6d SCFT's II

- the instanton partition function \& the $(2,0)$ theory -

Seok Kim

(Seoul National University)

10 January 2014

Asian Winter School 2014, Puri.

Plan

- D0-D4 quantum mechanics: brief review \& expansion of yesterday's talk.
- Supersymmetric index of 5d maximal SYM and instanton QM on $R^{4} \times S^{1}$: [Nekrasov] (2002); [Nekrasov, Okounkov] (2003); [Shadchin] (2005), [H.-C. Kim, S.K, E. Koh, K. Lee, S. Lee] (2011)
- $(2,0)$ theory on $\mathrm{R}^{4} \mathrm{x} \mathrm{T}^{2}$, in Coulomb phase: self-dual strings, KK modes, S-duality, ... [H.-C. Kim, S.K, E. Koh, K. Lee, S. Lee] (2011);
[Haghighat, Iqbal, Kozcaz, Lockhart Vafa] (2013)
- DLCQ M5-branes in the symmetric phase: [Aharony, Berkooz, Seiberg] (1997); [H.-C. Kim, S.K, E. Koh, K. Lee, S. Lee] (2011);

D0-D4 quantum mechanics

- k D0's quantum mechanics, with N D4's.

$$
\begin{aligned}
L_{Q M}=\frac{1}{g_{Q M}^{2}} \operatorname{tr}_{k, N} & {\left[\frac{1}{2}\left(D_{t} \varphi^{I}\right)^{2}+\frac{1}{2}\left(D_{t} a_{m}\right)^{2}+\frac{1}{4}\left[\varphi^{I}, \varphi^{J}\right]^{2}+\frac{1}{2}\left[a_{m}, \varphi^{I}\right]^{2}\right.} \\
& \left.+D_{t} q_{\dot{\alpha}} D_{t} \bar{q}^{\dot{\alpha}}-\left(\varphi^{I} \bar{q}^{\dot{\alpha}}-\bar{q}^{\dot{\alpha}} v^{I}\right)\left(q_{\dot{\alpha}} \varphi^{I}-v^{I} q_{\dot{\alpha}}\right)-D_{\dot{\beta}}^{\dot{\alpha}} D_{\dot{\alpha}}^{\dot{\beta}}+\cdots\right] \\
D_{\dot{\beta}}^{\dot{\alpha}}= & \left.\bar{q}^{\dot{\alpha}} q_{\dot{\beta}}-\frac{1}{2} \zeta^{A}\left(\tau^{A}\right)_{\dot{\beta}}^{\dot{\alpha}}+\frac{1}{4}\left(\bar{\sigma}^{m n}\right)_{\dot{\beta}}^{\dot{\alpha}}\left[a_{m}, a_{n}\right]-\frac{1}{2} \delta_{\dot{\beta}}^{\dot{\alpha}} \text { (trace }\right)
\end{aligned}
$$

- D4's could possibly be separated (Coulomb phase), but not necessarily.
- Generally, bulk degrees are decoupled from "Higgs branch" only in special limits.
- BPS observables (e.g. Witten index): independent of continuous parameters
- Fl term: Coulomb branch degrees carry mass² ~ 3: Index probes Higgs branch.
- "UV calculation" of SUSY sigma model index for instantons: resolves small instantons

Nekrasov' partition function

- Nekrasov considered the index of this QM in 5d SYM's Coulomb phase.
- Counts the following BPS bound states:

- $1 / 4$-BPS:

- Will use 2 SUSY to define/study a Witten index. $Q \equiv \bar{Q}_{\dot{1}}^{\mathrm{i}}, Q^{\dagger}=\bar{Q}_{\dot{2}}^{2}$

Nekrasov used $Q_{\dot{\alpha}}^{\dot{\alpha}}=Q+Q^{\dagger}$ to define his TQFT.

The index

- The index: w/ 3 fugacities for spacetime symmetries, and $\mathrm{N}-1$ for electric charges

$$
\begin{aligned}
& Z_{k}\left(\epsilon_{1}, \epsilon_{2}, m, \mu^{i}\right)=\operatorname{Tr}\left[(-1)^{F} e^{-\beta^{\prime}\left\{Q, Q^{\dagger}\right\}} e^{-\epsilon_{1}\left(j_{1}+J_{R}\right)} e^{-\epsilon_{2}\left(j_{2}+J_{R}\right)} e^{2 m J_{L}} \prod_{i=1}^{N} e^{-\mu^{i} s_{i}}\right] \\
& Z[q]=\sum_{k=0}^{\infty} q^{k} Z_{k} \quad\left(Z_{0} \equiv 1\right) \quad j_{1}, j_{2} \in S O(4) \subset S O(4,1) \\
& J_{L} \in S U(2)_{L}, J_{R} \in S U(2)_{R}, S U(2)_{L} \times S U(2)_{R}=S O(4)_{R} \subset S O(5)_{R} \\
& \left\{s_{i}\right\}: U(1)^{N} \subset U(N) \text { electric charges }\left(\sum_{i} s_{i}=0\right)
\end{aligned}
$$

(Nekrasov: extract Seiberg-Witten prepotential of 5d mass-deformed maximal SYM on $R^{4} \times S^{1}$)

$$
Z\left[q ; \epsilon_{1}, \epsilon_{2}, \mu^{i}, m\right] \sim \exp \left[\frac{\mathcal{F}\left(q, \mu^{i}, m\right)}{\epsilon_{1} \epsilon_{2}}\right] \quad \begin{aligned}
& \text { Take } \varepsilon_{1,2} \text { small, identify } \mu, \mathrm{m} \text { with } \\
& \text { Coulomb VEV \& hypermultiplet } \\
& \text { mass of the Seiberg-Witten theory. }
\end{aligned}
$$

- This index is also useful in symmetric phase. I'll explain only one interpretation (free of large instanton issues). I think there are more to be learned from it.
- This can be understood in 2 contexts:

1. index of a QM describing a decoupled sector of $5 d$ SYM/6d $(2,0)$,
2. reduction of 5d SUSY path integral to QM path integrals

Calculation

- SUSY path integral: periodic B.C. on S1, twisted by chemical potentials

$$
Z_{k}=\int\left[\mathcal{D} \phi^{I} \mathcal{D} a_{m} \mathcal{D} q_{\dot{\alpha}} \cdots\right] \exp \left[-S_{Q M}\right]
$$

- SUSY path integral: measure/B.C. preserve 2 SUSY $Q \equiv \bar{Q}_{\dot{1}}^{\mathrm{i}}, \quad Q^{\dagger}=\bar{Q}_{\dot{2}}^{\dot{2}}$
- Index independent of continuous parameters of the theory, and regulator β^{\prime} : take suitable limit of parameters, so the path integral is computed by Gaussian "approximation"

$$
\{|B\rangle,|F\rangle\}: Q|B\rangle=|F\rangle, \quad Q^{\dagger}|F\rangle \sim|B\rangle
$$

Pair of B/F states leaves or joins

 the BPS sector at the same time- Nekrasov: integrals for all but $\phi \equiv \phi^{5}-i A_{\tau}$ are localized to a Gaussian one

$$
\begin{aligned}
\sim \frac{1}{k!} \oint & \prod_{I=1}^{k}\left(d \phi_{I} \prod_{i=1}^{N} \frac{\sinh \left(\phi_{I}-a_{i}+m\right) \sinh \left(\phi_{I}-a_{i}-m\right)}{\sinh \left(\phi_{I}-a_{i}-\frac{\epsilon}{2}\right) \sinh \left(\phi_{I}-a_{i}+\frac{\epsilon}{2}\right)}\right) \prod_{I \neq J} \sinh \phi_{I J} \\
& \times \prod_{I . J} \frac{\sinh \left(\phi_{I J}-\epsilon\right)}{\sinh \left(\phi_{I J}-\epsilon_{1}\right) \sinh \left(\phi_{I J}-\epsilon_{2}\right)} \cdot \frac{\sinh \left(\phi_{I J}+m+\frac{\epsilon_{1}-\epsilon_{2}}{2}\right) \sinh \left(\phi_{I J}+m-\frac{\epsilon_{1}-\epsilon_{2}}{2}\right)}{\sinh \left(\phi_{I J}+m-\frac{\epsilon}{2}\right) \sinh \left(\phi_{I J}+m+\frac{\epsilon}{2}\right)}
\end{aligned}
$$

- Contour choice for k eigenvalues of $\phi \equiv \phi^{5}-i A_{\tau}$ is tricky, but found by Nekrasov.

Result

- Need to identify the poles inside the contour, and sum over the residues.
- poles: labeled by the N -colored Young diagrams with k boxes.

${ }_{1}\langle 0,0\|$	
${ }_{1}\langle 0,1\|$	

$$
\begin{array}{|c:l:l|}
\hline 3\langle 0,0| & 3\langle 1,0| & 3(2,0 \mid \\
\hline
\end{array}
$$

${ }_{N}\langle 0,0\|{ }_{N}<1,0 \mid$	
${ }_{N}\langle 0,1\|$	$N_{n}\langle 1,1\|$

- sum of residues: [Bruzzo, Fucito, Morales, Tanzini] (2002)

$$
\begin{gathered}
Z_{k}=\sum_{Y ; \sum_{i}\left|Y_{i}\right|=k} \prod_{i, j=1}^{N} \prod_{s \in Y_{i}} \frac{\sinh \frac{\beta\left(E_{i j}+m_{0}-\epsilon_{+}\right)}{2} \sinh \frac{\beta\left(E_{i j}-m_{0}-\epsilon_{+}\right)}{2}}{\sinh \frac{\beta E_{i j}}{2} \sinh \frac{\beta\left(E_{i j}-2 \epsilon_{+}\right)}{2}} \\
E_{i j}=\mu_{i}-\mu_{j}-\epsilon_{1} h_{i}(s)+\epsilon_{2}\left(v_{j}(s)+1\right)
\end{gathered}
$$

- $\quad h_{i}$: distance from box "s" to the right end of i'th Young diagram
- $\quad v_{j}$: distance from box "s" to the lower end of the j'th Young diagram

6d \& 11d

- Should count self-dual strings wrapping $6^{\text {th }}$ circle, with k momenta: $6 d$ physics is emergent from the instanton viewpoint.
- M5 version of the emergence of 11d physics M-theory from type IIA \& D0-branes.
- Fundamental issue in the early days of M-theory, although many people forgot.
- Bulk problem: "Coulomb branch index" in our QM problem.
[Yi] [Sethi, Stern] (1997) [Moore, Nekrasov, Shatashvili] (1998)

$$
\begin{aligned}
& L_{\text {bulk }}=\frac{1}{g_{Q M}^{2}} \operatorname{tr}_{k}\left[\frac{1}{2}\left(D_{t} X^{M}\right)^{2}+\frac{1}{4}\left[X^{I}, X^{J}\right]^{2}+\cdots\right] \quad X^{M}=\left(a_{m}, \varphi^{I}\right) \\
& \qquad \begin{aligned}
L_{Q M}=\frac{1}{g_{Q M}^{2}} \operatorname{tr}_{k, N} & {\left[\frac{1}{2}\left(D_{t} \varphi^{I}\right)^{2}+\frac{1}{2}\left(D_{t} a_{m}\right)^{2}+\frac{1}{4}\left[\varphi^{I}, \varphi^{J}\right]^{2}+\frac{1}{2}\left[a_{m}, \varphi^{I}\right]^{2}\right.} \\
& \left.+D_{t} q_{\dot{\alpha}} D_{t} \bar{q}^{\dot{\alpha}}-\left(\varphi^{I} \bar{q}^{\dot{\alpha}}-\bar{q}^{\dot{\alpha}} v^{I}\right)\left(q_{\dot{\alpha}} \varphi^{I}-v^{I} q_{\dot{\alpha}}\right)-D_{\dot{\beta}}^{\dot{\alpha}} D_{\dot{\alpha}}^{\dot{\beta}}+\cdots\right]
\end{aligned}
\end{aligned}
$$

- Counting marginal bound states is very subtle: translational 0-modes, continuum.
[Also true here, but... we decoupled Coulomb branch "in the index" with FI terms, and then could give mass to ALL zero modes with chemical potentials.]

D0 bound states \& U(1) instantons

- Pure momentum bounds: should form $6 d \mathrm{U}(1)$ tensor multiplet or 11 d SUGRA fields.
- $6 \mathrm{~d} / 11 \mathrm{~d}$ prediction: KK modes for single multiplet, "unique" bound state for all D0 number.
- Nekrasov's U(1) result can be rewritten [lqbal, Kozcaz, Shabbir] [Awata, Kanno] (2008)

$$
\begin{aligned}
Z[q]=P E\left[I_{-}\left(\epsilon_{1,2}, m\right) \frac{q}{1-q}\right] & =1+q I_{-}+q^{2}\left(\frac{I_{-}^{2}+I_{-}\left(\cdot \cdot^{2}\right)}{2}+I_{-}\right)+q^{3}\left(\frac{I_{-}^{3}+3 I_{-} I_{-}\left(\cdot{ }^{2}\right)+I_{-}\left(\cdot^{3}\right)}{6}+I_{-}^{2}+I_{-}\right)+\cdots \\
& P E[f(x)]=\exp \left[\sum_{n=1}^{\infty} \frac{1}{n} f\left(x^{n}\right)\right] \quad I_{-}\left(e^{-\epsilon_{1,2}}, e^{m}\right)=\frac{\sinh \frac{m+\epsilon_{-}}{2} \sinh \frac{m-\epsilon_{-}}{2}}{\sinh \frac{\epsilon_{1}}{2} \sinh \frac{\epsilon_{2}}{2}}
\end{aligned}
$$

- The single particle index: index for one 5d massive tensor multiplet for every k .

8 SUSY broken by instanton generate massive tensor

	$S U(2)_{1 L}$	$S U(2)_{1 R}$	$S U(2)_{2 L}$	$S U(2)_{2 R}$
B_{2}	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
ϕ_{I}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{2}$
	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
λ	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1}$
	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$

$$
Q_{\alpha}^{i}=\left\{Q_{\alpha}^{a}, Q_{\alpha}^{\dot{a}}\right\}
$$

$$
I_{\text {tensor }}=\frac{\sinh \frac{m+\epsilon_{-}}{2} \sinh \frac{m-\epsilon_{-}}{2} \sinh \frac{\epsilon_{+}+\epsilon_{-}}{2} \sinh \frac{\epsilon_{+}-\epsilon_{-}}{2}}{\sinh ^{2} \frac{\epsilon_{1}}{2} \sinh ^{\frac{\epsilon_{2}}{2}}}
$$

$\mathrm{U}(2)$ \& higher gauge groups

- Charged bounds for $\mathrm{U}(2)$: consider bounds of 1 W -boson with many instantons
- Consider the single particle index: up to very high order in q expansion, we find

$$
\begin{array}{r}
\left(\frac{\sin \frac{\gamma_{R}+\gamma_{2}}{2} \sin \frac{\gamma_{R}-\gamma_{2}}{2}}{\sin \frac{\gamma_{1}+\gamma_{R}}{2} \sin \frac{\gamma_{1}-\gamma_{R}}{2}}\right) \prod_{n=1}^{\infty} \frac{\left(1-q^{n} e^{i\left(\gamma_{2}+\gamma_{R}\right)}\right)\left(1-q^{n} e^{i\left(\gamma_{2}-\gamma_{R}\right)}\right)\left(1-q^{n} e^{i\left(-\gamma_{2}+\gamma_{R}\right)}\right)\left(1-q^{n} e^{i\left(-\gamma_{2}-\gamma_{R}\right)}\right)}{\left.\left(1 \gamma_{1}+\gamma_{R}\right)\right)\left(1-q^{n} e^{i\left(\gamma_{1}-\gamma_{R}\right)}\right)\left(1-q^{n} e^{i\left(-\gamma_{1}+\gamma_{R}\right)}\right)\left(1-q^{n} e^{i\left(-\gamma_{1}-\gamma_{R}\right)}\right)} \\
-\epsilon_{1}=i \frac{\gamma_{1}-\gamma_{R}}{2}, \quad \epsilon_{2}=i \frac{\gamma_{1}+\gamma_{R}}{2} \quad m=i \frac{\gamma_{2}}{2}
\end{array}
$$

- This is an index for a free 2d CFT having R^{4} as the target space.
- W-boson particle uplifted to 2 d free CFT on one self-dual string suspended between 2 M5-branes.
- Going to higher gauge group or electric charges is difficult.
- More exact formulae inferred from high order expansions in q , showing an emergent 2d index nature: but this is extremely cumbersome.

The "M-string" trick

- The instanton summation in $\mathrm{Z}_{\text {Nekrasov }}$ can be done explicitly by the following constructions. [Haghighat, lqbal, Kozcaz, Lockhart, Vafa] (2013)
- IIB branes for mass-deformed U(N) SYM:

- S-dual: two 5d indices should be the same. $\mathrm{U}(1)^{\mathrm{N}-1}$ SYM w/ 2 fundamental \& N-2 bi-fundamental hypers F1's for N hypers \& $\mathrm{N}-1$ vectors can wind around the circle.

D1 to winding F1's bound to N NS5's

T-dualize on x^{6} : 6d SYM

Details

- We expect:

$$
\left.Z_{\text {pert }}^{U(N)}\left(e^{-\mu}\right) Z_{\text {inst }}^{U(N)}\left(q, e^{-\mu}\right)=Z_{\text {pert }}^{U(1))^{N-1}}(q) Z_{\text {inst }}^{U(1) N-1}\left(e^{-\left(\mu_{i}-\mu_{i+1}\right)}\right) q\right)
$$

On RHS, q is geometrized into T-dualized $6^{\text {th }}$ circle's radius.

- Easy parts:

$$
\begin{gathered}
Z_{\text {pert }}^{U(N)}=P E\left[\frac{\sinh \frac{m+\epsilon_{+}}{2} \sinh \frac{m-\epsilon_{+}}{2}}{\sinh \frac{\epsilon_{1}}{2} \sinh \frac{\epsilon_{1}}{2}} \sum_{i<j} e^{-\left(\mu_{i}-\mu_{j}\right)}\right] \\
Z_{\text {pert }}^{U(1)^{N-1}}=\left[\prod_{n=1}^{\infty} \frac{1}{1-q^{n}}\right]^{N}
\end{gathered}
$$

- One can easily compute $\mathrm{Z}_{\text {inst }}$ on RHS by using the 6 d uplift of Nekrasov partition function on $R^{4} \times T^{2}$ (not the $T 2$ where $(2,0)$ is living): [Hollowood, Iqbal, Vafa] [Shadchin].
- $Z_{\text {inst }}$ in $5 d$ is sum of ratios of sin or sinh (from $\mathrm{S}^{1} \mathrm{KK}$ modes): further include 6 dKK

$$
\begin{aligned}
5 \mathrm{~d}: 2 \sin (\pi i z) \rightarrow 6 \mathrm{~d}: & -i\left(e^{\pi i z}-e^{-\pi i z}\right) \prod_{n=1}^{\infty}\left(1-q^{n} e^{\pi i z}\right)\left(1-q^{n} e^{-\pi i z}\right) \\
& \sim \theta_{1}(z, q)=-i q^{\frac{1}{4}}\left(e^{\pi i z}-e^{-\pi i z}\right) \prod_{n=1}^{\infty}() 1-q^{n}\left(1-q^{n} e^{\pi i z}\right)\left(1-q^{n} e^{-\pi i z}\right)
\end{aligned}
$$

Results

- $Z_{\text {inst }}$ on RHS for $U(2)$ is
from 2 fundamental hypers

$$
Z_{\text {inst }}^{U(1)}=\sum_{Y} e^{-\mu_{12}|Y|} \prod_{(i, j)} \frac{\theta_{1}\left(\frac{\epsilon_{1}\left(Y_{i}-j\right)-\epsilon_{2}(i-1)+\epsilon_{+}+m}{2 \pi i} ; q\right) \theta_{1}\left(\frac{\epsilon_{1}\left(Y_{i}-j\right)-\epsilon_{2}(i-1)+\epsilon_{+}+m}{2 \pi i} ; q\right)}{\theta_{1}\left(\frac{\epsilon_{1}\left(Y_{i}-j\right)-\epsilon_{2}\left(Y_{j}^{T}-i\right)-\epsilon_{2}}{2 \pi i} ; q\right) \theta_{1}\left(\frac{\epsilon_{1}\left(Y_{i}-j\right)-\epsilon_{2}\left(Y_{j}^{T}-i\right)+\epsilon_{1}}{2 \pi i} ; q\right)} \quad \text { from } 6 \mathrm{~d} U(1) \text { vector multiplet }
$$

[If one doubts, one can expand it in q to check it agrees with the original index.]

- Similar (but a bit lengthier) results for $\mathrm{U}(\mathrm{N})$ can be obtained.
- Benefits:
- The KK modes' sum on T2 part is manifestly visible: It is really Z[R4 x T2].
- The $\mathrm{U}(2)$ string I explained all comes from here, but the index for $\mathrm{N}>3$ and/or higher electric charges has more intricate structure to be explored.
- It also makes the $\operatorname{SL}(2, Z)$ transformation property clear: another requirement for $Z[R 4 \times T 2]$ which depends on T2's complex structure only.

Symmetric phase

- In the index calculus, nonzero μ (electric charge chemical potential) provides masses to some important degrees: \square
bi-fundamental hyper $\left[q_{\dot{\alpha}}\right]_{N \times k}$
- The calculation I explained all goes through at $\mathrm{v}=0$ (symmetric phase)
- We weight the states with non-Abelian $\mathrm{U}(\mathrm{N})$ charges.
- One can view it as an IR regulator, giving mass to (among others) instanton sizes.
- Very roughly, the lengths of the k row vectors of $\left[q_{\dot{\alpha}}\right]_{N \times k}$ are the instanton sizes.

$$
L_{Q M}=\frac{1}{g_{Q M}^{2}} \operatorname{tr}_{k, N}\left[\frac{1}{2}\left(D_{t} \varphi^{I}\right)^{2}+\frac{1}{2}\left(D_{t} a_{m}\right)^{2}+\frac{1}{4}\left[\varphi^{I}, \varphi^{J}\right]^{2}+\frac{1}{2}\left[a_{m}, \varphi^{I}\right]^{2}\right.
$$

$\begin{array}{ll}\left.\text { twisted B.C. can be untwisted to }+D_{t} q_{\dot{\alpha}} D_{t} \bar{q}^{\dot{\alpha}}-\left(\varphi^{I} \bar{q}^{\dot{\alpha}}-\bar{q}^{\dot{\alpha}} v^{I}\right)\left(q_{\dot{\alpha}} \varphi^{I}-v^{I} q_{\dot{\alpha}}\right)-D^{\dot{\alpha}} D_{\dot{\beta}}^{\dot{\beta}}{ }_{\dot{\alpha}}+\cdots\right] \\ \text { yield background gauge field } & \begin{array}{l}\text { Both provide potential for the } \\ \text { size moduli of instantons. }\end{array}\end{array}$

$$
D_{\tau} q_{\dot{\alpha}} \rightarrow D_{\tau} q_{\dot{\alpha}}+\frac{\mu}{\beta} q_{\dot{\alpha}}+\cdots
$$

- It is the interpretation (\& proper usage) of this quantity that remains.

The DLCQ M5-branes

- Lightlike compactification: compactify on vanishingly small circle [Sen] [Seiberg]
- momentum k sector: non-relativistic matrix QM. This is a superconformal QM.
- subset of $\operatorname{OSp}\left(8^{*} \mid 4\right)$ commuting with $P_{-}=k / R_{\text {_ }}$
- $\mathrm{SO}(6,2): M_{A B}, A, B=0,1,2, \cdots, 6,7 \leftrightarrow\left\{\begin{array}{l}M_{\mu \nu} \text { with } \mu, \nu=0,1, \cdots, 5 \\ P_{\mu}=M_{6 \mu}+M_{7 \mu}, \quad K_{\mu}=-M_{6 \mu}+M_{7 \mu}, \quad \Delta=M_{67}\end{array}\right.$
$x^{ \pm}=x^{0} \pm x^{5}$
$H \sim P_{+}, \quad P_{i}, \quad M_{i j}, \quad G_{i} \sim M_{-i}, K \sim K_{-}, \quad D=\Delta-M_{05}$ commute with $\quad P_{-}=M_{6-}+M_{7-}$

$$
\begin{aligned}
& S L(2, \mathbb{R}) \text { subgroup }[D, H]=-2 i H, \quad[D, K]=2 i K, \quad[K, H]=-i D \\
& \quad L_{0}=a H+a^{-1} K, \quad L_{ \pm 1}=\frac{1}{2}\left(a H-a^{-1} K \mp i D\right) \quad\left[L_{0}, L_{ \pm 1}\right]= \pm 2 L_{ \pm 1}, \quad\left[L_{+1}, L_{-1}\right]=-L_{0}
\end{aligned}
$$

- SUSY: 24 out of 32 commute with it. (It contains all supercharges that we shall discuss.)
- A "UV" gauged quantum mechanics description: the D0-D4 quantum mechanics.

The DLCQ index

- The spectrum of gauge invariant L_{0} eigenstates (or eigen-operators of D)

$$
M^{-1}(i D) M=H+K \quad M=e^{H / 2} e^{-K}
$$

- K provides harmonic potential $\sim \lambda^{2}$ on instanton moduli space (actually for general conformal quantum mechanics). So the spectrum of L_{0} is discrete.
- Nonrelativistic superconformal index [Nakayama] [Lee, Lee, Lee]

$$
2 i\left\{\bar{Q}_{\dot{\alpha}}^{\dot{a}},,_{S_{\dot{b}}^{\dot{\beta}}}\right\}=i D-4 \delta_{\dot{\alpha}}^{\dot{\beta}}\left(J_{2 R}\right)_{\dot{b}}^{\dot{a}}-2 \delta_{\dot{b}}^{\dot{a}}\left(J_{1 R}\right)_{\dot{\alpha}}^{\dot{\beta}} \longrightarrow 2 i\{Q, S\}=i D \mp\left(4 J_{2 R}+2 J_{1 R}\right)
$$

$$
\text { use either } Q \equiv \bar{Q}_{\dot{1}}^{1}, Q^{\dagger}=\bar{Q}_{\dot{2}}^{2}
$$

$$
M^{-1} Q M=Q-i S \equiv \hat{Q}, \quad M^{-1} S M=-i / 2(Q+i S)=-\frac{i}{2} \hat{S} \quad\{\hat{Q}, \hat{S}\}=L_{0} \mp\left(4 J_{2 R}+2 J_{1 R}\right)
$$

$$
I_{k}\left(\epsilon_{1,2}, m\right)=\operatorname{Tr}\left[(-1)^{F} e^{-\beta\{\hat{Q}, \hat{S}\}} e^{-2 \epsilon_{+}\left(J_{1 R}+J_{2 R}\right)} e^{-2 \epsilon-J_{1 L}} e^{2 m J_{2 L}}\right]
$$

- Localize path integral for this: one finds same Z_{k} as before, but now subject to gauge invariance condition.

$$
I_{k}=\frac{1}{N!} \oint\left[\prod_{i=1}^{N} \frac{d \alpha_{i}}{2 \pi}\right] \prod_{i<j}\left(2 \sin \frac{\alpha_{i}-\alpha_{j}}{2}\right)^{2} Z_{k}\left(\epsilon_{1,2}, m, \mu_{i}=i \alpha_{i}\right)
$$

The DLCQ index

- $\mathrm{U}(\mathrm{N})$ at $\mathrm{k}=1:-\epsilon_{1}=i \frac{\gamma_{1}-\gamma_{R}}{2}, \quad \epsilon_{2}=i \frac{\gamma_{1}+\gamma_{R}}{2} \quad m=i \frac{\gamma_{2}}{2} \quad t \equiv e^{\mp \epsilon_{+}}$

$$
\begin{array}{r}
I_{k=1}=\frac{e^{i \gamma_{2}}+e^{-i \gamma_{2}}-e^{i \gamma_{1}}-e^{-i \gamma_{1}}}{\left(1-t e^{i \gamma_{1}}\right)\left(1-t e^{-i \gamma_{1}}\right)}\left[\sum_{n=0}^{N-1} \chi_{\frac{n}{2}}\left(\gamma_{2}\right) t^{n+1}-\sum_{n=1}^{N-1} \chi_{\frac{n-1}{2}}\left(\gamma_{2}\right) t^{n+2}\right] \\
\chi_{j}\left(\gamma_{2}\right)=e^{2 j i \gamma_{2}}+e^{2(j-2) i \gamma_{2}}+\cdots+e^{-2 j i \gamma_{2}}=\frac{e^{(2 j+1) i \gamma_{2}}-e^{-(2 j+1) i \gamma_{2}}}{e^{i \gamma_{2}}-e^{-i \gamma_{2}}}
\end{array}
$$

- Large N limit:

$$
I_{N \rightarrow \infty, k=1}=\frac{e^{i \gamma_{2}}+e^{-i \gamma_{2}}-e^{i \gamma_{1}}-e^{-i \gamma_{1}}}{\left(1-t e^{i \gamma_{1}}\right)\left(1-t e^{-i \gamma_{1}}\right)} \frac{t-t^{3}}{\left(1-t e^{i \gamma_{2}}\right)\left(1-t e^{-i \gamma_{2}}\right)}
$$

- Test: SUGRA index (although DLCQ is subtle in SUGRA, index is presumably OK...)

	D	$J_{1 L}$	$J_{2 L}$	$2\left(J_{1 R}+J_{2 R}\right)$	boson/fermion
$p \geq 1$	$2 p$	0	$\frac{p}{2}$	p	b
$p \geq 1$	$2 p+1$	0	$\frac{p-1}{2}$	$p+1$	f
$p \geq 1$	$2 p$	$\frac{1}{2}$	$\frac{p-1}{2}$	p	f
$p \geq 2$	$2 p+1$	$\frac{1}{2}$	$\frac{p-2}{2}$	$p+1$	b
$p \geq 2$	$2 p$	0	$\frac{p-2}{2}$	p	b
$p \geq 3$	$2 p+1$	0	$\frac{p-3}{2}$	$p+1$	f
\cdot	3	0	0	2	b (fermionic constraint)

Table 1: BPS fields of supergravity

Comments \& the next lecture

- Although our QM was derived for a decoupled sector of instantons in 5d SYM (or D4-brane) system, wider applicability with BPS observables in mind.
- Nekrasov's partition function is such a particular observable.
- SUSY QFT path integral: reduces to 1d QM path integral, after cancelations between bose/fermi modes on R^{4}.
- $Z_{\text {Nekrasov }}$ often appears as a building block of curved space partition functions.
- Example: $\mathrm{Z}\left[\mathrm{S}^{4}\right]$ of 4 d gauge theories [Pestun]

$$
Z_{S^{4}}\left(g_{Y M}, m\right)=\int[d \phi] e^{-\frac{4 \pi^{2} \operatorname{tr}\left(\phi^{2}\right)}{g_{Y M}^{2}}}\left|Z_{\text {Nekrasov }}^{\mathbb{R}^{4}}\left(q, \epsilon_{+}=\frac{i}{r}, \epsilon_{-}=0, m, \phi\right)\right|^{2}
$$

- Similar role played by $Z_{\text {Nekrasov }}$ on $R^{4} \times S^{1}$ in 5d SYM partition functions (tomorrow)

