Tutorial 1: Thermal emission from expanding gas

August 3, 2018

Physical constants and astrophysical units.

G	$6.67384 \times 10^{-8} \text{ cm}^3 \text{ g}^{-1} \text{s}^{-2}$	(1)
c	$2.99792458 \times 10^{10} \text{ cm s}^{-1}$	
h	$6.626070040 \times 10^{-27} \text{ erg s}$	
\hbar	$1.054571628 \times 10^{-27} \text{ erg s}$	
m_p	$1.6726217 \times 10^{-24} \text{ g}$	
m_u	$1.6605389 \times 10^{-24} \text{ g}$	
m_e	$9.10938291 \times 10^{-28} \text{ g}$	
e	$4.80320425 \times 10^{-10} \text{ erg}^{1/2} \text{cm}^{1/2}$	
$\alpha = \frac{e^2}{\hbar c}$	1	
$\alpha = \frac{\hbar c}{\hbar c}$	$\overline{137.035999139}$	
$\sigma_{\rm T} = \frac{8\pi e^4}{m_e^2 c^4}$	$6.6524574 \times 10^{-25} \text{ cm}^2$	
$a_{\rm B} = \frac{\hbar}{m_e c \alpha}$	$5.2917721067 \times 10^{-9} \text{ cm}$	
$k_{ m B}$	$1.3806488 \times 10^{-16} \text{ erg K}^{-1}$	
$\sigma_{ m SB}$	$5.6704 \times 10^{-5} \text{ erg cm}^{-2} \text{s}^{-1} \text{K}^{-4}$	
a	$7.5657 \times 10^{-15} \text{ erg cm}^{-3} \text{K}^{-4}$	
$G_F/(\hbar c)^3$	$1.1663787 \times 10^{-5} \text{ GeV}^{-2}$	
M_{\odot}	$1.9884 \times 10^{33} \text{ g}$	
GM_{\odot}	$1.32712440018 \times 10^{26} \text{ cm}^3 \text{s}^{-2}$	
R_{\odot}	$6.955 \times 10^{10} \text{ cm}$	
L_{\odot}	$3.828 \times 10^{33} \text{ erg/s}$	
Jy	$10^{-23} \text{ erg s}^{-1} \text{cm}^{-2} \text{Hz}^{-1}$	
AU	$1.495978707 \times 10^{13} \text{ cm}$	
pc	$3.08568 \times 10^{18} \text{ cm}$	

1 Thermodynamics of expanding gas

Consider an expanding gas with radiative cooling due to the photon diffusion and with a time-dependent heating rate $\dot{Q}(t)$.

(1) Find a formal solution of the evolution of the internal energy of the gas, E(t), by solving

$$\frac{dE}{dt} = -\frac{E}{t} - \frac{E}{t_{\rm rad}} + \dot{Q}(t),\tag{2}$$

where

$$t_{\rm rad} = \frac{3\kappa M}{4\pi t c n} \equiv \frac{t_{\rm diff}^2}{t}.$$
 (3)

Here κ is the opacity, M is the ejecta mass, and v is the ejecta expansion velocity.

Supernovae

- (2) Derive the specific radioactive heating rate of the decay chain of 56 Ni \rightarrow 56 Co \rightarrow 56 Fe. Here you may use $t_{1/2}(^{56}$ Ni) = 6.075 day and the energy release of 2.13 MeV, and $t_{1/2}(^{56}$ Co) = 77.236 day and the energy release of 4.57 MeV.
- (3) Calculate a light curve arising from an ejecta with mass of $3M_{\odot}$, and the initial mass of 56 Ni of $0.1M_{\odot}$, the expansion velocity of $10^{-2}c$, and $\kappa = 0.1 \,\mathrm{cm^2/g}$ without the initial internal energy contribution.
- (4) Calculate the contribution of the initial energy to the light curve assuming that $E_0 = 10^{51}$ erg at a radius of $R_0 = R_{\odot}$.
 - (5) Calculate the effective temperature evolution.
- (6) Find the peak luminosity and peak time relation by setting $M = M_{\rm Ni}$ and show the region where Nickel powered transients can exist.

Neutron star mergers

- (7) Calculate a light curve with an ejecta mass of $0.03M_{\odot}$, and a power-law radioactive heating rate of $0.5 \cdot 10^{10} (t/\text{day})^{-1.3}$ erg/s/g, the expansion velocity of 0.1c, and $\kappa = 10 \, \text{cm}^2/\text{g}$.
- (8) Show the contribution of the initial internal energy when $E_0 = 10^{51}$ erg at a radius of $R_0 = 10^7$ cm.
- (9) Find the parameters (M, v, κ, E_0, R_0) , with which the light curve is consistent with the earliest observed data point of GW170817, $L \approx 10^{42}$ erg/s and $t \approx 0.5$ day.
 - (10) Calculate the effective temperature evolution.