6d SCFT's III

- $(2,0) /$ SYM partition functions on curved spaces -

Seok Kim
(Seoul National University)

11 January 2014

Asian Winter School 2014, Puri.

Plan

- Want to study $(2,0)$ theory observables on curved manifolds..
- Superconformal index: partition function on $S^{5} \times S^{1} \longrightarrow$ I will focus on this.
- $\mathrm{S}^{4} \times \mathrm{M}_{2}$: [Alday, Gaiotto, Tachikawa]
- $S^{1} \times S^{3} \times M_{2}$: [Rastelli et.al] [Gaiotto, Rastelli, Razamat]
- $S^{3} \times M_{3}$: [Dimofte, Gaiotto, Gukov]

Some of these observables depend much less on geometry

- $S^{1} \times S^{2} \times M_{3}$: [Dimofte, Gaiotto, Gukov] etc.
- With a circle factor, reduce to $5 d$ \& study them using suitable $5 d$ SYM.

Issues

- Putting $(2,0)$ or $(1,0)$ theories on curved manifolds.
- Lorentzian: no conceptual issue, just needs to check if the space admit SUSY
- Euclidean: It is a priori unclear what is the Euclidean version of the "self-dual" tensor theory one can write down, on general 6-manifolds.
$B_{\mu \nu}$: field strength $H=d B$ satisfies $H=\star_{6} H \quad$: Lorentzian notion. What to do depends on how one physically motivates the Euclidean theory.
- The theory on $\mathrm{M}^{5} \times \mathrm{S}^{1}$ would appear in the thermal partition function (or index). Existence of Euclidean theory is implied if there is a Lorentzian theory on $\mathrm{M}^{5} \times \mathrm{R}$.
[Presumably, working with a non-covariant formalism with chosen S^{1} direction will do.]

The superconformal index

- A natural Witten index partition function for radially quantized SCFT's.
- Put the theory on $\mathrm{S}^{5} \times \mathrm{R}$: energy E ; $\mathrm{SO}(6) \mathrm{j}_{1}, \mathrm{j}_{2}, \mathrm{j}_{3} ; \mathrm{SO}(5)_{\mathrm{R}} \mathrm{R}_{1}, \mathrm{R}_{2}$
- Choose a pair of $\mathrm{Q}, \mathrm{S}\left(=\mathrm{Q}^{+}\right)$

$$
Q_{\left(j_{1}, j_{2}, j_{3}\right)}^{\left(R_{1}, R_{2}\right)} \rightarrow \quad Q_{-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}}^{\left(\frac{1}{2}, \frac{1}{2}\right)}: \quad \text { BPS bound } E=2 R_{1}+2 R_{2}+j_{1}+j_{2}+j_{3}
$$

[Kinney,Maldacena,Minwalla,Raju] [Bhattacharya,Bhattacharyya,Minwalla,Raju] [Romelsberger]

- Index partition function on $S^{5} \times S^{1}$: or counts local BPS operators on R^{6}

$$
I\left(\beta, m, \epsilon_{1}, \epsilon_{2}\right)=\operatorname{Tr}\left[(-1)^{F} e^{-\beta^{\prime}\{Q, S\}} e^{-\beta\left(E-\frac{R_{1}+R_{2}}{2}\right)} e^{\beta m\left(R_{1}-R_{2}\right)} e^{-\gamma_{1}\left(j_{1}-j_{3}\right)} e^{-\gamma_{2}\left(j_{2}-j_{3}\right)}\right]
$$

- Four charges in $\operatorname{OSp}\left(8^{*} \mid 4\right)$ designed to commute with Q, S.
- $\quad \beta$ plays a similar role as the "inverse-temperature" variable in the index.
- It compactifies the Euclidean time direction.

5d SYM perspective 1

- start from high temperature regime. small circle.
- S^{5} QFT interpretation: reduction on S^{1} with twistings (clear in Abelian theory)

1. $\beta \sim S^{1}$ radius $\sim 5 d$ or "type IIA" coupling: $\quad \frac{4 \pi^{2}}{g_{Y M}^{2}}=\frac{1}{r_{1}}=\frac{2 \pi}{r \beta}$
2. m : adjoint hyper mass

$$
\frac{\partial}{\partial \tau} \rightarrow \frac{\partial}{\partial \tau}-i a_{i} \frac{\partial}{\partial \phi_{i}}+\frac{R_{1}+R_{2}}{2}-m\left(R_{1}-R_{2}\right)
$$

3. $\mathrm{a}_{\mathrm{i}}=(\mathrm{a}, \mathrm{b}, \mathrm{c})$, satisfying $\mathrm{a}+\mathrm{b}+\mathrm{C}=0$, squash $\mathrm{S}^{5}: \quad e^{-\gamma_{1}\left(j_{1}-j_{3}\right)} e^{-\gamma_{2}\left(j_{2}-j_{3}\right)}=e^{-\beta\left(a j_{1}+b j_{2}+c j_{3}\right)}$

- Spatial chemical potentials squash S5. $n_{1}^{2}+n_{2}^{2}+n_{3}^{2}=1$

$$
\begin{gathered}
d s_{6}^{2}=r^{2}\left[d n_{1}^{2}+n_{1}^{2}\left(d \phi_{1}+\frac{i a_{1}}{r} d \tau\right)^{2}+d n_{2}^{2}+n_{2}^{2}\left(d \phi_{2}+\frac{i a_{2}}{r} d \tau\right)^{2}+d n_{3}^{2}+n_{3}^{2}\left(d \phi_{3}+\frac{i a_{3}}{r} d \tau\right)^{2}\right]+d \tau^{2} \\
d s_{6}^{2}=d s_{5}^{2}+\alpha^{-2}(d \tau+C)^{2} \longrightarrow \begin{array}{l}
d s_{5}^{2}=d n_{i}^{2}+n_{i}^{2} d \phi_{i}^{2}+\alpha^{2}\left(a_{i} n_{i}^{2} d \phi_{i}\right)^{2} \\
\alpha^{-2}=1-a_{i}^{2} n_{i}^{2} \\
\text { 5d background: } C=i \sum_{i=1}^{3} a_{i} n_{i}^{2} d \phi_{i}
\end{array}
\end{gathered}
$$

- "Instantons" appear on S^{5} as saddle points of path integral (wrap contractible circles)

$$
\begin{aligned}
Z\left[S^{5}\right] & \sim \sum_{k=0}^{\infty} Z_{k}(\beta) e^{-\frac{4 \pi^{2} k}{\beta}} \\
Z_{k} & =\sum_{n} a_{n}^{(k)} \beta^{n}
\end{aligned}
$$

$$
\text { at weak couplng: } \beta \ll 1 \longrightarrow \begin{aligned}
& \text { should re-expand it } \\
& \text { in } \rho-\beta \text { at } \beta \gg 1
\end{aligned}
$$

$$
\text { in } e^{-\beta} \text { at } \beta \gg 1
$$

5d SYM perspective 2

- We take the Hopf fiber of S^{5} and try to reduce to $5 d S Y M$ on $C P^{2} \times R$.
- Start from weak coupling: impose an extra Z_{K} orbifold, fractional shift on Hopf fiber
- SUSY KK reduction on S^{1} / Z_{K} fiber:

$$
2 \pi / \mathrm{K} \text { rotation with } k \equiv j_{1}+j_{2}+j_{3}+\frac{3}{2}\left(R_{1}+R_{2}\right)+n\left(R_{1}-R_{2}\right)
$$

- Half-an-odd integer n : twisted reductions, infinitely many 5d QFT
- Our interest: strong-coupling QFT at $\mathrm{K}=1$: instantons provide KK towers
- 6d chemical index $=5 \mathrm{~d}$ index (time direction kept)
- Here, instantons are solitonic particles on CP2.
- Benefit of this approach: "index nature " would be manifest (manifestly an expansion in fugacities.)

SUSY QFT actions

- SYM action on S5: "off-shell" version (bosonic terms) $\quad D=2\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right) \alpha^{2} \quad V_{a b}=(d C)_{a b}$

$$
\begin{aligned}
g_{Y M}^{2} e^{-1} \mathcal{L}= & \frac{1}{2}\left(\frac{3}{16 \alpha^{2}} V^{2}+\frac{1}{4} R+D\right) \alpha \phi^{2}-\frac{1}{4 \alpha} \phi^{2} V^{2}-\frac{1}{2} \phi V^{a b} F_{a b} \\
& -2 \phi\left(-\frac{1}{4} V^{a b} F_{a b}-\frac{1}{2} \partial^{a} \alpha D_{a} \phi+\frac{i}{4} \alpha^{2}\left(\sigma^{3}\right)_{i j} D^{i j}\right) \\
& -\alpha\left(-\frac{1}{4} F_{a b} F^{a b}-\frac{1}{2} D^{a} \phi D_{a} \phi-\frac{1}{4} D_{i j} D^{i j}\right)+e^{-1} \frac{i}{8} e^{\mu \nu \lambda \rho \sigma} C_{\mu} F_{\nu \lambda} F_{\rho \sigma}
\end{aligned}
$$

$\left.+\left|D_{\mu} q^{i}\right|^{2}+\left(4-\frac{\alpha^{2}}{4}\right)\left|q^{i}\right|^{2}-\bar{F}_{i^{\prime}} F^{i^{i}}+\left(\left[\bar{q}_{i}, \phi\right]-i m \alpha \bar{q}_{i}\right)\left(\left[\phi, q^{i}\right]-i m \alpha q^{i}\right)-\bar{q}_{i}\left(\sigma^{I}\right)_{j}^{i}\left(\left[D^{I}, q^{i}\right]+m \alpha^{2} \delta_{3}^{I} q^{j}\right)\right]$ adjoint hypermultiplet

- On CP ${ }^{2} \times \mathrm{R}$: (can also make it off-shell)

$$
\begin{aligned}
& S= \frac{1}{\tilde{g}_{Y M}^{2}} \int d^{5} x \sqrt{g} \operatorname{tr}\left[\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{1}{2} D_{\mu} \phi^{I} D^{\mu} \phi^{I}-\frac{i}{2} \lambda^{\dagger} \gamma^{\mu} D_{\mu} \lambda-\frac{1}{4}\left[\phi^{I}, \phi^{I}\right]^{2}-\frac{i}{2} \lambda^{\dagger} \hat{\gamma}^{I}\left[\lambda, \phi^{I}\right]\right. \\
&+\frac{2}{r^{2}}\left(\phi_{I}\right)^{2}-\frac{1}{2 r^{2}}\left(M_{n} \phi^{I}\right)^{2}+\frac{1}{8 r} \lambda^{\dagger} J_{\mu \nu} \gamma^{\mu \nu} \lambda-\frac{i}{2 r} \lambda^{\dagger} M_{n} \lambda-\frac{i}{r}(3-2 n) \underbrace{\left.\phi^{1}, \phi^{2}\right] \phi^{3}}_{\mathrm{R}_{1}}-\frac{i}{r}(3+2 n)[\underbrace{\phi^{4}, \phi^{5}},^{2} \phi^{3} \\
&\left.-\frac{i}{2 r \sqrt{g}} \epsilon^{\mu \mu \lambda \rho \sigma}\left(A_{\mu} \partial_{\nu} A_{\lambda}-\frac{2 i}{3} A_{\mu} A_{\nu} A_{\lambda}\right) J_{\rho \sigma}\right] \quad \\
& \tilde{g}_{Y M}^{2}=4 \pi^{2} r / K \quad M_{n} \equiv \frac{3}{2}\left(R_{1}+R_{2}\right)+n\left(R_{1}-R_{2}\right)
\end{aligned}
$$

- In the latter, the effect of chemical potentials is simply twisted B.C. on S^{1}.

Localization \& saddle points

- Localization of SUSY path integral:

$$
Z(\beta)=\int e^{-S-t Q V}: t \text { independent } \quad \mathrm{V} \text { chosen to satisfy }\left[\mathrm{Q}^{2}, \mathrm{~V}\right]=0
$$

- Saddle points on round S^{5} :

$$
F_{\mu \nu}=\frac{1}{2} \epsilon_{\mu \nu \alpha \beta \gamma} F^{\alpha \beta} \xi^{\gamma} \quad F_{\mu \nu} \xi^{\nu}=0, \quad D_{\mu} \phi=0, \quad D=i \phi \sigma^{3} \quad \text { self-dual instantons on } \mathrm{CP}^{2} \text { base }
$$

- $\mathrm{CP}^{2} \times \mathrm{S}^{1}$: without angular momentum chemical potentials on CP^{2}

$$
D^{1}=D^{2}=0, \quad F^{-}=\frac{2 s}{r^{2}} J, \frac{\phi}{r}+D=\frac{4 s}{r^{2}}, D+\frac{\xi}{r} \phi=0 \quad \begin{aligned}
& \text { anti-self-dual instantons allowed on } \\
& \mathrm{CP}^{2} \text {, proportional to Kahler 2-form }
\end{aligned}
$$

$$
\oint_{S^{1}} A=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{N}\right), \quad \lambda_{i} \sim \lambda_{i}+2 \pi \quad \text { Holonomy of gauge field on } \mathrm{S}^{1}
$$

- With squashing on S^{5} or chemical potentials on CP^{2}, the self-dual instantons' moduli get lifted to fixed points of rotations (later)...

Results

- $\mathrm{S}^{5}: \lambda=r \phi \quad$ (W: Weyl group, r: rank)

Each factor takes the form of Nekrasov partition function on $R^{4} \times S^{1}$

$$
Z\left(\beta, m, a_{i}\right)=\frac{1}{|W|} \int_{-\infty}^{\infty}\left[\prod_{i=1}^{r} d \lambda_{i}\right] \exp \left[-\frac{2 \pi^{2} \operatorname{tr} \lambda^{2}}{\beta(1+a)(1+b)(1+c)}\right] Z_{\mathrm{pert}}^{(1)} Z_{\mathrm{inst}}^{(1)} \cdot Z_{\mathrm{pert}}^{(2)} Z_{\mathrm{inst}}^{(2)} \cdot Z_{\mathrm{pert}}^{(3)} Z_{\mathrm{inst}}^{(3)}
$$

$$
\begin{aligned}
& 1: \quad\left(\epsilon_{1}, \epsilon_{2}\right)=\left(\frac{2 \pi i(b-a)}{1+a}, \frac{2 \pi i(c-a)}{1+a}\right), m_{0}=\frac{2 \pi i\left(m+\frac{3}{2}(1+a)\right)}{1+a}, \mu=\frac{2 \pi \phi}{1+a}, q=e^{-\frac{4 \pi^{2}}{f(1+a)}} \\
& 2: \quad\left(\epsilon_{1}, \epsilon_{2}\right)=\left(\frac{2 \pi i(c-b)}{1+b}, \frac{2 \pi i(a-b)}{1+b}\right), m_{0}=\frac{2 \pi i\left(m+\frac{3}{2}(1+b)\right)}{1+b}, \mu=\frac{2 \pi \phi}{1+b}, q=e^{-\frac{4 \pi^{2}}{(T+1+b)}} \quad \beta \ll 1 \\
& 3: \quad\left(\epsilon_{1}, \epsilon_{2}\right)=\left(\frac{2 \pi i(a-c)}{1+c}, \frac{2 \pi i(b-c)}{1+c}\right), m_{0}=\frac{2 \pi i\left(m+\frac{3}{2}(1+c)\right)}{1+c}, \mu=\frac{2 \pi \phi}{1+c}, q=e^{-\frac{4 \pi^{2}}{\frac{1(1+c)}{}}}
\end{aligned}
$$

- $\quad \mathrm{CP}^{2} \times \mathrm{S}^{1}$: we did $\mathrm{U}(\mathrm{N})$, but other groups should be similar

$$
\frac{1}{N!} \sum_{s_{1}, s_{2}, \cdots s_{N}=-\infty}^{\infty} \oint\left[\frac{d \lambda_{i}}{2 \pi}\right] e^{\frac{\beta}{2} \sum_{i=1}^{N} s_{i}^{2}-i \sum_{i} s_{i} \lambda_{i}} Z_{\text {pert }}^{(1)} Z_{\text {inst }}^{(1)} \cdot Z_{\text {pert }}^{(2)} Z_{\text {inst }}^{(2)} \cdot Z_{\text {pert }}^{(3)} Z_{\text {inst }}^{(3)}
$$

$$
\begin{array}{llllll}
1: & \left(\epsilon_{1}, \epsilon_{2}\right)=(\beta(b-a), \beta(c-a)), & m_{0}=\beta(m+n(1+a)), \quad \mu=\beta \sigma-i \lambda+\beta s a, \quad q=e^{-\beta(1+a)} \\
2: & \left(\epsilon_{1}, \epsilon_{2}\right)=(\beta(c-b), \beta(a-b)), & m_{0}=\beta(m+n(1+b)), \quad \mu=\beta \sigma-i \lambda+\beta s b, \quad q=e^{-\beta(1+b)} \quad \beta \gg 1 \\
3: & \left(\epsilon_{1}, \epsilon_{2}\right)=(\beta(a-c), \beta(b-c)), & m_{0}=\beta(m+n(1+c)), \quad \mu=\beta \sigma-i \lambda+\beta s c, \quad q=e^{-\beta(1+c)}
\end{array}
$$

[There is a subtle choice of integral contours, which I don't explain here.]

Nekrasov's partition functions

- Both expressions contain Nekrasov's partition function on R4x S1.
- Factorization: [Atiyah] [Pestun]
- Self-dual instantons at the saddle point singularly localizes to the 3 fixed points on CP2, after deforming the path integral by chemical potential or squasing.
- Gaussian determinant also factorizes into 3.

$$
\begin{aligned}
& \mathbb{C}^{3}: Z_{i}=n_{i} e^{i \phi_{i}}, n_{1}^{2}+n_{2}^{2}+n_{3}^{2}=1, \quad(i=1,2,3) \\
& \left(n_{1}, n_{2}, n_{3}\right)=(1,0,0),(0,1,0) \text { or }(0,0,1)
\end{aligned}
$$

Turning on rotation parameters, the self-dual instanton profiles on CP2 are also (singularly) supported at fixed points.

- Near fixed points, the local QFT's on R4 x S1 take the same form as Nekrasov's one with Omega deformations, upon suitable parameter identifications

Detailed study: Z[S5]

- A key issue is whether one can perform a strong-coupling re-expansion.
- "bulk version" of this issue studied w/ topological strings for type IIA compactified on CY3: re-interpret as M-theory index at strong coupling [Gopakumar, Vafa] (1998)
- One should know how to do re-expansion with $Z\left[R^{4} \times S^{1}\right]$.
- Now one can study the full index this way. some work in progress [Jungmin Kim, S.K.]
[This basically should be showing that $\left.\mathrm{Z}\left[\mathrm{S}^{5}\right]=\mathrm{Z}\left[\mathrm{CP}^{2} \times \mathrm{S}^{1}\right] \ldots\right]$
- Here, I will explain something simpler, to give you some feeling on how it works.
- At special points in fugacity space, more SUSY commute with the measure in the index. So there are extra B/F cancelations, making calculations easier.

Unrefined indices

- 16 (maximal) SUSY at $\mathrm{m}=1 / 2$ or $-1 / 2 \& \mathrm{a}=\mathrm{b}=\mathrm{c}=0$;
- from 6d index:

$$
\operatorname{tr}\left[(-1)^{F} e^{-\beta\left(E-R_{1}\right)}\right]
$$

- from 5d SYM: maximal SYM at this point with $\operatorname{SU}(4 \mid 2)(a, b, c=1,2,3 ; i=4,5)$

$$
\begin{aligned}
S=\frac{1}{g_{Y M}^{2}} \int d^{5} x \sqrt{g} \operatorname{tr}[& \frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{1}{2} D_{\mu} \phi^{I} D^{\mu} \phi^{I}+\frac{i}{2} \lambda^{\dagger} \gamma^{\mu} D_{\mu} \lambda-\frac{1}{4}\left[\phi^{I}, \phi^{J}\right]^{2}-\frac{i}{2} \lambda^{\dagger} \hat{\gamma}^{I}\left[\lambda, \phi^{I}\right] \\
& \left.+\frac{4}{2 r^{2}}\left(\phi^{a}\right)^{2}+\frac{3}{2 r^{2}}\left(\phi^{i}\right)^{2}-\frac{i}{4 r} \lambda^{\dagger} \hat{\gamma}^{45} \lambda-\frac{1}{3 r} \epsilon_{a b c} \phi^{a}\left[\phi^{b}, \phi^{c}\right]\right]
\end{aligned}
$$

- For simplicity, we take this limit by: take c to be zero first, and then a, b to zero.
- Simplifications of three $Z\left[R^{4} \times S^{1}\right]$'s at this point: extra SUSY, cancelation.

$$
\begin{gathered}
Z_{\mathbb{R}^{4} \times S^{1}}^{(1)}, \quad Z_{\mathbb{R}^{4} \times S^{1}}^{(2)} \rightarrow \prod_{\alpha: \text { positive roots }} 2 \sinh \pi \alpha(\lambda) \quad U(N), S O(2 N): Z_{\mathbb{R}^{4} \times S^{1}}^{(3)} \rightarrow \frac{1}{\eta(\tau=2 \pi i / \beta)^{N}} \\
Z(\beta)=\frac{1}{|W|} \int d \lambda e^{-\frac{2 \pi^{2} \operatorname{tr}\left(\lambda^{2}\right)}{\beta}} \prod_{\alpha} 2 \sinh ^{2}(\pi \alpha(\lambda)) \cdot \eta(2 \pi i / \beta)^{-N}
\end{gathered}
$$

Result

- $\mathrm{U}(\mathrm{N})$:

$$
Z^{U(N)}=e^{\beta\left(\frac{N\left(N^{2}-1\right)}{6}+\frac{N}{24}\right)} \prod_{n=0}^{\infty} \prod_{s=1}^{N} \frac{1}{1-e^{-\beta(n+s)}}
$$

- $\mathrm{SO}(2 \mathrm{~N})$:

$$
Z^{S O(2 N)}=e^{\beta\left(\frac{c_{2}|G|}{6}+\frac{N}{24}\right)} \prod_{n=0}^{\infty}\left[\frac{1}{1-e^{-\beta(n+N)}} \prod_{s=1}^{N-1} \frac{1}{1-e^{-\beta(n+2 s)}}\right]
$$

- They are indeed indices.
- General form: (at least for ADE)

$$
Z^{A D E}=e^{\beta\left(\frac{c_{2}|G|}{6}+\frac{r}{24}\right)} \prod_{n=0}^{\infty} \prod_{\text {Casimir op. }} \frac{1}{1-e^{-\beta(n+d)}} \quad \mathrm{d}: \text { degree of the Casimir operator }
$$

[We can only calculate $Z_{\text {pert }}$ for E_{6}, E_{7}, E_{8}, but we conjecture that all ADE index takes the above form. The calculated $Z_{\text {pert }}$ for \mathbf{E}_{n} is consistent with this, provided that $Z_{\text {inst }}^{E_{n}}=\eta\left(e^{-\frac{4 \pi^{2}}{\beta}}\right)^{-n}$.]

Vacuum "energy"

- The prefactor takes the form of "vacuum energy." $e^{-\beta \epsilon_{0}} \equiv e^{\beta\left(\frac{c_{2}|G|}{6}+\frac{r}{24}\right)}$
- However, vacuum energy has to be understood with great care.
- Let us consider a simple example of free QFT on $S^{n} \times R$.

$$
\epsilon_{0} \equiv \operatorname{tr}\left[(-1)^{F} \frac{E}{2}\right]=\sum_{\text {bosonic modes }} \frac{E}{2}-\sum_{\text {fermionic modes }} \frac{E}{2}
$$

- regularize/renormalize the infinite sum: symmetries of the problem constrain it.

$$
\epsilon_{0}=\lim _{\beta^{\prime} \rightarrow 0} \operatorname{tr}\left[(-1)^{F} \frac{E}{2} e^{-\beta^{\prime} E}\right]
$$

- In the index, these are constrained by different symmetries: Maximal SUSY

$$
\begin{gathered}
\left(\epsilon_{0}\right)_{\text {index }} \equiv \operatorname{tr}\left[(-1)^{F} \frac{E-R_{1}}{2}\right]=\sum_{\text {bosonic modes }} \frac{E-R_{1}}{2}-\sum_{\text {fermionic modes }} \frac{E-R_{1}}{2} \\
\left(\epsilon_{0}\right)_{\text {index }}=\lim _{\beta^{\prime} \rightarrow 0} \operatorname{tr}\left[(-1)^{F} \frac{E-R_{1}}{2} e^{-\beta^{\prime}\left(E-R_{1}\right)}\right]
\end{gathered}
$$

Vacuum energy

- Let us compare the free tensor multiplet on $\mathrm{S} 5 \times \mathrm{R}$:
- "conventional" Casimir energy: canceled by a counterterms $\sim \Lambda^{2} \int_{S^{5} \times S^{1}} d d^{6} x \sqrt{g} R^{2}$

$$
\begin{aligned}
& \text { "Casimir energy: } \\
& \operatorname{tr}\left[(-1)^{F} \frac{E}{2} e^{-\beta^{\prime} E}\right]=\frac{\uparrow^{5 r}}{16\left(\beta^{\prime}\right)^{2}}-\frac{25}{384 r}+r^{-3} \mathcal{O}\left(\beta^{\prime}\right)^{2} \\
& \text { appear in our index: } \\
& \operatorname{tr}\left[(-1)^{F} \frac{E-R_{1}}{2} e^{-\beta^{\prime}\left(E-R_{1}\right)}\right]=\frac{r}{2\left(\beta^{\prime}\right)^{2}}-\frac{1}{24 r}+r^{-3} \mathcal{O}\left(\beta^{\prime}\right)^{2}
\end{aligned}
$$

- What should appear in our index:
- So, these are just two different observables. (although conceptually similar)
- $\left(\epsilon_{0}\right)_{\text {index }}=-\frac{N^{3}-N}{6}-\frac{N}{24}$ from 5d SYM:
- A small check at $\mathrm{N}=1$: agrees with the 6 d calculation above.
- Another observation: large N vacuum energies

Calculated from AdS_{7} dual

$$
\left(\epsilon_{0}\right)_{\text {index }}=-\frac{N^{3}}{6} \neq\left(\epsilon_{0}\right)_{\text {gravity }}=-\frac{5 N^{3}}{24}
$$

[Awad, Johnson] (2000)
Their holographic renormalization calculus should have steps which do not respect SUSY

The index from $\mathrm{CP}^{2} \times \mathrm{S}^{1}$

- This quantity is manifestly taking an index form.
- To use semi-classical instanton expansion of Nekrasov, set 4 fugacities to obey:

$$
q=e^{-\beta} \ll 1, \overbrace{y=e^{\beta \hat{m}}=e^{\beta(m+n)}, \quad y_{i}=e^{-\beta a_{i}}}^{\text {keep O(1) }}
$$

- q can be regarded as a fugacity conjugate to the instanton number:

$$
\begin{aligned}
k & \equiv \frac{1}{8 \pi^{2}} \int_{\mathrm{CP}^{2}} \operatorname{tr} F \wedge F=\frac{1}{8 \pi^{2}} \int_{\mathrm{CP}^{2}} \operatorname{tr} F^{+} \wedge F^{+}+\frac{1}{8 \pi^{2}} \int_{\mathrm{CP}^{2}} \operatorname{tr} F^{-} \wedge F^{-} \\
& =k_{S D}+\frac{1}{2 \pi^{2}} \sum_{i=1}^{N} s_{i}^{2} \int_{\mathrm{CP}^{2}} J \wedge J=k_{S D}-\frac{1}{\pi^{2}} \sum_{i=1}^{N} s_{i}^{2} \operatorname{vol}^{\left(C \mathbb{P P}^{2}\right)}=k_{S D}-\frac{1}{2} \sum_{i=1}^{N} s_{i}^{2}
\end{aligned}
$$

- We studied it in some low energy expansion (~ instanton number expansion)

$\mathrm{Z}\left[\mathrm{CP}^{2} \times \mathrm{S}^{1}\right]$ at "large" N

- At $\mathrm{k}<\mathrm{N}$, we find that the index is independent of N .
- $\mathrm{E} \sim \mathrm{N}$ is indeed a threshold energy, beyond which finite effects are expected to show up from the AdS gravity dual: "giant gravitons"
- The indices in this regime (N larger than k):
- $\mathrm{k}=0$ (vacuum): $I_{k=0}=e^{\beta(1-\hat{m}) \frac{N\left(N^{2}-1\right)}{6}} \rightarrow$ the "vacuum energy" $\quad\left(\hat{m} \equiv m-\frac{1}{2}\right)$
- $k=1$:

$$
I_{k=0}\left(N e^{-\beta} e^{\beta \hat{m}}-(N-1) e^{-\beta} e^{\beta \hat{m}}\right)=I_{k=0} \cdot e^{-\beta} e^{\beta \hat{m}}
$$

- $\mathbf{k}=2: q^{2}\left[\frac{N(N+1)}{2} y^{2}+N y\left(y_{1}+y_{2}+y_{3}\right)-N\left(y_{1}^{-1}+y_{2}^{-1}+y_{3}^{-1}\right)+N y^{-1}\right]$

$$
\begin{aligned}
& -(N-1)(N-2) q^{2} y^{2}-(N-1) q^{2}\left[y^{2}+y\left(y_{1}+y_{2}+y_{3}\right)-\left(y_{1}^{-1}+y_{2}^{-1}+y_{3}^{-1}\right)+y^{-1}\right] \\
& +\frac{(N-2)(N-3)}{2} q^{2} y^{2}=q^{2}\left[2 y^{2}+y\left(y_{1}+y_{2}+y_{3}\right)-\left(y_{1}^{-1}+y_{2}^{-1}+y_{3}^{-1}\right)+y^{-1}\right]
\end{aligned}
$$

All results completely agree with SUGRA index on AdS $_{7} \times$ S 4

$Z\left[C P^{2} \times S^{1}\right]$ at finite N

- At $\mathrm{k}>\mathrm{N}$, indices shows finite N deviation from large N gravity index.
- So far, we only studied up to $k=3$ with $U(2), U(3)$, so not too much to say about it.
$\mathrm{U}(2)$ at $\mathrm{k}=3$:

$$
q^{3}\left[2 y^{3}+2 y^{2}\left(y_{1}+y_{2}+y_{3}\right)+y\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}-\frac{1}{y_{1}}-\frac{1}{y_{2}}-\frac{1}{y_{3}}\right)-\left(\frac{y_{1}}{y_{2}}+\frac{y_{2}}{y_{1}}+\frac{y_{2}}{y_{3}}+\frac{y_{3}}{y_{2}}+\frac{y_{3}}{y_{1}}+\frac{y_{1}}{y_{3}}\right)+y^{-1}\left(y_{1}+y_{2}+y_{3}\right)\right]
$$

SUGRA (large N) at $\mathrm{k}=3$:

$$
q^{3}\left[3 y^{3}+2 y^{2}\left(y_{1}+y_{2}+y_{3}\right)+y\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}-\frac{1}{y_{1}}-\frac{1}{y_{2}}-\frac{1}{y_{3}}\right)-\left(\frac{y_{1}}{y_{2}}+\frac{y_{2}}{y_{1}}+\frac{y_{2}}{y_{3}}+\frac{y_{3}}{y_{2}}+\frac{y_{3}}{y_{1}}+\frac{y_{1}}{y_{3}}\right)+y^{-1}\left(y_{1}+y_{2}+y_{3}\right)\right]
$$

- Gauge theories like 4d N=4 SYM:
- One possible finite N corrections appear as trace relations: reduced \# of states
- There may be more states (especially if one expects black holes in AdS dual).
- At $E \gg N$, even the reduction pattern might provide interesting data for $6 d(2,0)$, as we don't know what kind of "gauge theory" it is.

Concluding remarks

- Perhaps a more intuitive understanding on 5d quantum instantons is needed.
- More observables on other 6-manifolds, also with application to $\mathrm{d} \leq 4$ QFT's: Z[S3 x S ${ }^{1} \times \mathrm{M}_{2}$]: [Kawano, Matsumiya] [Fukuda, Kawano, Matsumiya] (2012)

Z[S ${ }^{1} \times$ S $^{2} \times \mathrm{M}_{3}$]: [Yagi] [Lee, Yamazaki] (2013)
Z[S3 $\left.{ }^{3} \mathrm{M}_{3}\right]$: [Cordova, Jafferis] (2013)

- Study on 6d $(1,0)$ CFT's. Some $(2,0)$ techniques applicable.
- Question: "Why do these work...?" Why not $\mathcal{L}_{S Y M}+\sum_{n} a_{n}\left(g_{Y M}\right)^{2 n} \hat{\mathcal{O}}_{\Delta=n+5}$?
- 1: If all operators are Q-exact, then it will not affect the result. Then it works because the observable (e.g. superconformal index) is so specially chosen.
- 2: If irrelevant operator allowed by symmetry isn't Q-exact, then it may be working because 5d maximal SYM is "special". [Douglas] [Lambert, Papageorgakis, Schmidt-Sommerfeld]

