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Discrete classical and quantum walks

Discrete classical walk in one dimension

Tip1 =z + &
&’s are independent random variables.

Probability that the walker is at a
position z at time ¢

1 7132
Gt = Jop: P (m) :

Simple random walk (SRW): £ = £1
with equal probability.

As if a translation to the right or left
(R/L) following the toss of a coin.
— Internal (coin) state dictates the
direction (R/L)

Position coordinates only degree of
freedom
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Discrete classical and quantum walks

Discrete classical walk in one dimension

Tip1 =z + &
&’s are independent random variables.

Probability that the walker is at a
position z at time ¢

1 —z?
G(z,t) = i exp <H> 5

Simple random walk (SRW): £ = £1
with equal probability.

As if a translation to the right or left
(R/L) following the toss of a coin.
— Internal (coin) state dictates the
direction (R/L)

Position coordinates only degree of
freedom

Quantum walk: Additional coin degree
of freedom (chirality)

Simply stated: Instead of measuring the
coin state after a toss, a superposition of
states with head and tail (‘left’ and
‘right’ chirality) is allowed.

Flipping of a coin replaced by a unitary
transformation on the coin state: the
coin state then dictates the translation.

The full time evolution is therefore
determined by the rotation followed by
the translation
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of freedom (chirality)

Simply stated: Instead of measuring the
coin state after a toss, a superposition of
states with head and tail (‘left’ and
‘right’ chirality) is allowed.

Flipping of a coin replaced by a unitary
transformation on the coin state: the
coin state then dictates the translation.

The full time evolution is therefore
determined by the rotation followed by
the translation

Classical walk: Scaling behaviour
(unbiased):

(@) =0; (2?) — (@)% o t.
Quantum walk:

(%) o t2
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Quantum walk: some details

Discrete quantum walk in one dimension: the state of the walker is expressed in
the |z) ® |d) basis, where |z) is the position (in real space) eigenstate and |d) is the
chirality eigenstate (either left (|L)) or right (|R))).

The state of the particle: ¢(z,t)

v = [ )]

Hadamard coin used for the rotation:

RN T
i=ge 4]
Rotation: Translation:
H|R) = 5[IR) +|L)] Tl|z)|L) — |z — €)|L)
H|L) = S[IR) - |L)] Tlo)B) = [z + OIR) -

£ is a constant in the conventional
quantum walk

The occupation probability of site x at time t is given by

fx,t) = [pr(z, )] + [Yr(z, 1)

Sum of these probabilities over all x is 1 at each time step.
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Probability profile in a quantum walk

=50)

f(x,t

e Localized initial states:

0) ® (alR) + BIL))

e Ballistic peaks at

zzit/\/i
e Range R: R/t ~ V2
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Probability profile in a quantum walk
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Probability profile in a quantum walk
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Constructive/destructive interferences can occur at every point making the walk
distinct from the classical walk.
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Probability profile in a quantum walk

02 F Slymmetricl T T "] e Localized initial states:
Asymmetric -------- |0) ® (a|R) + B|L))
0.5 L | e Ballistic peaks at
: x = +t/V2
=)
wn
‘l}{ 01k | e Range R: R/t~ 2
0.05 - 4
W 4] i
0 ! VUV [\/\ VWVWWVAVVYYY

-20 0

X
Constructive/destructive interferences can occur at every point making the walk
distinct from the classical walk.

Quantum walk: disorder induces localization/diffusive behaviour.

In earlier works, such disorder incorporated through the coin operator in most
cases.
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ps in quantum walk

Random long range s

Consider translations in general by a length £ > 1 chosen randomly at each step.

PS 2019 Physica A 514 266; published online 2018 Oct

Binary choice

] P(8) = ab(f — 1) + (1 — a)5(€ — 2™) \

a = 0,1 - usual results (trivial scale
factor). lmae = 2™.
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Random long range steps in quantum walk

Consider translations in general by a length £ > 1 chosen randomly at each step.
PS 2019 Physica A 514 266; published online 2018 Oct

Binary choice Scaling: o = 0.5

10° ‘ ‘ :
] P(8) = ab(f — 1) + (1 — a)5(€ — 2™) \
= 107 ]
a = 0,1 - usual results (trivial scale 2
factor). €pmax = 2. 0wl |
1072
)
] A\ 5
8 10° ¢ 1 1o
= ol |
& ‘ Imax=1 = 10
0=0.5 =
|/, | 0=0.995 - T 10?7 ¢ 1
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10
X
xitY
Even for « very close to 1 (or 0), the
same scaling behaviour found.
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Moments

Approximate form of distribution:

flz,t) = a1%6(z — ct)

1 1
-5 t — ().
+a2t (30+c)+ag\/E (z)

such that
() = /(b1 + b2V'?)
and

(x?) = t/(bs + baV'1),
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Moments

Approximate form of distribution: Moments with £ =1 or 2
1 ; ;
f(z, ) 201?5@*&) 10° |- 1
E 0.5 <x*> -
1 1 E10* | &7 =099, <> * 1
+ag;6(m+ct)+a3—6(x). £ o =0.995, <x?> ©

vt 10% + o R

i

such that = : :
100 1000 10000
t
z) = t/(by + b2Vt
@) / ) Moments with £ =1 or 8
and 7 [ ' ]
1071 4=0.999 -
=0.995
(x?) = t2/(bg + baV/1), ,\ oo - M*M
10° | . *T""' P
The above forms of (z) and (z2) are L
consistent with the numerical results. 108 L= .
- 100 1000

Asymptotically
(z) o t, (x2) o t3/2 J
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Decoherence parameters: by and by
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The decoherence parameters vanish in a power law form near o = 1 and 0 with an

exponent ~ 0.5.
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Non-random long range steps

What if step lengths are not unique but do not vary in a random manner?
Let step lengths be periodic: 1, 2, 1, 2.... etc.

1010 =

\%

104 L
100

0.003

0.0025

0.002

0.0015

)

0.001

0.0005

0
-20000 -10000 0 10000 20000
X

Long d quantum walk




Non-random long range steps

What if step lengths are not unique but do not vary in a random manner?
Let step lengths be periodic: 1, 2, 1, 2.... etc.

100 F T ' q e Scaling behaviour same as in
14 the quantum walk without
2
t

&l M | disorder: (z2) o t2
¥

o i e Probability density differs:
10tk . . E as if a super-imposition of two
100 1000 10000 walks with two different step

t
lengths.
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oooss | S0
1,2;t=20K * .
i Conclusion: Randomness
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plays the key role in altering
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the scaling behaviour
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Universal behaviour for random long ranged quantum walks:

S Das et al (arXiv:1806.04024): random step lengths chosen from Poissonian and other
exponential distributions (truncated) for integer step lengths 1, 2, ....
Similar scaling: (22) o t'*® independent of distribution.
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Universal behaviour for random long ranged quantum walks:

S Das et al (arXiv:1806.04024): random step lengths chosen from Poissonian and other
exponential distributions (truncated) for integer step lengths 1, 2, ....
Similar scaling: (22) o t'*® independent of distribution.

Quantum Levy walk (truncated)
PS 2019 ongoing work
Step lengths chosen from a fat tailed distribution

P) = Ae~'7?

1<{l</lmax
Scaling behaviour: (22) oc t3/2 asymptotically
once again!
10 i i This result is independent of £y,qz and 9.
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Universal behaviour for random long ranged quantum walks:

S Das et al (arXiv:1806.04024): random step lengths chosen from Poissonian and other
exponential distributions (truncated) for integer step lengths 1, 2, ....
Similar scaling: (22) o t'*® independent of distribution.

Quantum Levy walk (truncated)
PS 2019 ongoing work
Step lengths chosen from a fat tailed distribution

P) = Ae~'7?

1<{l</lmax
Scaling behaviour: (x2) t3/2 asymptotically
once again!
108 - . This result is independent of £y,qz and 9.
<&>/190

b e
9710 - -

e Why such values of the exponents?
L0 e 1 Di Molfetta et al (2018 Phys. Rev. A 97,
[ 1 062112) found in a

Z= e quantum non Markovian walk with
variable length step lengths the

1 e T T et

. . 2
pres s same exponent 3/2 for (x=) .
t Is memory irrelevant??
(x) o< t1/2 as the ballistic peaks do not
contribute (empirical).
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Truncated quantum Levy walk: Scaling function
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Scaling function g(z); 2z = w/t1/2
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Truncated quantum Levy walk: Scaling function
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Scaling function g(z); 2z = av/tl/2
g(2) = aexp(—bz°), z< 2"

—2 *
=const z 7, 2z < 2z< Zmazx

For values of § greater than 6" ~ 4, z2*
coincides with 2,4 such that the power
law region is absent = A crossover
behaviour
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a, b, ¢ become independent of £, 4z above §* = scaling function is universal
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a, b, ¢ become independent of £, 4z above §* = scaling function is universal

above §*
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The range R scaled by ¢, has pmacd
max
the same feature. Imax = 12
R/t approaches v/2 as § is
increased.
However, it has a larger value = .
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Entropy of entanglement

Initially, the state of the walker expressed as product state and the entanglement is
zero. With time, the coin and position states become entangled.
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Results show that the asymptotic values are larger than the

larger randomness, it is larger.

time
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usual quantum walker. For

Long
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Conclusions

e Sub-ballistic but super-diffusive scaling for quantum walks when step lengths are
randomly chosen - universal scaling

e Quantum Levy walk: crossover behaviour observed
e Remote searching possible for fat tailed distribution

e Entanglement enhancement; slower convergence and less amplitude of
oscillations.
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