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Explicit formulas for the steady-state distribution of species in two interconnected communities of arbitrary
sizes are derived in the framework of Hubbell’s neutral model of biodiversity. Migrations of seeds from both
communities as well as mutations in both of them are taken into account. These results generalize those
previously obtained for the “island-continent” model and they allow an analysis of the influence of the ratio of
the sizes of the two communities on the dominance/diversity equilibrium. Exact expressions for species abun-
dance distributions are deduced from a master equation for the joint probability distribution of species in the
two communities. Moreover, an approximate self-consistent solution is derived. It corresponds to a generali-
zation of previous results and it proves to be accurate over a broad range of parameters. The dynamical
correlations between the abundances of a species in both communities are also discussed.
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I. INTRODUCTION

An important challenge of community ecology is to ex-
plain the observed species abundance distributions �SAD�
and their time evolution �1–3�. Hubbell has recently devel-
oped an original theory aiming at giving a unified view of
biodiversity in communities of trophically similar species
such as tropical forests or benthic marine invertebrates �4�.
This theory relies on two major drastic assumptions: �i� the
community space is permanently saturated �population dy-
namics is a “zero-sum game”�; �ii� all individuals in the
community, regardless of their species, are strictly equivalent
in their ability to survive, to reproduce, to migrate, etc. �neu-
trality hypothesis�. This functional equivalence assumption
is still a matter of debate �5–10�. Although Hubbell himself
acknowledges that “no ecologist would seriously question
the existence of niche differences among competing species
on the same trophic level” �11�, his theory has the great
advantage of providing a “zeroth-order approximation” ame-
nable to quantitative predictions with a minimum of input
parameters. An excellent review of the mathematical and
biological aspects of his theory has been recently reported
�12�.

The purpose of the present paper is not to discuss the
validity of Hubbell’s theory, but to report on some new
mathematical developments of this model. Recently, several
authors have proposed different analytical methods to
calculate the species abundance distribution and its time and
space evolution �13–18,20–22�. Some questions, however,
remain open. In its original version, the model considers
the equilibrium between a “community” and a “metacommu-
nity” �the “island-continent” problem�. The species abun-
dance distribution in the metacommunity is assumed to be
determined by the mutation rate through the “fundamental
biodiversity number” � �essentially the product of the
mutation rate by the metacommunity size �4�. On the other
hand, the abundance distribution in the community is
controlled by the migration rate of seeds from the metacom-
munity. Implicitly, these approximations rely on the fact that

the metacommunity is considered as infinite in size with re-
spect to the community �it acts as a “reservoir” in the ther-
modynamic sense�. A question arises concerning the role
played by the ratio of the two community sizes in the
dominance/diversity equilibrium. In particular, when one
considers the “continuum limit” of the model, both sizes are
considered to be infinite and the way the limits are taken
becomes crucial �16,22�. Furthermore, the time required to
reach equilibrium scales as the community size and it is in-
teresting to study the temporal behavior of two intercon-
nected communities of finite sizes before taking these limits.

We investigate in this paper a model in which the two
communities are of arbitrary size and are treated on an equal
footing �mutations and migrations in both of them�. We show
that analytical expressions for the species abundance distri-
butions can be obtained in this more general case and that
they are in full agreement with numerical simulations. In
addition, we have studied the dynamical aspect of the prob-
lem, and some explicit mathematical results are derived for
the population dynamics in the two communities.

The paper is organized as follows. We first present the
model in Sec. II and its formulation as a master equation
�continuous time limit� in Sec. III. Exact expressions con-
cerning the steady-state species abundance distribution are
derived in Sec. IV and an approximate self-consistent solu-
tion is given in Sec. V. The dynamical correlation of species
abundances in the two communities is discussed in Sec. VI
and the paper ends by a discussion of the results and of the
perspectives of further developments of the theory.

II. THE MODEL

Let us consider two communities A and B with constant
overall populations JA and JB. Within each of them, the death
of an individual is immediately followed by the birth of an-
other one. The new offspring, however, does not necessarily
belong to the same species as the dead one. The probability
that it actually belongs to the same species is assumed to be
proportional to the current abundance of that species.

PHYSICAL REVIEW E 74, 051914 �2006�

1539-3755/2006/74�5�/051914�9� ©2006 The American Physical Society051914-1

http://dx.doi.org/10.1103/PhysRevE.74.051914


Mutations �with probability �� and seed migration �probabil-
ity mA from B to A and mB from A to B� will be taken into
account to derive the rate of change of abundance of a par-
ticular species in a given community. According to the neu-
trality hypothesis, the constants �, mA, mB as well as the per
capita birth and death rates are assumed to be the same for
all species. In addition, we assume that the number of
mutation-induced variants is so large that any mutation event
gives rise to the appearance of a new species.

Considering a species � of abundance n in A and k in B,
the rate of population increase in A, W�n,k�→�n+1,k�, is
the product of the probability of the death of a non-� indi-
vidual �proportional to �JA−n�� followed by the birth of an
offspring of species �, arising from the seedling without mu-
tation, of a seed coming either from A �probability �1−��
��1−mA�n / �JA−1�� or from B �probability �1−��mAk /JB�.
Taking the individual death rate as unity, one gets

W�n,k�→�n+1,k� = �1 − ���JA − n���1 − mA�
n

�JA − 1�
+ mA

k

JB
�

= An�k� . �1�

In the same way, the rate of decrease W�n,k�→�n−1,k� of the
population of species � in A is found to be

W�n,k�→�n−1,k� = n��1 − mA�
�JA − n� + ��n − 1�

�JA − 1�

+ mA
�JB − k� + �k

JB
� = Cn�k� . �2�

Similar expressions can be written for the rates of popu-
lation changes in B, W�n,k�→�n,k+1�=Ak��n� and W�n,k�→�n,k−1�
=Ck��n�. The coefficients Ak��n� and Ck��n� are simply deduced
from An�k� and Cn�k� by permuting the indices �A↔B� and
�n↔k�. Note that according to the neutral hypothesis, these
coefficients are not indexed by �, since they are assumed to
be the same for all species.

III. THE MASTER EQUATION FORMALISM

A full description of the time evolution of the system
requires the calculation of the joint probability Pnk

� �t� of find-
ing n individuals of species � in A and k in B at time t. In the
continuous time limit, this probability obeys a master equa-
tion �16,18�,

dPnk
�

dt
= An−1�k�Pn−1,k

� + Cn+1�k�Pn+1,k
� − �An�k� + Cn�k��Pn,k

�

+ Ak−1� �n�Pn,k−1
� + Ck+1� �n�Pn,k+1

� − �Ak��n� + Ck��n��Pn,k
� .

�3�

This equation can be written in matricial form by associ-
ating the index q=n+ �JA+1�k to the couple of indexes �n ,k�;
Pnk

� is then considered as the component Pq
� of a �JA+1��JB

+1�-dimensional vector P�, which obeys the following dif-
ferential equation:

dP�

dt
= HP�. �4�

H is a �JA+1��JB+1�-dimensional square matrix that can
be expressed as a function of �JA+1�-dimensional square
submatrices h�k�, u�k�, and v�k�,

H = �
h�0� v�1�
u�0� h�1� v�2�

u�1� h�2� .

. . v�JB�
u�JB − 1� h�JB�

� . �5�

h�k� is tridiagonal and its nonzero matrix elements are

hmm�k� = − �Am�k� + Cm�k� + Ak��m� + Ck��m�� , �6�

hm,m−1�k� = Am−1�k� , �7�

hm,m+1�k� = Cm+1�k� . �8�

u�k� and v�k� are diagonal matrices defined by

umm�k� = Ak��m� , �9�

vmm�k� = Ck��m� . �10�

The solution of the master equation can be found using
the Laplace transform. This technique allows, in principle,
not only to find the steady-state behavior of the system but
also the transient regime from given initial conditions.

As H is time-independent, the origin of time can be arbi-
trarily chosen. We will choose the time origin t� as the time
of appearance of species �, so that Pnk

� �t�=0 for t�0 �if n or
k�0�. It is then possible to define the Laplace transform

P̃nk
� �E� of the Pnk

� �t� and the master equation �4� leads to

EP̃nk
� �E� − Pnk

� �0� = 	
m=0

JA

	
j=0

JB

Hnk,mjP̃mj
� �E� . �11�

Introducing the Green matrix G�E�= �EI−H�−1, the
solution of this equation reads

P̃nk
� �E� = 	

m=0

JA

	
j=0

JB

Gnk,mj�E�Pmj
� �0� . �12�

Taking the inverse Laplace transform, one then deduces
the time dependence of the joint probability distribution,

Pnk
� �t� = 	

m=0

JA

	
j=0

JB

Unk,mj�t − t��Pmj
� �t�� , �13�

where the evolution matrix U�t� is the inverse Laplace
transform of G�E�. As we assume that species � appears at
time t� as a single individual either in community A or in
community B, Pmj

� �t�� is different from zero only when
�m , j�= �1,0� or �0, 1�. Therefore, the only elements of the
evolution matrix which have to be considered are Unk,10 and
Unk,01. The time dependence of these matrix elements will be
discussed in Sec. VI, but, as shown in the next section, their
explicit analytical form is not required for the calculation of
the steady-state properties of the system.
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IV. STEADY-STATE ABUNDANCE DISTRIBUTION
IN THE TWO-COMMUNITY SYSTEM

Let pn
I��t� denote the probability to find species � with

abundance n in community I at time t. The average species
abundance distribution �n

I �t� in that community is the sum of
the probabilities pn

I��t� over all species,

�n
A�t� = 	

�

pn
A��t� = 	

�
	
k=0

JB

Pnk
� �t� , �14�

�k
B�t� = 	

�

pn
B��t� = 	

�
	
n=0

JA

Pnk
� �t� . �15�

In the steady state there is a continuous turnover of spe-
cies, some of them disappearing and others appearing by
mutation. Each species � appears at time t� as a single indi-
vidual either in community A �with probability density �JA�
or in community B �with probability density �JB� so that the
joint probability to find an individual of species � during the
time interval dt� �i.e., just after apparition of this species� is

dPnk
� �t�� = ��JA	n,1	k,0 + JB	n,0	k,1�dt�. �16�

As the number of types of variants is assumed to be infinite,
a mutant offspring belongs almost certainly to a “new” spe-
cies that has never been encountered before. Summing over
� in Eqs. �14� and �15� is then just equivalent to summing
over t�. From Eqs. �13� and �14� one deduces that the steady-
state species abundance distribution in A is given by

�n
A = �	

k=0

JB 

−


t

�JAUnk,10�t − t�� + JBUnk,01�t − t���dt�

= �	
k=0

JB 

0




�JAUnk,10��� + JBUnk,01����d� . �17�

The SAD can then be expressed as a function of the
Green matrix G,

�n
A = �	

k=0

JB

�JAGnk,10�0+� + JBGnk,01�0+�� , �18�

�k
B = �	

n=0

JA

�JAGnk,10�0+� + JBGnk,01�0+�� . �19�

As H is a singular matrix, taking the E→0+ limit requires
some caution. As a matter of fact one can readily show that,
in this limit, G00,mj�E�→1/E and all the other elements of
G�E� go to finite values.

The problem of the steady-state SAD determination is
then reduced to the computation of two matrix elements of
the inverse of the �JA+1��JB+1�-dimensional square matrix
H. Furthermore, this matrix is sparse �the number of its non-
zero elements is a linear function of its dimension� so that
numerical computation times of the SAD remain short even
for values of JA and JB of a few hundred �10 s for JA=JB
=256 on a PC�.

Typical theoretical SAD are shown in Figs. 1 and 2 for
various values of the parameters � and mA and for various
ratios JA /JB �19�. A priori, mA and mB are independent pa-
rameters. A natural choice, however, is to consider that the
migration rate is proportional to the size of the community
from which seeds migrate �mB=mAJA /JB�, and we have
adopted this choice in the graphs presented in this paper.
Instead of the �n

I , we have found it more convenient to plot
the quantities �n

I =n�n
I /JI, which are normalized,

	
n=1

JI

�n
I = 1, �20�

and which more clearly show the dominance/diversity equi-
librium ��n

I represents the probability that an individual ran-
domly drawn from community I belongs to a species of
abundance n�.

In order to check our theory, we have performed indi-
vidual based Monte-Carlo numerical simulations �see Ap-
pendix A�. As shown in Fig. 1, our theoretical predictions are
in perfect agreement with the simulations over the whole
range of parameters. Numerical simulations, however, re-
quire a rather large computation time since averaging over
more than 105 samples is needed to get an accuracy better
than 0.5% for the average SAD. Furthermore, the steady-
state regime can only be reached after a number of Monte
Carlo steps of order �JA+JB� /�, which limits the possible
investigation at not too small mutation rates.

In Fig. 2, typical shapes of �n
I curves are shown. Accord-

ing to the input parameters values, four types of behavior are
observed: �i� monotonic decrease �large biodiversity�, �ii�
single broad maximum at small abundances �moderate biodi-
versity�, �iii� flat maximum at small abundance and steep
increase at large abundance �coexistence of diversity and
dominance trends�, and �iv� monotonic increase �domi-
nance�.

One can notice that different types of curves may be ob-
tained by changing the ratio JA /JB at constant � and mA.

Another quantity of interest that can be deduced from the
present theory is the “species-area curve.” In the present
model, the area is proportional to the total population JI and
the number of species SI is

SI = 	
n=1

JI

n
I . �21�

Typical variations of SA versus JA or JB for different val-
ues of the mutation and migration rates are shown in Fig. 3.
The local abundance increases almost linearly as a function
of the local community size JA when JA is not small com-
pared to JB. Various models in the literature suppose that the
size of the community B is infinite �island-continent approxi-
mation�. As we had already pointed out, a relevant question
is when the infinity limit can be considered as valid �16�. As
it can be seen in Fig. 3�b�, the convergence is relatively slow.
For the considered set of parameters, the number of species
SA does not show complete saturation up to JB /JA=100. The
community size ratio has to exceed two orders of magnitude
for the continent approximation to be valid.
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FIG. 1. �Color online� Plot of the normalized distributions �I �see text� as a function of abundances. Comparison between exact analytical
solution �continuous lines� and individual based Monte Carlo simulations �symbols� for various values of community sizes, mutation, and
migration rates. Graphs of the first row �a�, �b� are for community A, graphs of the second row �c�, �d� for community B. For the first column
�a�, �c� JA=42; JB=86; for the second one �b�, �d� JA=26; JB=102. Black circles: �=0.01, mA=0.02. Red squares: �=0.01, mA=0.2. Blue
triangles: �=0.02, mA=0.2.

FIG. 2. �Color online� Theoretical normalized distribution of abundances, for various values of A-community size JA. For clarity, only
community A distribution is plotted. In all graphs, JB=1000, mA=0.02. Two values of � are used in all graphs: black circles, left scale,
�=0.01; red squares, right scale, �=0.001. �a� JA=10; �b� JA=50; �c� JA=300; �d� JA=600.
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V. APPROXIMATE SELF-CONSISTENT SAD
CALCULATION

The results described in the preceding section are exact
solutions of the master equation and they are valid regardless
of the size ratio JA /JB. In order to make the bridge with our
previous results relative to the “island-continent” model �16�,
we propose an approximate solution of the master equation
that becomes exact at the limit JA /JB→0 and that provides
explicit expression of SAD when the metacommunity is suf-
ficiently large. Indeed, we show that it actually provides a
very good approximation for a rather broad range of param-
eters, even when JA /JB is not small.

The approximation we made is of the self-consistent type:
The SAD in A is expressed as a function of the SAD in B and
vice versa. The first step consists of solving the master equa-
tion “at constant k,” i.e., by calculating the probability
PA��n ; t �k� for having n individual of species � in A at time
t, holding at constant k the number of individuals of the same
species in B. Note that this is different from the time-
dependent conditional probability PA��n ; t �k ; t� since it ne-
glects the correlated population changes in the two commu-
nities. As shown in Appendix A, in the infinite time limit,
one gets

PA��n;
�k� = �JA

n
 ��Ak/JB�n��A + �A�1 − k/JB��JA−n

��A + �A�JA

= Vnk
A ,

�22�

where � J
n

� denotes a binomial coefficient, �a�n=
��a+n�

��a� is the

Pochhammer symbol, and the coefficients �A and �A are
defined by

�A =
��JA − 1�

�1 − ���1 − mA�
, �23�

�A =
mA�JA − 1�
�1 − mA�

. �24�

�A plays the role of the Hubbell’s “fundamental biodiver-
sity parameter,” proportional to the mutation rate � �note
however, the additional factor 1 / �1−mA� with respect to pre-
vious definitions�; �A quantifies the dispersal effect �propor-
tional to the migration rate mA�. Using the composition law

of probabilities and Eq. �14�, the SAD in community A takes
the following matricial form �see Appendix B�:

�A = VA · �B + �A, �25�

where �A, �B, and �A are JA-dimensional vectors and VA is
a �JA�JB� rectangular matrix with elements Vnk

A defined
above. The components of the vectors �A,�B are the SAD in
A and B, respectively, and the components of the vector �A

are shown in Appendix B to be given by

�n
A =

�A

n

�JA + 1 − n�n

�JA + �A + �A − n�n
. �26�

This last term arises from the species that have appeared
in A by mutation and have never been present in B.

As both communities are treated on an equal footing, their
abundance distributions are related to each other in a sym-
metrical way and an equation similar to Eq. �25� holds for
�B,

�B = VB · �A + �B, �27�

where VB and �B have, respectively, the same form as VA

and �A with appropriate permutations of the indexes �A and
B� and �n and k�.

Equations �25� and �27� represent sets of coupled linear
equations and their solutions read

�A = �1 − VA · VB�−1 · ��A + VA · �B� , �28�

�B = �1 − VB · VA�−1 · ��B + VB · �A� . �29�

These formulas provide an explicit approximate solution
of the problem. They generalize our previous results
concerning the SAD in the “island-continent” problem: If
A designates an island and B a continent, we previously
made the simplifying assumptions of neglecting mutations in
A��A=0� and migration from A to B�VB=0�, obtaining the
simple results �B=�B and �A=VA ·�B.

From Eqs. �25� and �27�, one deduces that the �n
I defined

in Sec. IV takes the following form:

�n
A =

1

�A + �A
��A	

k=1

JB

Knk
A �k

B + �AKn0
A  , �30�

FIG. 3. �Color online� Total
number of species SA as a function
of community size JA �a� and
JB �b� for different migration and
mutation rates. Black circles:
�=0.01, mA=0.2; red squares:
�=0.01, mA=0.02; blue triangles:
�=0.001, mA=0.02. �a� JB=1000;
�b� JA=100.
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�k
B =

1

�B + �B
��B	

n=1

JA

Kkn
B �n

A + �BKk0
B  �31�

with

Knk
A = �JA − 1

n − 1
 �1 + �Ak/JB�n−1��A + �A − �Ak/JB�JA−n

��A + �A + 1�JA−1
,

�32�

Kkn
B = �JB − 1

k − 1
 �1 + �Bn/JA�k−1��B + �B − �Bn/JA�JB−k

��B + �B + 1�JB−1
.

�33�

Note that, according to Vandermonde’s theorem �23�,

	
n=1

JI

Knk
I = 1, ∀ k � 0 �34�

so that the �n
I defined by Eqs. �30� and �31� actually satisfy

the normalization condition Eq. �20�. This provides an im-
portant check of self-consistency of our approximation.

A comparison between these approximate formulas and
the exact ones is shown in Fig. 4 for several values of the
parameters �, mA, and JA /JB.

One can see that the approximation is excellent over a
broad range of the parameters. In particular, it is quite accu-
rate for JA /JB�1 as well as for JA /JB�1. The most impor-
tant deviations �a few 10−2� are observed for intermediate

values of this size ratio ��0.1� and especially on the low and
high abundance sides of the curves. A practical interest of
this approximate theory is to provide explicit analytical SAD
expressions �Eqs. �28� and �29��.

VI. DYNAMICAL CORRELATIONS BETWEEN
THE TWO COMMUNITIES

The steady state actually corresponds to a constant turn-
over of species and it is interesting to quantify the population
dynamics resulting from mutations and migrations between
the two communities. The problem is not trivial because of
dynamical correlations between the two communities.

According to Eq. �13�, the time evolution of the joint
probability distribution Pnk

� �t� for each species � requires the
knowledge of the evolution matrix U�t� �or, more precisely,
of its matrix elements Unk,10�t� and Unk,01�t��. This can be
achieved by diagonalizing the matrix H, expressing the
Green matrix G�E� as a function of its eigenvalues, and tak-
ing the inverse Laplace transform of G�E�. The spectrum
�Eq� of H is numerically found to be composed of nondegen-
erate eigenvalues Eq, which range from 0 to −J=−�JA+JB�,

�E0 = 0,E1 = − �,E2 = − �� + �1 − ���mA + mB��, . . . ,

− �J − 2� + E2,− �J − 2� + E1,− J� . �35�

These eigenvalues correspond to simple poles of the
Green matrix, which can then be put into the following form:

FIG. 4. �Color online� Comparison between the exact and approximate solutions for normalized distribution of species abundances. In all
graphs, JB=250, mA=0.2. Black circles designate exact solutions, red triangles approximate ones. First row graphs �a,b� refer to community
A, second row graphs �c,d� to community B. In first column graphs �a,c� JA=25; in second column graphs �b,d� JA=125. Each graph contains
plots corresponding to three values of �: 1�10−3, and 4�10−3, 10�10−3.
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G�E� = 	
q

�q

E − Eq
, �36�

where �q is the matrix of the residues associated to the pole
Eq. The evolution matrix is then

U�t� = 	
q

�q exp Eqt . �37�

No general simple analytical forms can be found for the
eigenvalues and the residues, but their numerical computa-
tions are straightforward.

Information on the correlated dynamics can also be more
simply drawn from the time evolution of the moments of the
probability distribution Pnk

� �t�. Starting from Eq. �4�, straight-
forward calculations show that moments of a given order
obey differential equations that do not depend on moments
of higher order �24�. In the present case, the first moments
are found to obey the following simple system of differential
equations:

d�n�
dt

= − �� + �1 − ��mA��n� + �1 − ��mB�k� , �38�

d�k�
dt

= − �� + �1 − ��mB��k� + �1 − ��mA�n� . �39�

The two eigenfrequencies of the correlated system are
E1=−�, which characterizes the decay rate of ��n�+ �k�� �the
total average population of the considered species� and
E2=−��+ �1−���mA+mB��, which characterizes the decay
rate of ��n� /JA− �k� /JB� �equalization of the relative abun-
dances between the two communities�. If �n�0 and �k�0

denote the initial values of �n� and �k�, the complete solution
of Eqs. �38� and �39� reads

�n� = e−�t�JA��n�0 + �k�0�

+ �JB�n�0 − JA�k�0�e−�1−���mA+mB�t�/�JA + JB� , �40�

�k� = e−�t�JB��n�0 + �k�0�

− �JB�n�0 − JA�k�0�e−�1−���mA+mB�t�/�JA + JB� . �41�

In the same way, one can show that the second moments
are solutions of the following system of differential
equations:

d�n2�
dt

= − 2��A + �/�A��n2� + 2mB�1 − ���1 − 1/JA��nk�

+ ��A + 2JA�/�A��n� + mB�1 − ���k� , �42�

d�k2�
dt

= − 2��B + �/�B��k2� + 2mA�1 − ���1 − 1/JB��nk�

+ ��B + 2JB�/�B��k� + mA�1 − ���n� , �43�

d�nk�
dt

= − ��A + �B��nk� + mA�1 − ���n2� + mB�1 − ���k2�

�44�

with �I= ��+ �1−��mI�.
These equations have been numerically solved. The time

dependence of the normalized average abundance �n� /JA, of
the normalized cross correlation ��nk�− �n��k�� /JAJB, and of
the normalized variance ��n2�− �n�2� /JA

2 are shown in Fig. 5.
For an initial condition of the type Pnk

� �0�=	n,0	k,k0
�the spe-

cies under consideration is initially absent in community A
and present in B�, one finds that the variance and the corre-
lation grow up as t2 at short times whereas the average abun-
dance in A grows linearly. At long time the three quantities
exhibit the same type of decrease proportional to e−�t �as a
consequence of the extinction of the considered species�.
Note that the correlation function has its maximum at a time
nearly three times larger than the average population.

VII. DISCUSSION

In this paper, we have derived an analytical solution of
Hubbell’s model of neutral ecology in the case of two inter-
connected communities of arbitrary sizes JA and JB. We have
shown that, for some values of the input parameters, original
types of SAD are expected that exhibit two maxima corre-
sponding to the coexistence of diversity and dominance
trends inside the same community. In the limiting case of a
community B much larger than community A, one recovers

FIG. 5. �Color online� Time evolution of normalized species
abundance for average ��n� /JA�, variance ���n2�− �n�2� /JA

2�, and cor-
relation ���nk�− �n��k�� /JAJB�. �a� Short time evolution on a linear
scale; �b� long time evolution on a log scale. JA=50, JB=100,
�=0.01, mA=0.1.
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previous results of the “island-continent” model.
In a recent letter �22�, Etienne and Alonso claimed that

our expression for the “island” SAD �Eq. �14� in �16�� was
“incorrect in the general case” and was only valid in the limit
of an infinite metacommunity size. They proposed an alter-
native formula, called “dispersal limited hypergeometric dis-
tribution,” which would be “the exact result” for a finite
metacommunity size.

We agree that our incriminated formula is only an ap-
proximation for finite JB �it actually corresponds to a limiting
case of that derived in the framework of the self-consistent
theory described in Sec. V of the present paper�. Neverthe-
less, an essential assumption of the “island-continent” model
is that the metacommunity is much bigger than the commu-
nity: this is the reason for neglecting mutations inside the
community and immigration to the metacommunity. Under
such conditions �large size ratio JB /JA�, our formula indeed
provides a very good approximation, as is confirmed by a
comparison with numerical simulations. On the other hand, it
is meaningless to apply this model to the case of a size ratio
of order 1 as Etienne and Alonso did when comparing the
predictions of both theories �in the lowest graph of their Fig.
1, the community is twice as large as the metacommunity�.
As soon as the community size ratio becomes finite, self-
consistency imposes that both communities be treated on an
equal footing, as we have done in the present paper. The
exact solution to this more general problem is then shown to
be obtained from the master equation formalism.

The interest in this method is not limited to the case of
two interconnected “islands;” it can be generalized to the
“multi-islands” case. The formalism developed in Secs. III
and IV can actually be straightforwardly extended to the case
of several communities. In the case of three communities
A ,B ,C, for example, the master equation can be written as in
Eq. �4� but the matrix H is then a square matrix of dimension
�JA+1��JB+1��JC+1�. The SAD in community A is given by
a generalization of Eq. �18�,

�n
A = �	

j=0

JB

	
k=0

JC

�JAGnjk,100�0+� + JBGnjk,010�0+�

+ JCGnjk,001�0+�� . �45�

Obviously, the practical limit is that the size of the matrix
H which has to be inverted to calculate the SAD becomes
prohibitively huge when the number of communities in-
creases. Let us note, however, that the matrix H remains
sparse and the number of its nonzero elements increases only
as its �linear� dimension. Modeling a small set of intercon-
nected communities of moderate size seems to be a realistic
endeavor and it could give valuable information on the
steady-state SAD of a spatially extended system in the pres-
ence of both mutations and limited dispersal effects �the size
of each small “community” would then be the spatial range
of seed dispersion�.

Another interesting perspective of development of the
present theory concerns the time evolution of the SAD be-
tween two quasiequilibrium states. If one assumes, for ex-
ample, that two communities, initially separated, are put into
contact at a given time t= t0 �as a consequence of an external

environmental event�, it would be interesting to describe
the transient regime induced by the onset of migrations
between the two communities. The master equation formal-
ism provides an attractive starting point to describe such a
dynamical process.

APPENDIX A

The Monte Carlo simulation is “individual”-based: Indi-
viduals are referred to by their position in an array that con-
tains their species. At each time step, an individual is chosen
at random and replaced according to the rules defined in Sec.
II.

The communities are thermalized by T rounds of replace-
ments, where T=6�JA+JB� /� has been found to be a good
compromise. After thermalization, abundances are retrieved
from the array by sorting the species and counting, for each
n, the number of species having exactly n individuals. These
abundances are stored in a separate array. The whole process
is repeated S times to constitute a statistically significant pool
of samples of abundances; the mean abundance is then com-
puted by averaging over these S samples. To get a standard
deviation of the mean abundance below 0.5�10−2, we use
S=2�105. The source code is available upon request.

APPENDIX B

The probability PA��n ; t�k� obeys the differential equation,

dPA��n;t�k�
dt

= 	
m=0

JA

hnm� �k�PA��m;t�k� , �B1�

where hnm� �k� is the matrix hnm�k� with Ak� and Ck� put equal to
zero. This equation can be solved using the same Laplace
transform methods as in Sec. III. In this case, the eigenvalues
Eq

A of the matrix h��k� can be explicitly calculated,

Eq
A = − q� q − 1

JA − 1
�1 − ���1 − mA� + mA�1 − �� + ��

�0 � q � JA� . �B2�

These eigenvalues range from E0
A=0 to EJA

A =−JA and, re-
markably, do not depend on k. The Green matrix GA�E ,k�
defined by

GA�E,k� = �EI − h��k��−1 �B3�

can then be expanded as a sum of �JA+1� terms, each of
them having a pole at one of the Eq

A,

Gnm
A �E,k� = 	

q=0

JA �nm
q �k�

E − Eq
A , �B4�

where the residues �nm
q �k� can be explicitly calculated from

recurrence relations. In particular, the coefficients �nm
0 �k� are

found to be

�nm
0 �k� = �JA

n
 ��Ak/JB�n��A + �A�1 − k/JB��JA−n

��A + �A�JA

. �B5�

The Laplace transform of PA��n ; t �k� is then
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P̃A��n;E�k� = 	
m=0

JA

Gnm
A �E,k�PA��m;0�k�

= 	
m=0

JA

	
q=0

JA �nm
q �k�

E − Eq
A PA��m;0�k� . �B6�

Hence, taking the inverse Laplace transform,

PA��n;t�k� = 	
m=0

JA

	
q=0

JA

�nm
q �k�exp�Eq

At�PA��m;0�k� . �B7�

�In the above expressions, the time t=0 corresponds to the
time of apparition of species � in community A.�

In the infinite-time limit, the only term that survives on
the right-hand side of Eq. �B7� is that corresponding to the
mode index q=0,

PA��n;
�k� = 	
m=0

JA

�nm
0 �k�PA��m;0�k� . �B8�

Since the coefficients �nm
0 �k� are independent of the index m

�loss of the memory of initial conditions�, one gets

PA��n;
�k� = �nm
0 �k�	

m=0

JA

PA��m;0�k� = �nm
0 �k� , �B9�

which is Eq. �22�.
We then make the hypothesis that the steady-state SAD

�n
A can be calculated by considering that PA��n ;
 �k� obeys

the composition law pn
A��t��	k=0

JB PA��n ;
 �k�pk
B��t�, in the

limit t→
 �this is an approximation since PA��n ;
 �k� is not
the true conditional probability�. From Eq. �14�, one then
deduces

�n
A = 	

k=1

JB

�nm
0 �k��k

B + �n
A. �B10�

The first term corresponds to the contribution of species
that have first appeared in community B and have migrated
to A. The second term ��n

A� arises from species that have
appeared by mutation in A and have never been present in B.
To calculate �n

A, we use the same reasoning as that leading
to Eq. �17� in Sec. IV: one introduces the evolution matrix
UA�t� defined as the inverse Laplace transform of GA�E ,0�,
and one gets

�n
A = JA�


−


t

Un1
A �t − t��dt� = JA�


0




Un1
A ���d� �B11�

=JA�Gn1
A �0+,0� = JA�

A1�0�A2�0� ¯ An−1�0�
C1�0�C2�0� ¯ Cn�0�

. �B12�

This last expression has exactly the same form as that
previously reported for the metacommunity SAD in the
“island-continent” model �16�. When the coefficients An�0�
and Cn�0� are expressed as functions of �A and �A, one gets
Eq. �26�.
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