detection of sequence motifs as
recurring sequences that are very rare in
random sequences.

Network motifs are likely to be also
found on the level of protein signaling net-
works (30). Once a dictionary of network
motifs and their functions is established,
one could envision researchers detecting
network motifs in new networks just as
protein domains are currently detected in
the sequences of new genes. Finding a se-
quence motif (e.g., a kinase domain) in a
new protein sheds light on its biochemical
function; similarly, finding a network motif
in a new network may help explain what
systems-level function the network per-
forms, and how it performs it.

Will a complete description of the biological
networks of an entire cell ever be available?
The task of mapping an unknown network is
known as reverse-engineering (3, 31–33).
Much of engineering is actually reverse-

engineering, because prototypes often do not
work and need to be understood in order to
correct their design. The program of molecular
biology is reverse-engineering on a grand scale.
Reverse engineering a nonmodular network of
a few thousand components and their nonlinear
interactions is impossible (exponentially hard
with the number of nodes). However, the spe-
cial features of biological networks discussed
here give hope that biological networks are
structures that human beings can understand.
Modularity, for example, is at the root of the
success of gene functional assignment by ex-
pression correlations (11, 34). Robustness to
component tolerances limits the range of pos-
sible circuits that function on paper to only a
few designs that can work in the cell. This can
help theorists to home in on the correct design
with limited data (21–23). Network motifs de-
fine the few basic patterns that recur in a net-
work and, in principle, can provide specific
experimental guidelines to determine whether
they exist in a given system (25). These con-
cepts, together with the current technological
revolution in biology, may eventually allow
characterization and understanding of cell-wide
networks, with great benefit to medicine. The
similarity between the creations of tinkerer and
engineer also raises a fundamental scientific
challenge: understanding the laws of nature that
unite evolved and designed systems.
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V I E W P O I N T

Social Insect Networks
Jennifer H. Fewell

Social insect colonies have many of the properties of adaptive networks. The simple
rules governing how local interactions among individuals translate into group be-
haviors are found across social groups, giving social insects the potential to have a
profound impact on our understanding of the interplay between network dynamics
and social evolution.

The formal exploration of social insect col-
onies as networks is in its infancy. Howev-
er, social insects such as wasps, ants, and
honeybees provide a powerful system for
examining how network dynamics contrib-
ute to the evolution of complex biological
systems. Social insect colonies (and social

groups generally) have key network attributes
that appear consistently in complex biological
systems, from molecules through ecosystems;
these include nonrandom systems of connectiv-
ity and the self-organization of group-level
phenotypes (1–3). Colonies exhibit multi-
ple levels of organization, yet it is still
possible to track individuals, making these
societies more accessible to experimen-
tal manipulation than many other com-
plex systems.

How can viewing insect societies as net-
works shape our understanding of social orga-
nization and evolution? First, they have become
one of the central model systems for exploring
self-organization: the process by which interac-
tions occurring locally between individuals
produce group-level attributes. Self-organi-
zation in a social insect colony produces
emergent properties: social phenotypes that
are greater than a simple summation of
individual worker behaviors (2). The basic
rules generating these dynamics are broad-
ly applicable across taxa whose members
show social behavior, and they produce
ubiquitous patterns of social organization,
including mass action responses, division
of labor, and social hierarchies (2, 4 ).
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Second, the social insects provide an oppor-
tunity to explore how behavior evolves within
complex systems. This has led to a shift in
focus from variation among individuals to how
interactions among individuals and groups
shape that variation. Most of the well-studied
social insects are eusocial (only one or a few
individuals in the colony reproduce), and the
colony is considered an adaptive unit made up
of related individuals (5). Because of this, we
are comfortable in relating group dynamics to
fitness effects at both the individual and group
levels. However, multilevel selection acts on
social insect colonies, not just because their
members are highly related but also because
they are densely connected networks. This
emerging view of social groups as networks
contributes to a growing awareness
of how the fitness of individuals
and groups is generated interactive-
ly across levels of biological orga-
nization (3, 6, 7).

To explore the relationships be-
tween complexity and selection in
social systems, we first need to de-
scribe the social group as a net-
work. A network is simplistically a
system of interacting elements, or
nodes, that communicate with each
other [see (8, 9) in this issue]. So-
cial insect colonies are dense net-
works in which individuals have
multiple points of contact (1, 10).
As dense networks, colonies dis-
tribute information rapidly, allow-
ing them to respond flexibly and
efficiently to the dynamic environ-
ment in which they live. An ex-
treme example is the alarm re-
sponse of African honeybees, in
which an initial release of alarm
pheromone by a few guards cas-
cades within a minute to stinging
responses by thousands of bees.

Like many biological systems,
social insect colonies are also dis-
tributed networks (2). Although the
colony generally has a single queen, she does
not centrally control colony function. Instead,
workers make decisions based on local infor-
mation and perform behaviors in parallel (10).
This is the case, to some degree, even for
hierarchical systems such as the wasp network,
where the queen controls the reproductive out-
put of the colony but does not individually
direct many aspects of day-to-day colony func-
tion. We lack sufficient data to accurately char-
acterize the connections that occur between any
two individuals within a colony, much less the
connections across the society. However, it is
clear that connections among nestmates are
nonrandomly distributed for many, if not most,
colony functions. A few key individuals, or
hubs, distribute information (connect) to many

more nestmates than do others. The most obvi-
ous of these is the queen, who, in honeybees,
secrets a pheromone that represses reproduction
in workers and maintains colony cohesion.
Queen pheromone is transmitted to workers as
they groom her, then is rapidly transmitted
through the hive via trophallaxis and deposits
on nest wax (11). Key individuals are also
present within worker task groups, where they
stimulate performance of a task or provide a
central point around which performance is or-
ganized (12). For example, foraging task
groups often include scouts or dancers. They
communicate most of the information about
resource location and availability and, in ants,
often maintain the cohesion of groups of re-
cruits that go out to forage (10, 12, 13).

The importance of these rare individuals
makes it likely that for many functions the
colony network becomes scale-free, which
means that variation in connectivity is best de-
scribed by a power law rather than a Poisson
distribution (14). This is important to colony
resiliency, because it means that the loss of any
of the vast majority of workers would have little
effect. In contrast, removing nodes within a
randomly distributed network can quickly frag-
ment the system. Although scale-free networks
are buffered from the effects of random loss, the
removal of key nodes can severely disrupt the
system (1, 14). The colony has long-term
mechanisms to replace any element, including
the queen, but the removal of key individuals
does have immediate disruptive effects. Loss of

the scout who discovers a foraging trail can
completely block the retrieval of a resource, yet
removing the recruits who follow the scout has
little effect on overall foraging (15). Social
insect networks are similar in this way to other
biological networks, from food webs with key-
stone species (16) to metabolic pathways, in
which a few key molecules are involved in
most reactions (9, 17).

With these global attributes in place, how
does information transfer within a social col-
ony actually occur? Unfortunately, we do not
yet have enough empirical data to answer this
question well. Models to date have explored
networks in the context of task regulation: the
amount of effort by individuals or groups that
is allocated to different tasks. One approach

has been to consider the colony as
a regular network (9), in which
individuals performing the same
task form clusters of high connec-
tivity, with weaker links across
tasks (18, 19). In a model of re-
cruitment to alternate resource
pathways, Bonabeau et al. (19)
showed that colonies can balance
efficient utilization of a single re-
source with flexible allocation
across resources by a mixed strat-
egy of within-cluster information
transfer coupled with global in-
formation transfer across clusters.
An important finding of this mod-
el [and the Pacala et al. model
(18) on which it was based] is the
importance of cross-cluster links
in maintaining flexibility for
moving individuals from one task
or cluster to another.

The assumptions of the Bona-
beau et al. model (19) fit well
into the context of trail selection
during foraging, where the sig-
nals are well defined. However,
expanding the model more wide-
ly to multiple tasks has been
problematic. One reason is that

contacts between workers are extremely flu-
id. Connections between workers in a social
insect colony are ephemeral, and signals
themselves can outlive connections. Signal
systems are also highly diverse in informa-
tion content and include large-scale signals,
such as alarm pheromones, that target the
colony globally (10).

Social insect networks are traditionally
modeled with workers as nodes. However,
because worker interactions are so fluid, we
can alternatively map the system from the
perspective of treating tasks as nodes and
individual workers as connectors (symbolic
dynamics). Figure 1 describes such a map for
the short-term modulation of pollen foraging
in honeybees. It is clear from this map that

Fig. 1. The network pathways modulating pollen foraging in a honeybee
colony (developed with T. Taylor). Nodes are the tasks linked to pollen
foraging; vectors are the individuals transmitting information: F, forager;
N, nurse; B, brood; R, recruit. Foragers returning with pollen receive
information about pollen storage levels as they place pollen loads into
cells. The amount of stored pollen is negative feedback for pollen
foraging. Pollen is removed from cells by nurse bees, who feed it first to
developing brood and give excess to pollen foragers. Receiving pollen
from nurses is negative feedback for foraging. Foragers also receive
information about pollen stores from brood, who produce a hunger
pheromone when they are not fed; brood care reduces hunger levels.
Information on pollen availability and location is transmitted by pollen
dancers. Dancing elicits recruitment to foraging by workers not actively
engaged in foraging (2, 20–22).
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cross-task connections are the primary path-
ways for regulating pollen foraging. Pollen
foraging is homeostatically regulated around
pollen storage levels and is positively regu-
lated around brood, for which it is the main
nutrient source (20). Pollen foragers collect
most of their information about colony pollen
need and/or intake either indirectly via
changes in pollen stores, from nurse bees who
feed foragers when excess pollen is available,
or from brood who emit hunger signals (21,
22). The map is not consistent with the as-
sumption of high within-cluster connectivity,
but it does support the assertion that con-
nections across tasks are important to allo-
cation (18, 19). They may, in fact, be the
primary links modulating task regulation
globally. If so, information flow in social
insect colonies has an important similarity
to that in human social networks, where
weak ties across social clusters play an
important role in regulating society as a
large-scale network (23).

Although the complexities of the whole-
colony network have not yet been well de-
scribed, large strides have been made in the
analysis of how local interactions within the
network affect global colony dynamics. As
dense networks, social insect colonies have a
high potential for the emergence of large-scale
phenomena via self-organization (1). Self-orga-
nization pervades all aspects of colony function,
including foraging, nest defense, resource stor-
age, nest construction, site selection, thermo-
regulation, and division of labor (2).

The growing body of theoretical and empir-
ical work on self-organization is one of the
more important contributions of social insect
research to understanding biocomplexity (2).
What is perhaps most important about self-
organization in social insects is that it is not
based on derived characteristics unique to the
taxon. Instead, it is driven by a limited set of
nonlinear dynamics that should occur across
social systems, from insects to humans (2, 4).
As an example, a majority of the emergent
components of social behavior can be catego-
rized as “convergent,” in which individuals
become behaviorally more similar, or “diver-
gent,” in which the behavior of one individual
reduces the likelihood that the second individ-
ual will perform the same behavior.

The minimal components (or minimal
rule set) for convergence can be condensed
to (i) a positive stimulus for the behavior as
a result of its performance; (ii) amplifica-
tion of the stimulus through successive it-
erations; and (iii) a decay component, so
that signals and cues must be regenerated.
A beautiful example of behavioral conver-
gence via these minimal rules is found in
the trail marking system of the Argentine
ant Linepithema humile. Workers traveling
to and from resources lay a pheromonal
trail. Each time a trail is laid, the local

environment at points of choice between
alternate trails is changed. Ants reaching
these points preferentially choose the trail
with more pheromone and add to it, creat-
ing a positive feedback loop. Meanwhile,
the pheromone marks on the alternate trail
decay. As more foragers repeat this pro-
cess, one trail becomes the primary and
often the only route (2, 24 ). These simple
rules underlie trail-making in multiple ant
species (2). Similar rules describe conver-
gent group behaviors in other social spe-
cies, such as migrating social spiders who
choose a direction of travel based on the
accumulation of draglines from others in
the group (25).

The minimal rule set for divergence can
be condensed to two components: (i) per-
formance of a behavior by one individual
reduces the probability that others will per-
form the same behavior, and (ii) stimulus
levels for the behavior increase in the ab-
sence of performance. Most divergence
models also include a positive feedback
loop, in which performance of the behavior
increases the probability that the individual
will perform the behavior again. This self-
reinforcement generates divergence even
with initially small random differences in
behavior and produces a faster and more
stable system of divergence (26 ). However,
divergence can emerge in the absence of
self-reinforcement if individuals initially
differ intrinsically in their response thresh-
olds: the stimulus level at which they re-
spond by performing a behavior (27, 28).

This rule set forms the basis for the re-
sponse threshold models of division of labor
(27). These models begin with the initial
assumption that individuals perform a task
when environmental stimuli reach a level that
matches the individual’s threshold for re-
sponse. That individual performs the task; in
doing so, she reduces the stimulus levels
encountered by others and thus reduces their
probability of performing the task also. Em-
pirical tests on solitary bees and on ant
queens during colony founding have shown
that division of labor can emerge even with-
out a history of direct selection (29). When
normally solitary ant queens are forced into
artificial social groups, one individual takes
over the task of excavation, whereas the other
individual remains in the nest and tends
brood. The dynamics of this division of labor
fit well with the predictions of the response
threshold model.

Similar patterns of divergence occur across
other social taxa. Social hierarchies within
bumblebees and primates can be modeled by a
similar minimal rule set for divergence, coupled
with reinforcement (30, 31). Division of labor
also appears frequently within social species,
including humans. As an example, we can
imagine an apartment where housemates share

tasks. Used dishes pile up in the sink, producing
a continuously increasing stimulus. The dishes
go unnoticed until the threshold of the one most
sensitive to them is met, and he or she washes
them. This removes the dishes as a stimulus,
further reducing the likelihood that the other
group members will ever wash them. The result
is a dishwashing specialist (much to his/her
dismay), and a set of nondishwashers. Similar
interactions across other chores, from cleaning
the bathroom to taking out the garbage, gener-
ate a division of labor for the household.

The realization that individuals within a
social group are linked as a network is
important to our understanding of how se-
lection acts on sociality. The fitness of
every individual in the group is produced in
part as a result of their interactions with
other group members. The emergence of
collective behaviors via self-organization
also produces phenotypes at the colony lev-
el that are themselves subject to selection
(7 ). These interactions set the stage for
multilevel selection (32). Network-level
properties, including group size, connectiv-
ity, and even variation in individual respon-
siveness to signals can all shape the adap-
tive function of the social group (18, 28).
As an example, as described above, the
emergence of division of labor is based in
part on intrinsic variation in worker re-
sponse thresholds. Honeybee colonies with
more diversity in worker thresholds for for-
aging are able to respond better to changes
in the availability and need for resources.
This diversity is generated by the extreme
polyandry of honeybee queens, who mate
with a dozen or more males (22).

Network interactions also have a pro-
found influence on individual behavior and
fitness. The fitness of each individual in a
social group is dependent on the pheno-
types of the other group members (7 ); they
are each other’s social environments. These
reciprocal fitness effects are generated by
nonlinear interactions within the social net-
work. In some systems, self-organization
can actually generate conflicting fitness ef-
fects at the individual and group levels. For
ant queens, when division of labor sponta-
neously emerges from small initial differ-
ences in behavior (29), it produces associ-
ated fitness disparities, because the queen
who takes over the task of nest excavation
is more likely to die. Whether an individual
becomes the excavator, and suffers the as-
sociated fitness consequences, depends on
which group they land in and the thresholds
of everyone in that group.

What should be done next in the explora-
tion of social groups as networks? We need to
expand our models from elegant descriptions
of single behaviors to incorporate the more
complex dynamics of the group as a whole.
We also need to test those models empirically
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on a wider range of social systems. Finally, to
understand the evolutionary significance of
network dynamics, we must explicitly mea-
sure their fitness effects on the social group
(7). This interplay between network dynam-
ics and selection is just beginning to be ex-
plored, and social insects have the potential
to be on the leading edge.

References
1. A.-L. Barabási, Linked: The New Science of Networks

(Perseus, Cambridge, MA, 2002).
2. S. Camazine et al., Self-Organization in Biological

Systems (Princeton Univ. Press, Princeton, NJ,
2001).
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R E V I E W

Communication in Neuronal Networks
Simon B. Laughlin1 and Terrence J. Sejnowski2,3*

Brains perform with remarkable efficiency, are capable of prodigious computation,
and are marvels of communication. We are beginning to understand some of the
geometric, biophysical, and energy constraints that have governed the evolution of
cortical networks. To operate efficiently within these constraints, nature has opti-
mized the structure and function of cortical networks with design principles similar
to those used in electronic networks. The brain also exploits the adaptability of
biological systems to reconfigure in response to changing needs.

Neuronal networks have been extensively stud-
ied as computational systems, but they also
serve as communications networks in transfer-
ring large amounts of information between
brain areas. Recent work suggests that their
structure and function are governed by basic
principles of resource allocation and constraint
minimization, and that some of these principles
are shared with human-made electronic devices
and communications networks. The discovery
that neuronal networks follow simple design
rules resembling those found in other networks
is striking because nervous systems have many
unique properties.

To generate complicated patterns of
behavior, nervous systems have evolved prodi-
gious abilities to process information. Evolution
has made use of the rich molecular repertoire,
versatility, and adaptability of cells. Neurons
can receive and deliver signals at up to 105

synapses and can combine and process synaptic
inputs, both linearly and nonlinearly, to imple-
ment a rich repertoire of operations that process
information (1). Neurons can also establish and
change their connections and vary their signal-
ing properties according to a variety of rules.
Because many of these changes are driven by
spatial and temporal patterns of neural signals,
neuronal networks can adapt to circumstances,
self-assemble, autocalibrate, and store informa-
tion by changing their properties according
to experience.

The simple design rules improve efficien-
cy by reducing (and in some cases minimiz-
ing) the resources required to implement a
given task. It should come as no surprise that
brains have evolved to operate efficiently.
Economy and efficiency are guiding princi-
ples in physiology that explain, for example,
the way in which the lungs, the circulation,
and the mitochondria are matched and co-
regulated to supply energy to muscles (2). To
identify and explain efficient design, it is
necessary to derive and apply the structural
and physicochemical relationships that con-
nect resource use to performance. We con-
sider first a number of studies of the geomet-
rical constraints on packing and wiring that
show that the brain is organized to reduce

wiring costs. We then examine a constraint that
impinges on all aspects of neural function but
has only recently become apparent—energy
consumption. Next we look at energy-efficient
neural codes that reduce signal traffic by ex-
ploiting the relationships that govern the repre-
sentational capacity of neurons. We end with a
brief discussion on how synaptic plasticity may
reconfigure the cortical network on a wide
range of time scales.

Geometrical and Biophysical
Constraints on Wiring
Reducing the size of an organ, such as the
brain, while maintaining adequate function is
usually beneficial. A smaller brain requires
fewer materials and less energy for construc-
tion and maintenance, lighter skeletal ele-
ments and muscles for support, and less
energy for carriage. The size of a nervous
system can be reduced by reducing the num-
ber of neurons required for adequate function,
by reducing the average size of neurons, or by
laying out neurons so as to reduce the lengths
of their connections. The design principles
governing economical layout have received
the most attention.

Just like the wires connecting components
in electronic chips, the connections between
neurons occupy a substantial fraction of the
total volume, and the wires (axons and den-
drites) are expensive to operate because they
dissipate energy during signaling. Nature has an
important advantage over electronic circuits be-
cause components are connected by wires in
three-dimensional (3D) space, whereas even the
most advanced VLSI (very large scale integra-
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