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Discrete classical and quantum walks

Discrete classical walk in one dimension

xt+1 = xt + ξt

ξ’s are independent random variables.

Probability that the walker is at a
position x at time t

G(x, t) =
1√

4πDt
exp

(

−x2

4Dt

)

.

Simple random walk (SRW): ξ = ±1
with equal probability.
As if a translation to the right or left
(R/L) following the toss of a coin.
=⇒ Internal (coin) state dictates the
direction (R/L)
Position coordinates only degree of
freedom
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with equal probability.
As if a translation to the right or left
(R/L) following the toss of a coin.
=⇒ Internal (coin) state dictates the
direction (R/L)
Position coordinates only degree of
freedom

Quantum walk: Additional coin degree
of freedom (chirality)

Simply stated: Instead of measuring the
coin state after a toss, a superposition of
states with head and tail (‘left’ and
‘right’ chirality) is allowed.

Flipping of a coin replaced by a unitary

transformation on the coin state: the
coin state then dictates the translation.

The full time evolution is therefore
determined by the rotation followed by
the translation
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direction (R/L)
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freedom

Quantum walk: Additional coin degree
of freedom (chirality)

Simply stated: Instead of measuring the
coin state after a toss, a superposition of
states with head and tail (‘left’ and
‘right’ chirality) is allowed.

Flipping of a coin replaced by a unitary

transformation on the coin state: the
coin state then dictates the translation.

The full time evolution is therefore
determined by the rotation followed by
the translation

Classical walk: Scaling behaviour
(unbiased):
〈x〉 = 0; 〈x2〉 − 〈x〉2 ∝ t.
Quantum walk:
〈x2〉 ∝ t2
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Quantum walk: some details

Discrete quantum walk in one dimension: the state of the walker is expressed in
the |x〉 ⊗ |d〉 basis, where |x〉 is the position (in real space) eigenstate and |d〉 is the
chirality eigenstate (either left (|L〉) or right (|R〉)).
The state of the particle: ψ(x, t)

ψ(x, t) =

[

ψL(x, t)
ψR(x, t)

]

Hadamard coin used for the rotation:

H =
1√
2

[

1 1
1 −1

]

Rotation:

H|R〉 = 1√
2
[|R〉+ |L〉]

H|L〉 = 1√
2
[|R〉 − |L〉]

Translation:

T |x〉|L〉 → |x− ℓ〉|L〉
T |x〉|R〉 → |x+ ℓ〉|R〉 .

ℓ is a constant in the conventional
quantum walk

The occupation probability of site x at time t is given by
f(x, t) = |ψL(x, t)|2 + |ψR(x, t)|2
Sum of these probabilities over all x is 1 at each time step.
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Probability profile in a quantum walk
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Constructive/destructive interferences can occur at every point making the walk
distinct from the classical walk.
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Probability profile in a quantum walk
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• Ballistic peaks at
x ≈ ±t/

√
2

• Range R: R/t ≈
√
2

Constructive/destructive interferences can occur at every point making the walk
distinct from the classical walk.

Quantum walk: disorder induces localization/diffusive behaviour.

In earlier works, such disorder incorporated through the coin operator in most
cases.
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Random long range steps in quantum walk

Consider translations in general by a length ℓ ≥ 1 chosen randomly at each step.
PS 2019 Physica A 514 266; published online 2018 Oct

Binary choice

P (ℓ) = αδ(ℓ − 1) + (1 − α)δ(ℓ − 2
n
)

α = 0, 1 - usual results (trivial scale
factor). ℓmax = 2n.
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Scaling: α = 0.5
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Even for α very close to 1 (or 0), the
same scaling behaviour found.
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Moments

Approximate form of distribution:

f(x, t) = a1
1

t
δ(x− ct)

+a2
1

t
δ(x+ ct) + a3

1√
t
δ(x).

such that

〈x〉 = t/(b1 + b2
√
t)

and

〈x2〉 = t2/(b3 + b4
√
t),

Parongama Sen Long ranged quantum walk



Moments

Approximate form of distribution:
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1
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1

t
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1√
t
δ(x).

such that

〈x〉 = t/(b1 + b2
√
t)

and

〈x2〉 = t2/(b3 + b4
√
t),

The above forms of 〈x〉 and 〈x2〉 are
consistent with the numerical results.

Asymptotically
〈x〉 ∝ t, 〈x2〉 ∝ t3/2

Moments with ℓ = 1 or 2
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Decoherence parameters: b2 and b4
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The decoherence parameters vanish in a power law form near α = 1 and 0 with an
exponent ≈ 0.5.
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Non-random long range steps

What if step lengths are not unique but do not vary in a random manner?
Let step lengths be periodic: 1, 2, 1, 2.... etc.
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What if step lengths are not unique but do not vary in a random manner?
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• Scaling behaviour same as in
the quantum walk without
disorder: 〈x2〉 ∝ t2

• Probability density differs:
as if a super-imposition of two
walks with two different step
lengths.

Conclusion: Randomness
plays the key role in altering
the scaling behaviour
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Universal behaviour for random long ranged quantum walks:

S Das et al (arXiv:1806.04024): random step lengths chosen from Poissonian and other
exponential distributions (truncated) for integer step lengths 1, 2, ....
Similar scaling: 〈x2〉 ∝ t1.5 independent of distribution.
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Universal behaviour for random long ranged quantum walks:

S Das et al (arXiv:1806.04024): random step lengths chosen from Poissonian and other
exponential distributions (truncated) for integer step lengths 1, 2, ....
Similar scaling: 〈x2〉 ∝ t1.5 independent of distribution.

Quantum Levy walk (truncated)
PS 2019 ongoing work

Step lengths chosen from a fat tailed distribution

P (ℓ) = Aℓ
−1−δ

1 ≤ ℓ ≤ ℓmax
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Scaling behaviour: 〈x2〉 ∝ t3/2 asymptotically
once again!
This result is independent of ℓmax and δ.
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Scaling behaviour: 〈x2〉 ∝ t3/2 asymptotically
once again!
This result is independent of ℓmax and δ.

Why such values of the exponents?
Di Molfetta et al (2018 Phys. Rev. A 97,
062112) found in a
quantum non Markovian walk with
variable length step lengths the

same exponent 3/2 for 〈x2〉 .
Is memory irrelevant??

〈x〉 ∝ t1/2 as the ballistic peaks do not
contribute (empirical).
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Truncated quantum Levy walk: Scaling function
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Truncated quantum Levy walk: Scaling function
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g(z) = a exp(−bz
c
), z < z

∗

= const z
−2

, z
∗

< z < zmax

For values of δ greater than δ∗ ≃ 4, z∗

coincides with zmax such that the power

law region is absent =⇒ A crossover

behaviour
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a, b, c become independent of ℓmax above δ∗ =⇒ scaling function is universal
above δ∗
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The range R scaled by t, has
the same feature.
R/t approaches

√
2 as δ is

increased.
However, it has a larger value
for δ < δ∗, increasing with
ℓmax

=⇒
Possible to search remote
targets although the walk
slows down
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Entropy of entanglement

Initially, the state of the walker expressed as product state and the entanglement is
zero. With time, the coin and position states become entangled.
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Results show that the asymptotic values are larger than the usual quantum walker. For
larger randomness, it is larger.
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Conclusions

• Sub-ballistic but super-diffusive scaling for quantum walks when step lengths are
randomly chosen - universal scaling

• Quantum Levy walk: crossover behaviour observed

• Remote searching possible for fat tailed distribution

• Entanglement enhancement; slower convergence and less amplitude of
oscillations.
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