PROBLEM SET 8

July 24, 2019

(1) Let $\Omega \subset\subset \mathbb{C}^n$ be bounded pseudoconvex, $l:\mathbb{C}^n\to\mathbb{C}$ linear such that $\ker l\cap\Omega\neq\emptyset$. Let

$$Z = \{l = 0\} \subset \Omega, \quad \phi \in \mathrm{PSH}(\Omega).$$

Show that for all $\in \mathcal{O}(Z)$ such that $\int_{Z} |f|^2 e^{-\phi} dA < \infty$, there exists $F \in \mathcal{O}(\Omega)$ such that $F|_{Z} = f$ and

$$\int_{\Omega} |F|^2 e^{-\phi}\,dV \le C \int_{Z} |f|^2 e^{-\phi}\,dA$$

where C depends only on $\sup_{\Omega} |l|$.

(2) Let $X = \mathbb{C}$, $Z = \Gamma$ a closed discrete subset of \mathbb{C} , $T \in \mathcal{O}(\mathbb{C})$ such that T(z) = 0 if and only if $z \in \Gamma$ and $dT(\gamma) \neq 0$, for all $\gamma \in \Gamma$. Let $\phi = |z|^2$ and

$$\lambda(z) = \lambda_r(z) := \frac{1}{\pi r^2} \int_{D_r(z)} \log |T|^2 dA, g = |dz|^2$$

- (a) Show that λ_r is subharmonic.
- (b) Show that $|T|^2 e^{-\lambda r} \leq 1$ on \mathbb{C} .
- (c) Compute the curvature of $e^{-\lambda_r}$. (Metric for trivial bundle)
- (d) What does the condition

$$\partial \overline{\partial} \phi + \operatorname{Ricci}(g) \ge (1 + \delta) \partial \overline{\partial}$$

mean?

(e) Show that if

$$\sup_{C} \frac{\#\Gamma \cap D_r(z)}{r^2} < 1$$

then for all $f:\Gamma\to\mathbb{C}$ such that

$$\sum_{\gamma \in \Gamma} \frac{|f(\gamma)|^2 e^{-|\gamma|^2}}{|dT(\gamma)|^2 e^{-\lambda_r(\gamma)}} < +\infty,$$

there exists $F \in \mathcal{O}(\mathbb{C})$ such that

$$\int_{\mathbb{C}} |F|^2 e^{-|z|^2} dA < +\infty,$$

and $F|_{\Gamma} = f$.

- (f) Show that the functions $|dT|^2 e^{-\lambda_r}$ and $\Delta \lambda_r$ depend only on Γ , and not on T. In fact, show that $|dT(0)|^2 e^{-\lambda_r(\gamma)}$ depends only on $\Gamma \cap D_r(\gamma)$.
- (g) In view of (f), for all $\gamma_0 \in \Gamma$ one can use

$$T(z) = \prod_{\gamma \in D_r(z)} (z - \gamma).$$

Show that if Γ is uniformly separated, i.e.,

$$\delta_{\Gamma} := \inf\{|\gamma - \mu| : \gamma, \mu \in \Gamma, \gamma \neq \mu\} > 0,$$

1

then $|dT|^2 e^{-\lambda_r}: \Gamma \to \mathbb{R}_+$ is bounded below by a positive constant (depending on γ).