Single-particle and collective excitations in transitional nuclei

Sarmishtha Bhattacharyya

Variable Energy Cyclotron Centre, Kolkata.

Plan of the talk :

Physics interest in transitional nuclei

- Role of intruder orbital and triaxiality
- Experiments with INGA

High spin band structure in Ce and TI nuclei

- Development of collectivity towards neutron rich nuclei

Shapes and excitation in transitional nuclei

- Interplay of single particle and collective excitation
- Band structures based on multi-quasiparticle excitation
- Role of
- intruder shape driving orbitals
- triaxial degrees of freedom
- New modes of excitation
- Magnetic rotation
- Chiral bands

Rotation in weakly deformed system : MR band

Novel way of generating angular momentum in a weakly deformed system with low quadrupole collectivity.

Tilted Axis Cranking (TAC)
S. Frauendorf

NPA677, 115 (2000).

Very regular band structure ($\Delta \mathrm{I}=1$) with a few valance particles (holes) in high j orbital

Non-axial deformation $\rightarrow \gamma$-soft or rigid triaxial ?

Non-axial deformation \rightarrow triaxiality

- Signature inversion
explained as a manifestation of the drift of the rotation axis in the intrinsic frame when a triaxial nucleus rotates.
- degree of triaxiality in a deformed basis
phase of the staggering of $S(I)=E(I)-E(I-1)$ reverses
can as well be consistent with an axially symmetric shape
R. Bengtsson et al., Winter meeting on Nucl. Phys. Bromino (1982)
I. Hamamoto,

PLB235, 221 (1990)

- Wobbling excitation

TSD bands in ${ }^{163,165} \mathrm{Lu}$

- Chiral bands
based on the specific geometry of three components of the total angular momentum

Nuclear chirality

A Triaxial Nucleus becomes Chiral if it rotates about an axis that lies outside the three planes spanned by the principal axes of it's triaxial ellipsoidal shape.
almost same Energy and Parity De-excitation of the partner bands
in a very similar way
intermediate

S. Frauendorf, J. Meng, NPA 617, 131 (1997)
S. Frauendorf, Rev. Mod. Phys 73, 463 (2001)

A~190 Odd-Odd (ph ${ }_{9 / 2 \mathrm{ni}_{13 / 2}}$) 188 Ir (?) 198T|
T. Koike, NPA 834, 36c (2010)

Nuclei with few particles or holes around $Z / N=82$

Transitional nuclei in A~130 region

Multi-quasiparticle excitations with valance protons and neutrons

- Shape driving effects, γ softness

Presence of high-j $h_{11 / 2}$ orbital for both protons and neutrons
$>$ Prolate driving $\pi h_{11 / 2}$ \& Oblate driving $\mathrm{vh}_{11 / 2}$

- Structutre associated with $\pi h_{11 / 2} \otimes v h_{11 / 2}$ configuration in odd-odd nuclei

Magnetic rotation (${ }^{199 \mathrm{~Pb},{ }^{197 \mathrm{~Pb}},{ }^{134} \mathrm{Ba},{ }^{134} \mathrm{Ce},{ }^{136} \mathrm{Ce},{ }^{138} \mathrm{Ce} . . . \text {.) }}$ triaxial bands (${ }^{139} \mathrm{Nd},{ }^{140} \mathrm{Nd}$) Chiral bands (${ }^{134} \mathrm{Pr},{ }^{130} \mathrm{Cs},{ }^{135} \mathrm{Nd}$)

Properties of band structure in ${ }^{138} \mathrm{Ce}$

$$
\begin{gathered}
{ }^{130} \mathrm{Te}\left({ }^{12} \mathrm{C}, \times n\right){ }^{137,138} \mathrm{Ce} \\
\mathrm{E}_{\text {beam }}: 63 \mathrm{MeV}
\end{gathered}
$$

$0.8 \mathrm{mg} / \mathrm{cm}^{2}{ }^{130}$ Te on $4.8 \mathrm{~g} / \mathrm{cm}^{2}$ Au backing

18 Clover Ge

Indian National Gamma Array
@ IUAC, New Delhi

Level structure of ${ }^{138} \mathrm{Ce}$

Shears band : $\left(\pi h_{11 / 2 g_{7 / 2}}\right) \otimes\left(v h_{11 / 2}{ }^{-2}\right)$

${ }^{138} \mathrm{Ce}$

T. Bhattacharjee et al., NPA 825, 16 (2009)

Multi-quasiparticle band in ${ }^{138} \mathrm{Ce}$

Four quasi particle structure $\pi d_{5 / 2} \mathrm{~g}_{7 / 2} \otimes \mathrm{vh}^{-1}{ }_{11 / 2} \mathrm{vd}^{-1}{ }_{11 / 2}$ oblate deformation :

B6

$$
\begin{array}{r}
941.0 \\
\quad . \quad 538
\end{array}
$$

Heavier rare earth nuclei in A~190-200

$>$ Role of low- $\Omega \pi$ h9/2 orbital to generate the band structure - similar as the h11/2 states for lighter rare-earth nuclei.
$>$ Rotational bands built on the intruder states $i_{13 / 2}$ at higher spin.
$>$ The ground state of odd-A TI nuclei are 1/2+ \rightarrow occupation of the unpaired proton in the $3 s_{1 / 2}$ orbital below the $Z=82$.
$>\pi h_{9 / 2}$ orbital above the $Z=82$ shell closure, is accessible by the odd-proton in TI nuclei for oblate deformation.
$>$ For heavy TI isotopes, the neutron numbers favor the oblate deformation as they occupy the upper part of the $i_{13 / 2}$ orbital.

Protons

Core (Hg) systematics

Even Hg isotopes

Possible chirality in the doubly-odd ${ }^{198} \mathrm{Tl}$

E. A. Lawrie et al.,

PRC 78, 021305(R) (2008)

Band 2

Four quasiparticle structure
at $\beta \sim-0.15 \quad \pi h_{9 / 2} \otimes v i^{-2}{ }_{13 / 2} v j\left(j=p_{3 / 2}, f_{5 / 2}, p_{1 / 2}\right)$

High spin structure of ${ }^{200} \mathrm{Tl},{ }^{201} \mathrm{Tl}$

$\left.{ }^{198} \operatorname{Pt}(7 \mathrm{Li}, ~ x n)\right)^{200,201} \mathrm{Tl}$ $\mathrm{E}_{\text {beam }}$: 45 MeV

198Pt (alpha, xn) ${ }^{199,201} \mathrm{Hg}$

From incomplete fusion

Band structure of ${ }^{200} \mathrm{Tl}$

$\pi h_{9 / 2} \otimes v_{13 / 2}$
A.J. Kreiner et al

PRC 23, 748 (1981)

Two minima with similar deformation of $\beta_{2}=0.12$ at near oblate shape ($\gamma=-64^{\circ}$)
\rightarrow an oblate deformation for the yrast band
at triaxial shape ($\gamma=48^{\circ}$)
\rightarrow possibility to observe Chiral structure

201TI : states above hg/2 isomer

191

195

November 7-8, 2011

What is happening away from stability?

Stable nuclei

- Magic Number : spin-orbit interaction

Exotic nuclei

- Evolution of new Magic Number? weakening of spin-orbit interaction
- Development of collectivity

个

New region of deformation near $N=28$

Breakdown of $\mathrm{N}=28$ shell gap at $\mathrm{Z}=14$

\rightarrow high collectivity
\rightarrow strong deformation $(\beta=0.45)$
\rightarrow no magicity

Y-soft
D. Sohler et al.

PRC 66, 054302 (2002)

Shape mixing in low energy states

Coexistence of $1 \mathrm{p}-1 \mathrm{~h}$ and $2 \mathrm{p}-2 \mathrm{~h}$ Configuration
D. Santiago-Gonzalez et al PRC, 83, 061305(R) (2011)

Erosion of $\mathrm{N}=28$ shell closure at $\mathrm{Z}=16$

Development of collectivity near $\mathrm{N}=28$

Strong presence of $N_{p h}$ excitations from $v f_{7 / 2}$ orbital Role of neutron proton correlation on collective motion Strong quadrupole interaction between Protons in sd and neutrons in pf Rapid development of collectivity

Deep inelastic reaction in inverse kinematics @GANIL

238U @ 5.5 MeV/u ($\mathrm{N} / \mathrm{Z}=1.58$)
~ 12\% above barrier
${ }^{48} \mathrm{Ca}\left(1 \mathrm{mg} / \mathrm{cm}^{2}\right)$ ($\mathrm{N} / \mathrm{Z}=1.4$)

11 Nos. segmented Clover detectors

 High v/c ($\sim 14 \%$) of fragmentsAccurate Doppler correction is must !! Determination of Angle event by event Velocity of fragment (VAMOS Reconstruction) and segments of EXOGAM Clover
SED (TOF)

Identification
M/q $\sim \mathrm{Bp} \times$ TOF
$M \sim E \times$ TOF 2
$Z \sim E \times \Delta E$
Silicon Wall $7 \times 3(500 \mu \mathrm{~m})$
(E)
glvus
4 ICTS

Signature of triaxiality in ${ }^{48} \mathrm{Ar}$

Signature of triaxiality :
$E\left(2^{+}{ }_{2}\right) / E\left(2^{+}{ }_{1}\right)=2.1$
$E\left(4^{+}{ }_{1}\right) / E\left(2^{+}{ }_{1}\right)=2.6$

Appearance of a low lying γ-band

Deviation from axial symmetry

$$
\beta=0.25, \gamma=40^{\circ}
$$

S. Bhattacharyya et al., PRL 101, 032501 (2008)

Properties of calculated states

Summary and conclusion

Transitional nuclei in A~130 and A~200
Role of
shape driving intruder orbitals triaxial degrees of freedom

Magnetic Rotation and multi-quasiparticle bands in ${ }^{138} \mathrm{Ce}$
High spin spectroscopy of $200,201 \mathrm{Tl}$
Development of collectivity near $\mathrm{N}=28$ for neutron rich nuclei

Collaboration

S. Dasgupta, T. Bhattacharjee, G. Mukherjee, H. Pai, D. Pandit: VECC, Kolkata
S. Chanda: F. C. College, Diamon Harbour
A. Srivastava, A. Chatterjee, L.S. Danu, S.K. Pandit : BARC, Mumbai

R. Palit, V. Nanal, R. G. Pillay, S. Thakur, S. Saha : TIFR, Mumbai
A. Goswami, S. Ray : SINP, Kolkata
S. S. Ghugre, R. Chakrabarty : UGC-DAE-CSR, Kolkata
R.K. Bhowmik, R.P. Singh, J. J. Das, S. Muralithar : IUAC, New Delhi
M. Rejmund, N. Alahari : GANIL, France

E. Caurier, F. Nowacki : IPHC, IN2P3 CNRS, Strasbourg, France

