Instantons and Monopoles

Lecture 1: Physics

Sergey Cherkis (University of Arizona)

Quantum Fields, Geometry and Representation Theory ICTS-TIFR, Bengaluru

July 16-27, 2018

Outline

- Yang-Mills Instantons
- Significance:
 - Hanany-Witten brane dynamics
 - N=4, D=3 Quantum Gauge Theories
 - Geometric Langlands for surfaces
 - Singular monopoles
- Bows from Branes:
 - Taub-NUT as a Bow Moduli Space
 - Abelian Instantons on Taub-NUT
- Bow moduli Spaces

Yang-Mills Instanton

Yang-Mills gauge field (connection 1-form) A, with field strength (curvature 2-form) F=dA+A∧A is governed by the action functional

$$S[A] = \int_{M^4} \operatorname{tr} F \wedge *F \qquad \text{Hodge star}$$

Its extrema satisfy the Yang-Mills equation (Euler-Lagrange equation for S[A]):

$$D_A * F = 0$$

In quantum theory one is interested in computing path integrals of the form

$$<\mathcal{O}(A)> = \int e^{i\frac{S[A]}{\hbar}}\mathcal{O}(A)\mathcal{D}A$$

Its Euclidean version is

$$<\mathcal{O}(A)>=\int e^{-\frac{S[A]}{\hbar}}\mathcal{O}(A)\mathcal{D}A$$

it is dominated by the minima of S[A], which satisfy the SD or ASD equations:

$$*F = \pm F$$

Belavin-Polyakov-Schwartz-Tyupkin (Bogomolny) Trick

Since the norm of F+*F is non-negative

$$0 \le \int \text{tr}(F + *F) \wedge *(F + *F) = 2S[A] + 2\int \text{tr} F \wedge F$$

The action is bounded below:

$$\int \operatorname{tr} F \wedge *F \ge -\int \operatorname{tr} F \wedge F = 8\pi^2 c h_2[M^4]$$
 Chern character

with the minimum achieved only if A is anti-self-dual

$$*F = -F$$

Note: Similar inequality is saturated by self-dual connections.

Taub-NUT Space

A₀ ALE: Euclidean \mathbb{R}^4 metric in "radial coordinates" $\mathbb{R}^4 = \mathbb{H} \ni q = ae^{e_1\tau}$ with a pure imaginary

 (t,τ) are "polar coordinates" on \mathbb{R}^4

$$t = t_1 e_1 + t_2 e_2 + t_3 e_3 = q e_1 \bar{q} = a e_1 \bar{a}$$

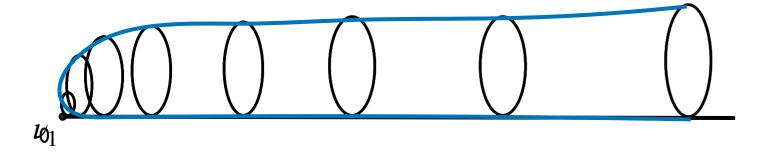
$$ds^{2} = dqd\bar{q} = \frac{1}{2|t|}d\vec{t}^{2} + \frac{(d\tau + \omega)^{2}}{\frac{1}{2|t|}}$$

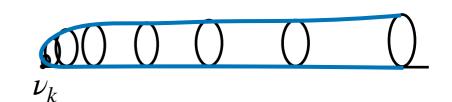
$$d\omega = *_3 dV$$

A₀ ALF: Taub-NUT space (TN)

$$ds^2 = Vd\vec{t}^2 + \frac{(d\tau + \omega)^2}{V}$$

$$V(t) = l + \frac{1}{2|t|}$$





$$A_{k\text{-}1} \ ALF; multi-Taub-NUT \ space \ TN_k \ in \ Gibbons-Hawking \ form$$

$$V(t) = l + \sum_{\sigma=1}^{k} \frac{1}{2 |t - \nu_{\sigma}|}$$

This is the simplest nontrivial Calabi-Yau space: respects 1/2 SUSY, has 2 covariantly constant spinors, is hyperkähler.

Significance

Chalmers-Hanany-Witten Brane Dynamics (NS5+D5+D3)

Geometric Langlands for Complex Surfaces

Quantum Gauge Theory: N=4, D=3 or N=2, D=4 with Impurity Walls

Gauge Theory
Mirror Symmetry
(as Isometry of Moduli Spaces)

Instanton on Taub-NUT

M theory compactification with background induced M-brane charges

Generalizations of Quivers: Bows, Slings, Monowalls...

- A number of ways of realizing instantons:
 Dp-branes inside D(p+4)-branes wrapped on M.
- If M has an isometry or a mirror W, then
 D(p+k)-brane intersecting D(p+4-k)-brane on W.

p=2: Relation to Bows

M	0	1	2	3	4	5	6	7	8	9	10
				Т	aub	-NU	Т				
								T	aub	-NU	Т
M2	X	X	X								

$$S^{1}_{M}=S^{1}_{10}$$

IIA	0	1	2	3	4	5	7	8	9	
				7	Taub	-NU				
D6	X	X	X	X	X	X	X			
D2	X	X	X							

IIB	0	1	2	3	4	5	6	7	8	9
NS5	X	X	X					X	X	X
D5	X	X	X	X	X	X				
D3	X	X	X				Х			

Warning: TN_kxTN_k in NOT a solution of M theory (even though it is Calabi-Yau)

$$S_M^{\text{Eff}} = \ldots + \int C^{(3)} \wedge R^4$$

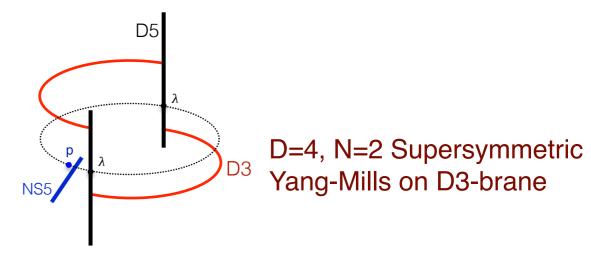
R⁴ source gives rise to C³ field =>

fractional M2-brane charge

Hanany-Witten effect in M theory

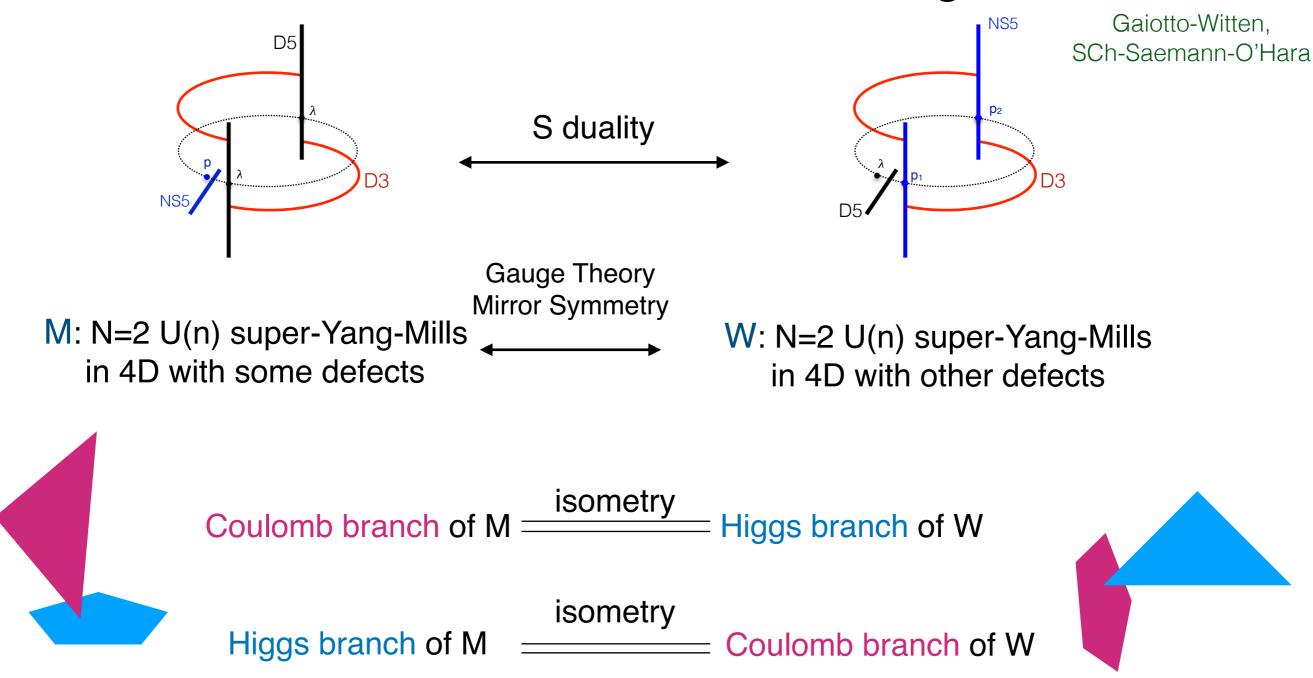
w/ Ruben Minasian

Chalmers-Hanany-Witten configuration: analogue of Higgs spectral curve



Analyzing its vacua gives rise to a Bow!

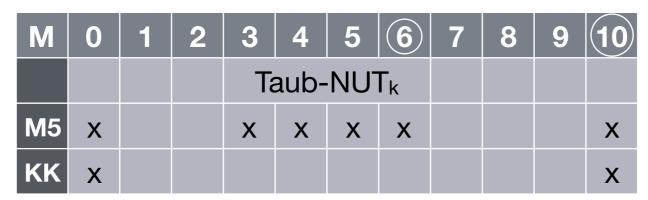
What we learn from this brane configuration:



Note: Gauge theory mirror symmetry is usually stated for D=3, N=4 gauge theories. These are not isometric, but have same underlying complex varieties.

p=0: Geometric Langlands for Surfaces

Dijkgraaf, Hollands, Sulkowski, Vafa '07 M-C Tan '08 Witten '09



 $S^1_M = S^1_{10}$ m U(n) instantons on TN_k

 $S^1_M=S^1_6$

	IIA	0	1	2	3	4	5	6	7	8	9
					T	aub-	TUN				
n	D4	X			X	X	X	X			
m	D0	X									

	IIA	0	1	2	3	4	5	7	8	9	10
k	D6	X	X	X				X	X	X	X
n	D4	X			X	X	X				X
m	F1	X						X			

T₆

T₁₀

IIB	0	1	2	3	4	5	6	7	8	9	
NS5	X	X	X					X	X	X	
D3	X			X	X	X					-
D1	X						X				

IIB	0	1	2	3	4	5	7	8	9	10
D5	X	X	X				X	X	X	
D3	X			X	X	X				
F1	X						X			

What we learn from this brane configuration:

М	0	1	2	3	4	5	6	7	8	9	10
				Tá	aub-	NU ⁻	T_k				
M5	X			Χ	X	Χ	X				X
KK	Χ										X

	m U(n) instantons on TN_k									•		_				>							
	IIA	0	1	2	3	4	5	6	7	8	9		IIA	0	1	2	3	4	5	7	8	9	10
					T	Taub-NUT _k						k	D6	Х	Х	Х				Х	Х	Х	X
n	D4	X			X	X	X	Х				n	D4	X			X	X	X				X
m	D0	X										m	F1	X						X			

Quantum mechanics with D0: configuration space moduli space of instantons on TN

F1: Twisted holomorphic WZW at D4-D6 intersection

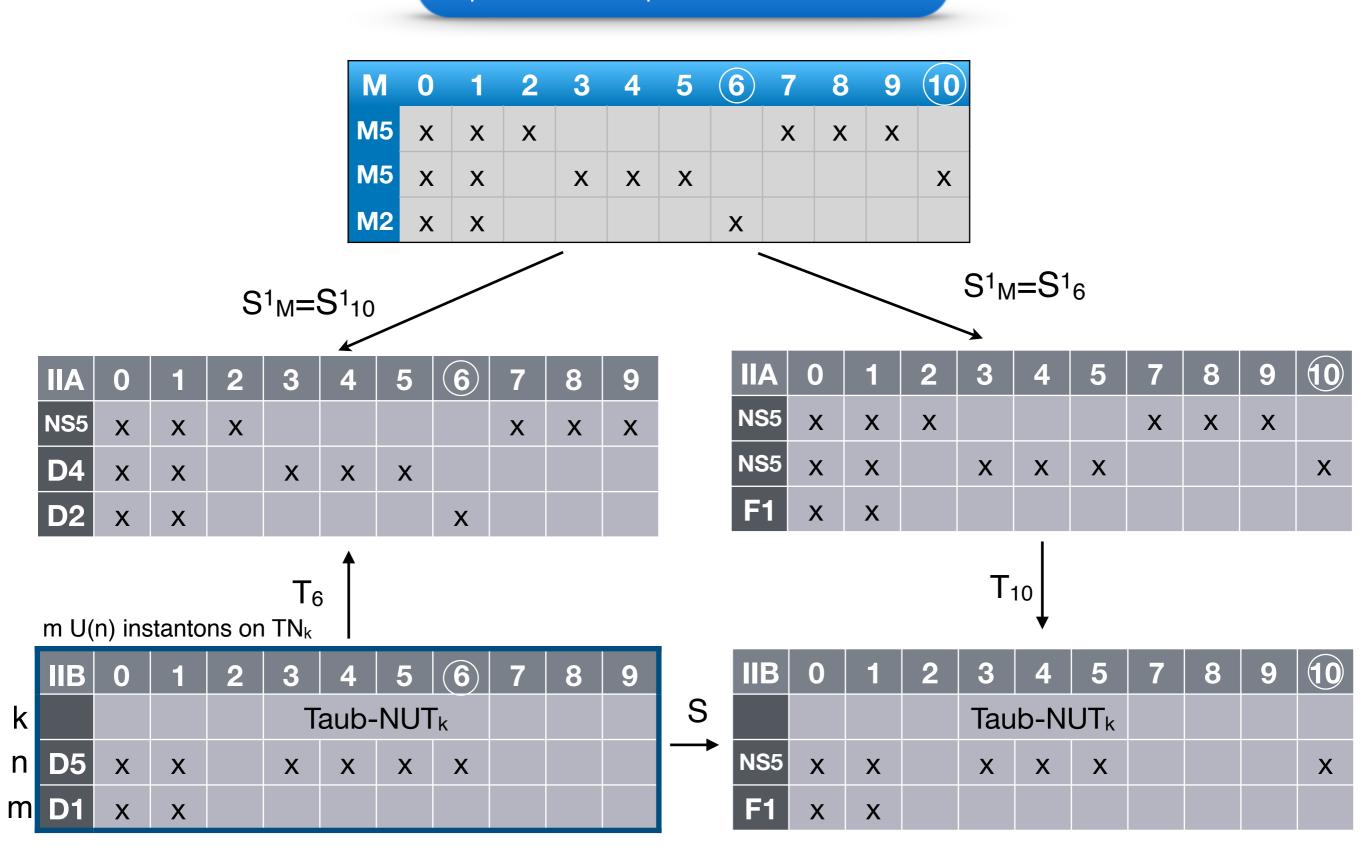
BPS States are

$$\mathop{\oplus}_{m} H_{L^2 \mathrm{harm}}^*(\mathcal{M}_{m_G}^{\mathrm{inst}}) = \mathcal{H} = \mathop{\otimes}_{\mathrm{TN \; centers}} \mathcal{W}_{j}^{LG}$$

M-C Tan '08 Witten '09

Meng-Chwan Tan gives explicit formulas for the L² Betti numbers of moduli spaces of instantons in TN_k in 0807.1107.

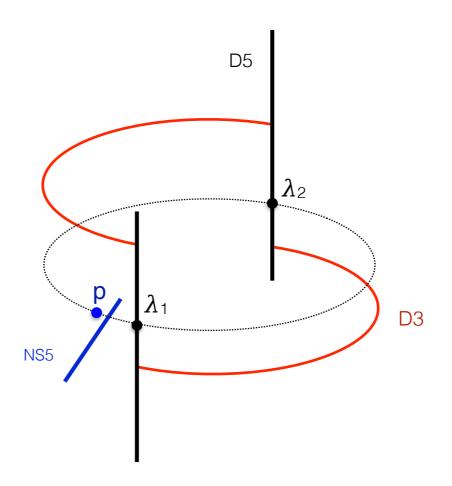
p=1: Unexplored Relation

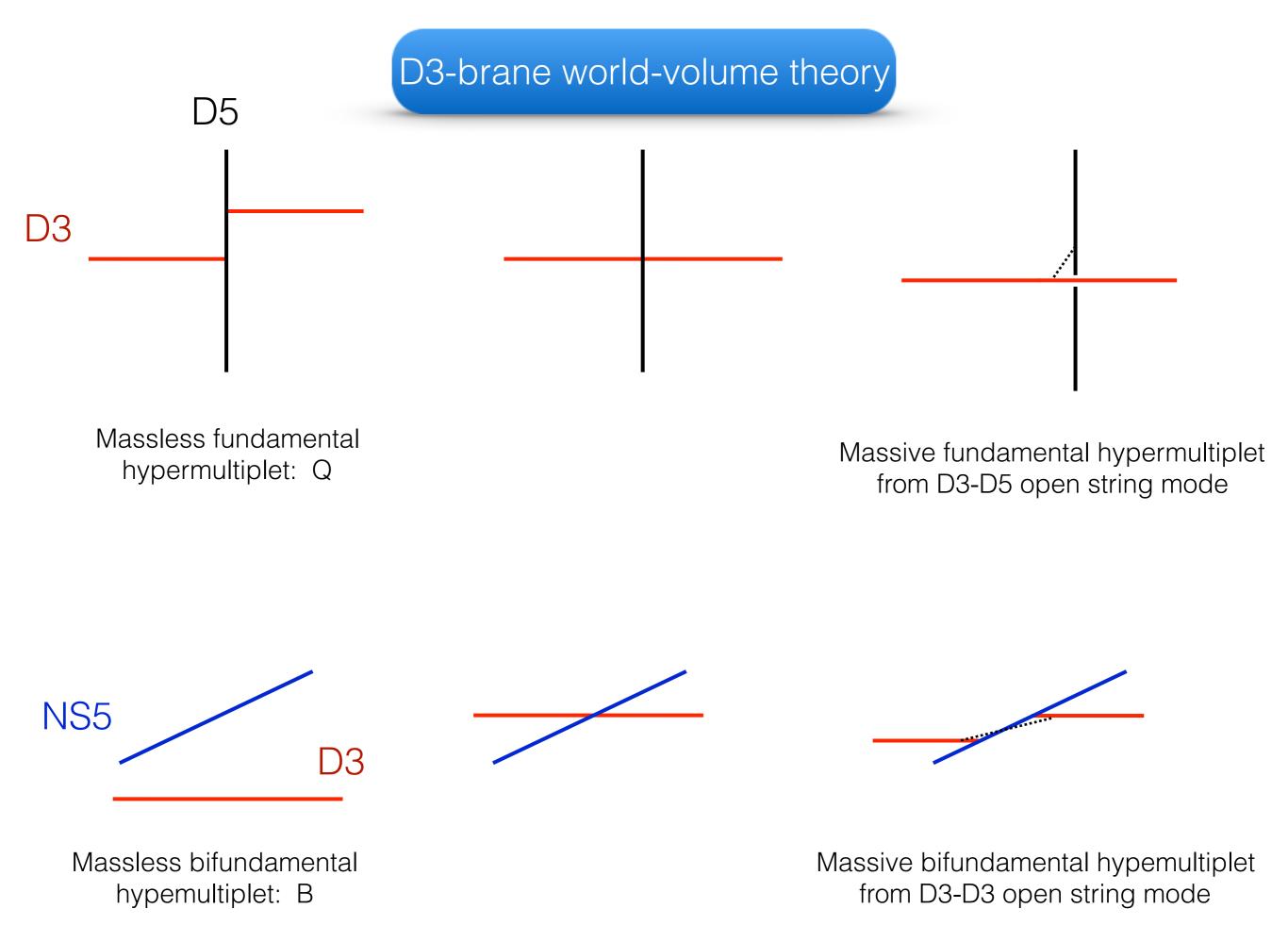


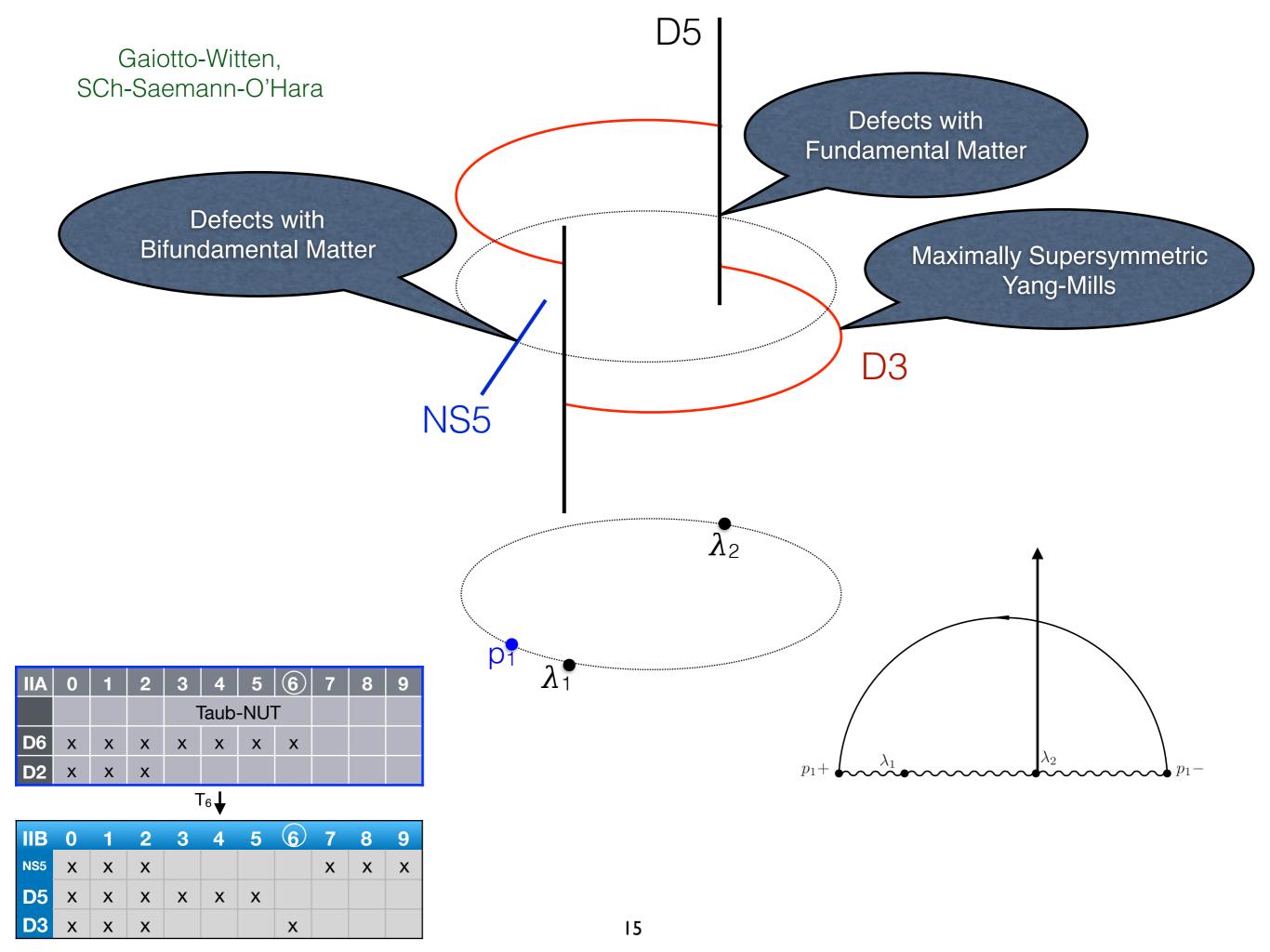
Open Question: what do we learn from this realization?

Back to Hanany-Witten configuration: What gauge theory lives on the D3-brane?

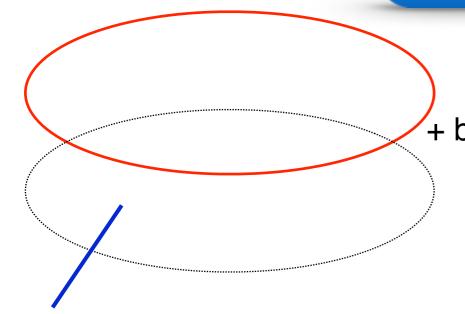
(Study of defects)



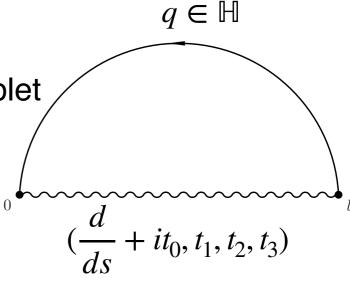




Basic Example: Taub-NUT as Bow Moduli Space



U(1) N=4 SYM on D3 + bifundamental supermultiplet



D- & F-flatness conditions in the interior: $i\frac{d}{ds}t_1 = [t_2, t_3] \ (=0)$ Nahm's Equations

$$i\frac{d}{ds}t_1 = [t_2, t_3] \ (=0)$$

Moral: t₁,t₂ ,t₃ are constant

t₀ can be gauge to constant

by gauge transformations vanishing at the end-points

$$(t_0, t_1, t_2, t_3) \in S^1 \times \mathbb{R}^3$$

$$t_0 t_1, t_2, t_3 q = ae^{e_3\frac{\theta}{2}}$$
 otient:
$$S^1 \times \mathbb{R}^3 \times \mathbb{H} / / / U(1)$$

The resulting space is the hyperkähler quotient:

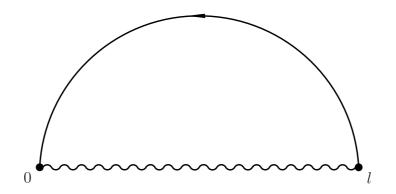
$$ds^{2} = l(dt_{0}^{2} + d\vec{t}^{2}) + \frac{d\vec{r}^{2}}{2r} + 2r(d\theta + \omega)^{2}$$

$$\mu = \underbrace{\bar{q}Kq}_{r} - (t_1e_1 + t_2e_2 + t_3e_3) \quad (= \nu)$$

this is the Level Set $\mu^{-1}(\overrightarrow{\nu})$

divide by remaining gauge action:

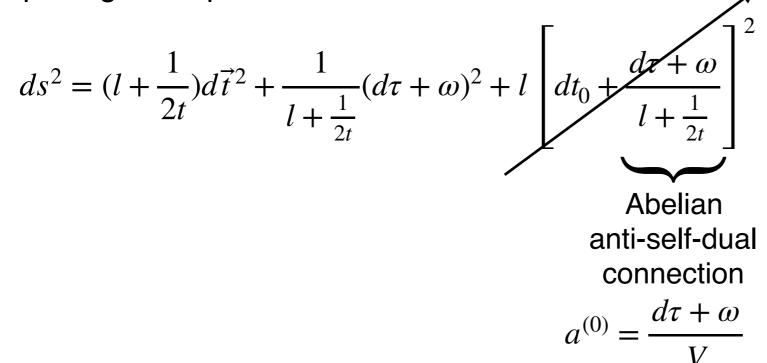
$$(t_0, \theta) \mapsto (t_0 + \epsilon, \theta + \epsilon)$$



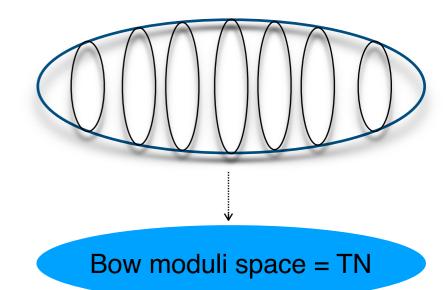
$$ds^{2} = l(dt_{0}^{2} + d\vec{t}^{2}) + \left(\frac{d\vec{r}^{2}}{2r} + 2r(d\theta + \omega)^{2}\right)$$
 ren

remaining gauge action: $(t_0, \theta) \mapsto (t_0 + \epsilon, \theta + \epsilon)$ Invariant: $\tau = \theta - t_0$

Completing the square:



Level Set:



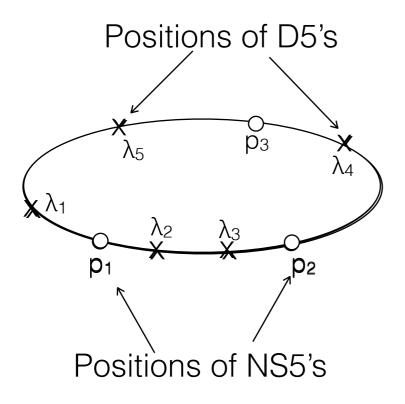
Moduli space metrics can be computed explicitly when the bow representation ranks do not exceed 2.

What is the expression for a general case metric?

Exact Metric on Moduli Space (Bow Integrabe System)

U(n) YM instanton on A_k ALF space => two Dynkin diagrams: \tilde{A}_{k-1} and \tilde{A}_{n-1}

 \tilde{A}_{k-1}



A bow representation solution carries above each λ interval the Nahm system:

$$\begin{cases} \frac{d}{ds}T_1 + [T_0, T_1] = [T_2, T_3] \\ \frac{d}{ds}T_2 + [T_0, T_2] = [T_3, T_1] \\ \frac{d}{ds}T_3 + [T_0, T_3] = [T_1, T_2] \end{cases}$$

with Lax pair:

$$M = \frac{d}{ds} + T_0 - iT_3 - \zeta(T_1 - iT_2),$$

$$L = T_1 + iT_2 + 2\zeta iT_3 - \zeta^2(T_1 - iT_2),$$

$$\left[\frac{d}{ds} + M, L\right] = 0$$

and spectral curve

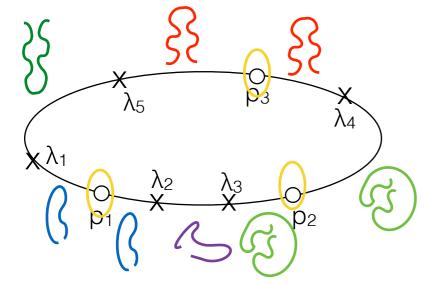
$$T\mathbb{P}^1 \ni S_{I_j} := \left\{ \eta \frac{d}{d\zeta} \in T\mathbb{P}^1 \middle| \det(L - \eta) \right\} = 0$$

Spectral Curve changes across a λ-point, but remains the same across a p-point:

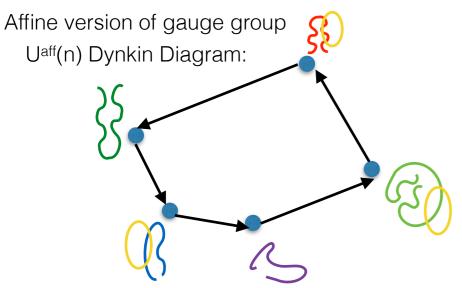
moment map conditions at a p-point read

on the right:
$$L(p_{\sigma}+) = (B_{\sigma,RL} + \zeta B_{\sigma,LR}^{\dagger})(B_{\sigma,LR} - \zeta B_{\sigma,RL}^{\dagger}) - ((\nu_1 + i\nu_2) + 2\zeta i\nu_3 - \zeta^2(\nu_1 - i\nu_2))$$

on the left: $L(p_{\sigma}-) = (B_{\sigma,LR} - \zeta B_{\sigma,RL}^{\dagger})(B_{\sigma,RL} + \zeta B_{\sigma,LR}^{\dagger}) - ((\nu_1 + i\nu_2) + 2\zeta i\nu_3 - \zeta^2(\nu_1 - i\nu_2))$



Reciprocal bow (cutting at λ -points instead) is of A_n type i.e. it is determined by the gauge group.

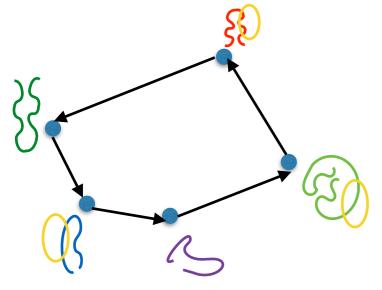


What is the significance of p-points?

Each p-point has an assigned moment map level: each determines a section of TP1.

$$\eta = ((\nu_1 + i\nu_2) + 2\zeta i\nu_3 - \zeta^2(\nu_1 - i\nu_2))$$

Affine Dynkin diagram of the Instanton Gauge Group



- Each vertex of the affine Dynkin diagram carries a spectral curve.
- All of these curves are in TP1.
- p-points assign \mathbf{P}^1 curves (moment \mathbf{P}^1_{ν}) to some vertices.
- Connected vertices => respective curve intersection divisor.
- A curve at a vertex intersection with the moment \mathbf{P}^{1} 's of that vertex.
- Ignore all other curve intersections.

Alternatively, one can view this as a single multi-component curve

In terms of finite HK quotient ingredients the symplectic structure on each interval is

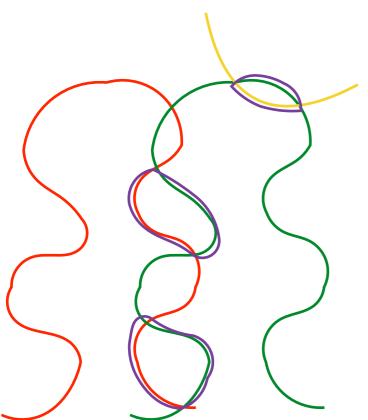
Spectral curve on ith interval is

$$\omega = \operatorname{Tr} (H^{-1}dH \wedge dL + LH^{-1}dH \wedge H^{-1}dH)$$

$$\eta_i^{r_i} + a_1^i(\zeta)\eta^{r_i-1} + \ldots + a_{r_i-1}^i(\zeta)\eta + a_{r_i-1}^i(\zeta) = 0$$

with polynomial coefficients

$$a_{\alpha}^{i}(\zeta) = z_{i} + v_{i}\zeta + w_{2,i}\zeta^{2} + \dots + w_{2r_{i}-2,i}\zeta^{2r_{i}-2} + (-1)^{r_{i}-1}\bar{v}_{i}\zeta^{2r_{i}-1} + (-1)^{r_{i}}\bar{z}_{i}\zeta^{2r_{i}}$$



Form Legendre potential, which is a function of coefficients of these polynomials

$$F = \sum_{i \in \text{Intervals}} l_i \frac{1}{2\pi i} \oint_0 \frac{\eta_i^2}{\zeta^3} d\zeta + \sum_{e \in \text{Edges}} \frac{1}{2\pi i} \oint_{\Gamma_e} (\eta_{h(e)} - \eta_{t(e)}) \log(\eta_{h(e)} - \eta_{t(e)}) \frac{d\zeta}{\zeta^2}$$

$$+ \sum_{\lambda \in \Lambda} \frac{1}{2\pi i} \oint_{\Gamma_e} (\eta_{i(\lambda)} - \nu_{\lambda}) \log(\eta_{i(\lambda)} - \nu_{\lambda}) \frac{d\zeta}{\zeta^2}$$

more succinctly

weights

$$F = -\frac{1}{2\pi i} \oint_0 \frac{\eta^2}{\zeta^3} d\zeta + \oint_C \frac{\eta}{\zeta^2} d\zeta$$

performing Legendre transform

$$u_i = \frac{\partial F}{\partial v_i}, \qquad \qquad \frac{\partial F}{\partial w_{\alpha,i}} = 0,$$
 Constraints on the spectral curves.

gives the Kähler potential: $K(z,\bar{z},u,\bar{u})=F(z,\bar{z},v,\bar{v})-uv-\bar{u}\bar{v}$. using GLT of Hitchin, Karlhede, Lindstrom, Rocek '87