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Plan

Want to study (2,0) theory observables on curved manifolds...

Superconformal index: partition function on S> x St —> | will focus on this.

S% x M,: [Alday, Gaiotto, Tachikawa] ......

St x S x M,: [Rastelli et.al] [Gaiotto, Rastelli, Razamat] ......
Some of these observables

S3 x M3: [Dimofte, Gaiotto, Gukov] ...... ~ depend much less on geometry
St x S2 x M;: [Dimofte, Gaiotto, Gukov] ......

etc.

With a circle factor, reduce to 5d & study them using suitable 5d SYM.



Issues

« Putting (2,0) or (1,0) theories on curved manifolds.

* Lorentzian: no conceptual issue, just needs to check if the space admit SUSY

» Euclidean: It is a priori unclear what is the Euclidean version of the “self-dual”

tensor theory one can write down, on general 6-manifolds.

one physically motivates the Euclidean theory.

« The theory on M® x St would appear in the thermal partition function (or index).
Existence of Euclidean theory is implied if there is a Lorentzian theory on M° x R.

[Presumably, working with a non-covariant formalism with chosen S? direction will do.]



The superconformal index
« A natural Witten index partition function for radially quantized SCFT’s.

« Put the theory on S° x R: energy E ; SO(6) j;, j» j3; SO(B)z Ry, R,

« Choose a pair of Q, S (= Q*)

{',}l:H“H'J] — Q( 22, . ¢ BPSbound E = 2R, + 2Rs + j1 + j2 + Js

(F1.72.93) — 57

[Kinney,Maldacena,Minwalla,Raju] [Bhattacharya,Bhattacharyya,Minwalla,Raju] [Romelsberger]

Index partition function on S° x S1: or counts local BPS operators on R®

I(B,m,€1,69) = Tr (_1)FE—.S’{Q-.S}E—.S{E—RLZRE}E.SM(RL—RE}E—"‘.f'l{jl—ja}e—"fz(ja—ja}

Four charges in OSp(8*|4) designed to commute with Q, S.

B plays a similar role as the “inverse-temperature” variable in the index.

It compactifies the Euclidean time direction.



3.

5d SYM perspective 1

start from high temperature regime. small circle.

S° QFT interpretation: reduction on S* with twistings (clear in Abelian theory)

Spatial chemical potentials squash S5.
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“Instantons” appear on S° as saddle points of path integral (wrap contractible circles)
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at weak couplng:

B<<1 —> Shouldre-expand it
in efat B>>1




5d SYM perspective 2
We take the Hopf fiber of S° and try to reduce to 5d SYM on CP? x R.

Start from weak coupling: impose an extra Z, orbifold, fractional shift on Hopf fiber

SUSY KK reduction on SY/Z, fiber:

: : . . C3
2m/K rotation with | &= j, + jo + Jy + E{Hl + Hy) +n(R, — Ry)

Half-an-odd integer n: twisted reductions, infinitely many 5d QFT \v

Our interest: strong-coupling QFT at K=1: instantons provide KK towers

6d chemical index = 5d index (time direction kept)

Here, instantons are solitonic particles on CP2.

Benefit of this approach: “index nature ” would be manifest (manifestly an

expansion in fugacities.)



SUSY QFT actions

 SYM action on S>: “off-shell” version (bosonic terms) D =2(ai + a3 +a3)a® V= (dC)y

: 1 3 9 1 1 .
B’f'mﬁ_lﬁ = —(16?1*‘24-15’.4-{?) ap? — 4—@1 — —qa‘. bE

1 1 L. ;i :
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« On CP? x R: (can also make it off-shell)

1 1 : 1 :
S = &,/ tr —FFHF*‘“ + =D, o' D*¢! — A # DA = =[o!, 6']2 = AN, o]
dy u 2 2 4 2
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Goyy = ATr/K M, = 3R+ Ry) +n(R - Ry)

* In the latter, the effect of chemical potentials is simply twisted B.C. on S*.



Localization & saddle points

* Localization of SUSY path integral:

« Saddle points on round S°:

Z(3) = / e 770 independent V chosen to satisfy [Q?, V] =0

3
E;F' = EI"Ir"#E = E f};

/ self-dual instantons on CP? base i—1

1

Fu.y = Eﬂwnﬂq—

Fn_ﬂ 51—

F,"=0, D=0, D=igs"  allother fields = 0

« CP?2 x S?: without angular momentum chemical potentials on CP2

D'=D*=0,

2 ' 4 ¢  anti-self-dual instantons allowed
_ 5 ) s , anti-self-dual instantons allowed on
Fo= E"r | 7 +D= 2 D + - 0 CP2, proportional to Kahler 2-form

% A=diag(A;, da. - L Ax) . N~ N4 2n Holonomy of gauge field on S?
J 51

« With squashing on S° or chemical potentials on CP?, the self-dual instantons’

moduli get lifted to fixed points of rotations (later)...



Results

Each factor takes the form of Nekrasov
partiti(/)T\n function on R4 x St

« S% A=rg (W:Weylgroup, r: rank)
I
1 [ | 22t A2 1 - _— -
Z(B.m,a;) = — d\; | exp [— AN AR VAR ARRY AN A
) = ] l[[ ] o [~ STt T oo B L
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2ri(a — ¢) 2mi(b — e 2ri(m + 3(1 + ¢ D
0 {{hfﬂz( 1{+r' ]" 1{+r' ]) = r{m:_-:f- =) ’ ﬁ':]_ﬁ,.* q=e 7
¢ CP?2x St we did U(N), but other groups should be similar
! i dAi] 258 2missn g 700 50 70 70 )
J_q E € pert “inst =~ “pert“~inst =~ “pert “inst
51,80, 8 y=—00
1 : (e1,6) = (B(b—a),flc—a)), mo=pB(m+n(l+a)), p=p0—i\+pBsa, q=e P+
2 (e1,6) = (Ble—0),Ba—b)), mo=p(m+n(1+b), p=pc—i\+psb, g=ePIH) B>>1
3 e1,6) = (Bla—e),B(b—¢)), mo=p(m+n(l+¢c)), p=poc—i\+psc, q=e P+

[There is a subtle choice of integral contours, which | don’t explain here.]
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Nekrasov’s partition functions

« Both expressions contain Nekrasov’s partition function on R4 x S1.

« Factorization: [Atiyah] [Pestun]
- Self-dual instantons at the saddle point singularly localizes to the 3 fixed points on CP2,

after deforming the path integral by chemical potential or squasing.

- Gaussian determinant also factorizes into 3.

/\nZ

3 C3: Zi=me'” |, ni4ni+ni=1, (i=1,23)

IA\
II \\

Turning on rotation parameters, the self-dual instanton
profiles on CP2 are also (singularly) supported at fixed points.

n,? N,
- Near fixed points, the local QFT’s on R4 x S1 take the same form as Nekrasov’s one with

Omega deformations, upon suitable parameter identifications

10



Detailed study: Z[S?]

* A key issue is whether one can perform a strong-coupling re-expansion.

« “bulk version” of this issue studied w/ topological strings for type [IA compactified

on CY3: re-interpret as M-theory index at strong coupling [Gopakumar, Vafa] (1998)

« One should know how to do re-expansion with Z[R* x S1].

 Now one can study the full index this way. some work in progress [Jungmin Kim, S.K.]

[This basically should be showing that Z[S°] = Z[CP?2 x S1] ...]

« Here, I will explain something simpler, to give you some feeling on how it works.

« At special points in fugacity space, more SUSY commute with the measure in

the index. So there are extra B/F cancelations, making calculations easier.

11



Unrefined indices
« 16 (maximal) SUSYatm=Y%or-Y%&a=b=c=0;

- from 6d index: tr[(—l)Fe_B(E_Rl)] Q(; qu

- from 5d SYM: maximal SYM at this point with SU(4|2) (a,b,c=1,2,3; i=4,5)

1 - 1 1 1 ' ]
S = / d®x g tv | —F,, F*™ + =D o' D"¢" + JJ DA — o o' - AT, o]
Ty - 4 2 4 2
4 9 3 g i . 1 _
e R - A Y- _;1'1':}_'1-3'}' - —¢, e ,-b-. I,
N E-J'E{W yt E-J':’-'{W] 4r 3p obe? l4°,4°]

» For simplicity, we take this limit by: take c to be zero first, and then a, b to zero.

« Simplifications of three Z[R* x S]’s at this point: extra SUSY, cancelation.

. , 1
ZW o, Z8 o= J[  2sinhma()) U(N),SO@2N): Z$) o —

(T = 2mwi/3)N

o positive roots

thr 2 [ /
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Result

SO —L

=11 ‘=|—|.

* SO(ZN) e i 20 N-—-1
50Ny _ A2 X)) 1 1
5 =i H 1 — _ﬁ [rt+1"'r'] H 1 S —||"'.= [rt +2-:|_|

re=(] =1

« U(N):

["-'

ZVWN) = ¢

« They are indeed indices.

* General form: (at least for ADE)

I_-

7 K

1
=t H H 1 — 3 ntd) d: degree of the Casimir operator

=0 Casimir op.

[We can only calculate Z, for Eg, E;, Eg, but we conjecture that all ADE index takes the above

form. The calculated Z,, for E, is consistent with this, provided that ZEn =mn(e” T)_“ ]
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Vacuum “energy”

{ 5'2|G| T
The prefactor takes the form of “vacuum energy.” —Fe — E,-S( 6 +E)

However, vacuum energy has to be understood with great care.

Let us consider a simple example of free QFT on S" x R.

wsulczl- ¥ 3- ¥ 7

bosonic modes fermionic modes

regularize/renormalize the infinite sum: symmetries of the problem constrain it.

o DR
€p = lim tr [{—]]" ? - L]

3 =0

In the index, these are constrained by different symmetries: Maximal SUSY

(Eﬂ}index =1ir [{—I)F 5 l] = z 5 1 _ Z > 1

bosonic modes fermionic modes

B - Ry ' (E—R1)
2 14

=0

(€0 )index = lim tr [{—1]“'



Vacuum energy

Let us compare the free tensor multiplet on S5 x R:

“conventional” Casimir energy:

{( —1)f e E] - 1{3};3#}2

What should appear in our index:

[( 1} rE— Rl e~ A'(E= 5‘1]']

/?\anceled by a counterterms ~ A? [ ., dz\/g R*

25 .
—+r30(8')’

r

[ 3847

> Casimir “energies”

1

2(B')?

=3 5}! 2
o [T OW)

So, these are just two different observables. (although conceptually similar)

N?— N
6

(ED }inde:-c - -

N _
~ 5 from 5d SYM:

A small check at N=1: agrees with the 6d calculation above.

Another observation: large N vacuum energies

N&
{'ft]]irlclﬁx = _T ?E {'ft]:lj;rm'iu' - =

AN
24

Calculated from AdS, dual

—>[Awad, Johnson] (2000)

Their holographic renormalization
calculus should have steps which
do not respect SUSY 15



The index from CP2 x S1

This quantity is manifestly taking an index form.

To use semi-classical instanton expansion of Nekrasov, set 4 fugacities to obey:

keep O(1)
|

[ )
i = {’3_'3 | . Y= E'Sm = Ed(m-l_nj . Y= E_ﬁﬂf

g can be regarded as a fugacity conjugate to the instanton number:

1 1
— trFAF = — trF+ﬂF++—2f trF~ A F~
87 Jcp? 87 Jep? 87T Jcpe

1 o

N N '
_ 1 2 1 2 2 . 2
= kep+ FZ; s fcp? JNT =ksp— EZ s; vol(CP”) = ksp — 3 Zﬁi

i=1 =1
We studied it in some low energy expansion (~ instanton number expansion)
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Z[CP? x S'] at “large” N
At k < N, we find that the index is independent of N.

E ~ N is indeed a threshold energy, beyond which finite effects are expected to

show up from the AdS gravity dual: “giant gravitons”

The indices in this regime (N larger than K):

‘v2—1y P2 the “vacuum energy” .
k=0 (vacuum): J,_, = fU-mi =" P h=m-1)

Ii—q (Nﬁ_ﬁcﬁﬁl — (N — 1}E_'Sﬁﬁm:} = Ty -le 2™

= 2: N(N+1) . . P _ _ _—
k=2 qzl—{g }y2+f\-y{y1—l—yg+y3}—h'(y,'—|—y21+y3')+ﬁ'y'

—(N=1)(N=2)¢** = (N = 1)@ [’ +y(yn +y2+us) — (i + ' +u5') +y7']

N —2)(N—3 : e TIPS SR
I }2{ 2y S 200 +ylp + v +ys) — (U vy )y

All results completely agree with
SUGRA index on AdS, x S* 17



Z[CP? x S1] at finite N
« Atk >N, indices shows finite N deviation from large N gravity index.

« So far, we only studied up to k=3 with U(2), U(3), so not too much to say about it.

U(2)atk=3:
q3F2y3+2y2(y+y +yJ+y(y2+yg+y2—l—l—i)—(‘“+—+J?+—+"’°’+J')+y“(y1+y2+y~a)]
L e Lo By us Yoy ¥s Y2 w1 Y3 ‘
SUGRA (large N) atk =3
i . 1 1 1 y
3 3 9 9 2 9 1 J? J% 51 -1
3y |+ 2y (1 +y2 +y3) + +Yp Yy —— —— — ( TRLLANR O Ly )+w ?+?-+1‘]
q _3-; y(y1 +y2 + ) y(yl ot ys— T yg) mtntnt et n )Y (y1 + y2 + y3)

« Gauge theories like 4d N=4 SYM:
- One possible finite N corrections appear as trace relations: reduced # of states

- There may be more states (especially if one expects black holes in AdS dual).

« At E >> N, even the reduction pattern might provide interesting data for 6d (2,0),

as we don’t know what kind of “gauge theory” it is.
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Concluding remarks
Perhaps a more intuitive understanding on 5d quantum instantons is needed.
More observables on other 6-manifolds, also with application to d<4 QFT's:
Z[S3 x St x M,]: [Kawano, Matsumiya] [Fukuda, Kawano, Matsumiya] (2012)
Z[S! x S? x Mg]: [Yagi] [Lee, Yamazaki] (2013)
Z[S® x M]: [Cordova, Jafferis] (2013)

Study on 6d (1,0) CFT’s. Some (2,0) techniques applicable.

Question: “Why do these work...?” Why not Ly + Z an(gy 1) Opcnss ?

n

1: If all operators are Q-exact, then it will not affect the result. Then it works because the

observable (e.g. superconformal index) is so specially chosen.

2. If irrelevant operator allowed by symmetry isn’t Q-exact, then it may be working because

5d maximal SYM is “special’. [Douglas] [Lambert, Papageorgakis, Schmidt-Sommerfeld]
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