Nuclear Structure Studies through Coulomb Excitations

R.P. SINGH

Inter-University Accelerator Center, (*Nuclear Science Centre*) New Delhi

Outline of the talk

Advances in Nuclear Physiscs Nov-2011

Goa

Inter University Accelerator Centre (Nuclear Science Centre)

Indian National Gamma Array at IUAC

Compton suppressed **Clover detectors** • ε_p~ 5 % $\gamma - \gamma - \gamma \sim 3-4$ k/s **Indigenous electronics Chirality in nuclei** .(Anti)Magnetic Rotations **Evolution of shell struture Octupole Collectivity**

Hybrid Reaction Analyser (HyRA)

Gas filled mode: Higher Eff ~ 20% A, Z : Recoil decay Vacuum mode: $\Delta M/M \sim 1/300$ Eff ~ few percent $X, \Delta E, E$

INGA + HyRA

Soon !!

Goa

Pair Transfers Fusion cross-section Spin gated GDR

National Array of Neutron Detectors

Neutron Spectrometer of ~ 100 (5"x5") neutron detectors + High resolution PPACs

Advances in Nuclear Physiscs Nov-2011

Heavy ion fusion-fission dynamics : 'n' – multiplicity Role of Quasi-fission

Coulomb Excitation Studies

Started quite early and still very active
Avoid complications of nuclear intn
Low lying collective states
Heavy ions : multiple excitations
Large detector arrays : High sensitivity

Rough sketch of the Coulex process

P-probability of excitation $P = (2Ii+1)^{-1} \cdot \Sigma_{MiMf} |b_{if}|^2$ 1st oder perturbation theory $b_{if} = (i\hbar)^{-1} \int \langle f|V(t)|i\rangle e^{i\omega t}.dt$ $\omega = (E_f - E_i)/\hbar$ Total Ex. Xtn $\sigma = \int d\sigma$ over all the scatt. angles

0+

Multi-step Coulex: Many paths : Many matrix

Nuclear excitations due electromagnetic field between nuclei

Codes: Semi-classical, multi-step excitations COULEX + CEGRY : Winther & Boer, Cline et al: 1st extraction of multiple Coulomb excitation amplitudes from assumed electromagnetic matrix elements

GOSIA : T. Czosnyka et al (Rochester): model independent extraction of matrix elements : least square search in multi-dimensional space of matrix elements : to reproduce experimental data Collaboration: with group at HIL Warsaw

Experiments

Study of proton rich Sn isotopes Collaboration with group at GSI

Investigation of Tetrahedral symmetry Collaboration with LNL,Warsaw,Tetranuc

To probe the robustness of Z=50 shell closure between N=50 to N=82

Excitation energies for 2+ almost flat B(E2) sensitive probe of robustness of Z=50 shell closure

Experimental 2⁺ and 4⁺ level energies of Sn isotopes

Large errors for the B(E2) for ¹¹⁴Sn

Motivated Coulex measurement to establish

crucial data point where B(E2) increases

- What does the theory say?
- **Advances in Nuclear Physiscs Nov-2011**

Theoretical B(E2) values for even mass Sn isotopes from large scale shell model calculations

Previous Coulex measurement used ¹¹⁴Sn as target
 Natural abundance of ¹¹⁴Sn is only 0.65%
 Difficult to separate as 2⁺ energy is very close for other isotopes
 Use ¹¹⁴Sn as beam in inverse kinematics

GSI accelerator facility

^{114,116}Sn beam on ⁵⁸Ni

Sub-barrier beam energies of ~ 3.4 A →MeV from UNILAC at GSI -99.9% enriched ⁵⁸Ni target Thickness $\sim 0.7 \text{mg/cm}^2$ 2-Particles-gamma coincidence

In collaboration with GSI

Experimental set-up at GSI

PPAC split in two independent parts :

coincidence between projectile & ejectile

⁵⁸Ni in PPAC (15° to 45°) \longrightarrow ¹¹⁴Sn in 24° to 31° in PPAC

Identification of projectile & target nuclei

by time-of-flight technique

Time (arb. units)

Advances in Nuclear Physiscs Nov-2011

SC1

SC

¹¹⁶Sn as reference point

B(E2,↑) value for ¹¹⁶Sn known precisely Adopted value 0.209(6) from 15 different measurement Reliable reference point For same experimental set-up Coulex measurement repeated for ¹¹⁶Sn on ⁵⁸Ni Define Double Ratio of gamma yields:

 $\{I_{\gamma}(^{114}Sn)/I_{\gamma}(^{58}Ni)\}/\{I_{\gamma}(^{116}Sn)/I_{\gamma}(^{58}Ni)\}$ for $2_{1}^{+} \rightarrow 0_{gs}^{+}$

Systematic errors are excluded and the target excitation cancels for ¹¹⁴Sn/¹¹⁶Sn γ-ray yield ratio Feeding from higher states $0_2^+, 3_1^-, 4_1^+$ (<4%) subtracted from 2_1^+ intensity Using Winther-de Boer Coulex code the double ratio reproduced and the value of B(E2, $0_{gs}^+ \rightarrow 2_1^+)$ determined to be 0.232(8)e²b² with good precision;

Doornenbal et al; PRC78('08) 031303(R)

```
Error in γ-ray intensity ~1%
Error in adopted B(E2) of <sup>116</sup>Sn ~3%
Error in angular acceptance (beam
drift,particle eff.)~1%
```


Is there enhancement of B(E2) for ¹¹²Sn over the LSSM ? Needs a precise measurement

Advances in Nuclear Physiscs Nov-2011

Goa

Measurement of $B(E2,2_1^+ \rightarrow 0_{gs}^+)$ in ¹¹²Sn

Experiment with IUAC Pelletron ⁵⁸Ni used as beam at 175 MeV

Targets: About 0.5 mg/cm² ¹¹²Sn : 99.5% enriched and ¹¹⁶Sn : 98% enriched were used

PPAC: 15° to 45°

Four normal Clover detectors used

Set-up for Coulomb excitation at IUAC

Doppler correction and gamma ray yields R Kumar et al PRC 81(2010)

Scattering angle vs E_{lab}

Doppler corrected spectra

Advances in Nuclear Physiscs Nov-2011

Goa

Results for ¹¹⁴Sn and ¹¹²Sn

Enhanced B(E2) with ¹¹⁴Sn as turning point

Enhanced B(E2) at ¹¹²Sn confirms asymmetrical curve

LSSM calculations fail excitations across N=50 shell α correlations (2p2h), reduction of Z=N=50 shell gaps

Phys. Rev C 81 (2010) 024306

Experimental B(E2) values compared with RQRPA calculations

No inert core No effective charges Compares well for Pb and Ni isotopes also

Kumar et al; Acta Phys Pol. B 42 (2011),

A Ansari et al, Phys. Lett. B623,37(2005)

Investigation of Tetrahedral Symmetry in Nuclei

IUAC,LNL,Lund,Tetranuc and HIL Collaboration

Goa

Skalski et al; Phys. Lett. B274, 1 (1992)Li et al; Phys. Rev.C 94 (1994) Takami et al; Phys. Lett. B (1998) Dudek et al; Phys. Rev. Lett. 88 (2002)Dudek et al; Phys. Rev. Lett. 97 (2006)

Schunk et al; Int. J. Mod. Phys. E 15

Large number of publications based on mean field theories predict existence of **Tetrahedral shape in** nuclei **Exotic properties Bearing of stability of** nuclei

(2006) Identified in Molecules, Metal clusters, Fullerenes Zberecki et alin Physic Rev. C179 (2009) gnetic

Single particle energies for

Large shell gaps : comparable to Spherical shell Gaps Four fold degeneracy for some levels (pink)

Can it be confirmed by observation in experiments ?

What to look for ?

- 1) Find quadrupole moments
- 2) Precise branching ratios B(E2)/B(E1)
- 3) Set a limit on intra-band E2 transitions
- 4) Measure Lifetimes

¹⁵⁶Gd predicted to bit a fit candidate Dudek et al; Phys. Rev. Lett. 97(2006)

Partial level scheme of ¹⁵⁶Gd

⁵⁸Ni beam on ¹⁵⁶Gd @ 225 MeV : safe Coulomb excitation

Beam from Tandem at LNL, Legnaro, Italy Ge detector array GASP Annular Si strip detector from Lund: angle range ~137°-170° Target ~ 1mg/cm^2 master trigger 1-2 k p-y

Gamma spectrum from particle-gamma-gamma after Doppler correction

Lines from predicted tetrahedral band ~ 10³ smaller !!

R P Singh et al (to be published)

Complicated level scheme for Coulomb excitation analysis

B(E2)/B(E1) very different for the even and odd spin "Octupole" bands

Iπ	B(E2)/B(E1)			Iπ	B(E2	in 10 ⁶ fm ²	
	ı t)	С	a	b	С	
17-		16(3)		12-			
15-	4.5(1.0)	6(2)	< 9	10-	640(100)	240	>132
13-	5.5(0.6)	7(2)	31(13)	8-	330(10)	700	378(164)
11-	< 9	15(7)	27(9)	6-	210(15)	350	

c from present work

B(E2)/B(E1) for

 ~ 50 B(E2)/B(E1) for

even spin -ve parity

odd spin -ve parity

=> Either B(E2) very small or B(E1) very large

Advances in Nuclear Physiscs Nov-2011

Favors Tetrahedral

Bark et al; Phys Rev. Lett. 104 (2010) point out

Difference in hindrance for $\Delta K=0$ **and** $\Delta K=1$ **for** E1 transitions

Konijn et al; Nucl. Phys. A352 (1981) Kocbach et al Phys. Lett. B 32 (1970) Dracoulis et al; Nucl Phys. A383, 119 (1982)

Not quite conclusive

Goa

Detailed analysis based on Coulomb excitations code GOSIA in progress with collaborators at HIL,Warsaw

About 160 matrix elements to be varied to reproduce the yields and other spectroscopic informations

Need to worry about the uniqueness of the solution

Recently reported study Sugwara et al; Phys. Rev C 83 (2011) ~ 20 year old data of Coulex of ¹⁵⁶Gd reports Qo ~ 7eb No even spin negative pairty band B(E2)/B(E1) ?

Existence of tetrahedral symmetry in nuclei still a open question

Summary

- 1. Coulomb excitation is a very useful tool for nuclear structure studies
- 2. Study of ^{112,114}Sn isotopes through Coulex established enhancement of
- B(E2; \uparrow) from ¹¹⁶Sn towards lighter Sn isotopes
- 3. Definite deviation of symmetric trend of $B(E2;\uparrow)$ values with ¹¹⁴Sn as the turning point;
- 4. The proposed tetrahedral band was populated thro' muti-step Coulomb excitations and the level scheme for ¹⁵⁶Gd constructed
- 5. B(E2)/B(E1) quite different for this band ; Detailed analysis using the code Gosia is being done to get the quadrupole moment of the band

THANKS for your Attention

