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Clustering in neutral ecology
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The “neutral ecology” model assumes that all organisms in the same trophic level have the same death,
duplication, migration and mutation rates and are subjected to a zero sum rule. We show by exact analytical
methods that under the assumption of this model, organisms tend to aggregate and form clusters. At dimensions
less than or equal to 2, cluster size grows in average and one specie will dominate the whole ecosystem if
enough time is allocated. At dimensiah=3 (or highe)p, an equilibrium is reached and cluster sizes are
distributed as a power law.
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[. INTRODUCTION will ultimately stop further growth of a big aggregate. But
looking at a given pattern of biodiversity, one can question
In most ecological models the ecosystem under investigawhat part of it has been caused by intrinsic stochastic noise
tion is zero dimensional. This approach may allow for anand what part is due to external effects. In order to evaluate
understanding of some fundamental aspects without dealin@ese contributions, Hubbell5] has proposed a neutral
with mathematical difficulties associated to spatially ex-model where all individuals of all species in a given trophic
tended systems. It is, however, a common observation thagVvel have the same parameters. There is a density dependent
living organisms are not distributed homogeneously in nathreshold in this model which limits the growth of all species
ture, but tendmore or lessto aggregate into patches. There in the same way. Competition between species, subjected to
is now a fast growing branch of ecology, termed spatial/@ Z€ro sum rule, is driven by the stochastic noise of death,
metapopulation/landscape ecology that is entirely devoted tBirth and immigration events. The aim of the model is to
the investigation of spatial effecf4]. p_rovjde a null hypothesis to which aptual pattern of specigs
The spatial pattern of biodiversity can be due to severaflistribution can be compared. Despite the apparent simplic-
causes such as social and/or nonlinear interactions betwedy Of neutral models, many numerical simulations have
one or more species. In classical theories of ecology citeghown striking similarity between the prediction of these
above, the clustering is attributed to spatial variation of en/nodels and observed patterns of species distribution in na-
vironmental conditions (local humidity, exposition to ture[6]. Figure 1 shows a two-dimensional numerical simu-
sun, .. ): each species fitnegge., growth rate, probability ~lation of the Hubbell model with snapshots of the ecosystem
of successful migration and colonizatian .) is supposed to  at various times. Only one specie’s population is displayed,
be a specific function of environmental parameters. Thusand as it can be observed, the initial homogeneous distribu-
species tend to occupy the spatial niches that allow for th&on gives rise to a clustered one.

highest fitnessfor a review of various flavors of these theo- ~ This paper is devoted to the study of clustering in the
ries, sed?2)). framework of neutral models. We will first recall Hubbell's

Another more intrinsic and often neglected source of clusmodel and known results at zero dimension. We will then
tering can be the stochastic noise. Death and duplication of 8how by exact analytical computation, that at dimensitns
living organism arediscreterandom processes and can have<2, species tend to aggregate into growing clustersd At
drastic eﬁects on the distribution Of an Organism_ “Discrete” ?3, a stable limit is I’eaChed, where cluster sizes are distrib-
refers to the unit of population change: one. If a cluster ofuted according to a power law.
size 10 loses 9 of its individuals, it can be rescued later by,
the duplication of the remaining one. On the other hand,
cluster of one individual losing one will disappear defini-
tively. Therefore if there is no density dependent effscich
as an increase in the death rate when density incrgdsigs
clusters tend to get bigger and small ones tend to vanish
This aggregation phenomenon is a pure discrete effect an %
cannot be found in continuous models where the populatio - ‘ ' *
size can chan i i @) (®) )

ge by arbitrary small values. The aggregation oi
planktons on the ocean surface has recently been proposed toF|G. 1. Numerical simulation of @=2 Hubbell model with
be due to such an effect, where it was also shown that difom:0.75. Only one specie§)) distribution is displayed(a) The
sion cannot smoothen the clustering phenorn&m. initial, homogeneous distribution @ population;(b) att=500; (c)

The assumption of no density dependence is of coursatt=5000. The unit of time corresponds kb death and duplica-
rather harsh and of limited applicability: limited resourcestion, whereN is the total size of the ecosystem.
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Il. NEUTRAL ECOLOGY AT d=0 The existence of the two adsorbing states0 andn=J

The ingredients of Hubbell’s model are the followiftj: er?ef)sllsstvsga;tggzgg (g)a_itft;le/jtag?‘?)aiyns%ugﬁg ;((agt<e:]ed on
. - 0/v — 1o

(i) there is no restriction on the number of species in a given_ -, . .
ecosystem({ii) resources are limited, so the ecosystem can<‘]%gcgﬁsselgfcflhnege ;r;:ectti:ds (ijrllrfr(a:lt;éi(t)ignar?t.es various mo-
carry only a limited number of individuals, which we will ym . e

ments of theA-population size can be computed without ex-

call J; (iii) as soon as an individual of a given species dieSplicitly solving the master equation. The ensemble average
another ongfrom the same or another spegiahiplicates readg 9 a ' ’

instantly; (iv) all individuals have the same death rate and

probability of replacing a dead organism by one of their du-

plicates. d(ny/dt=>, [W*(n)-W~(n)]P(n,t)=0. (4
To illustrate rules(ii) and (iii), we can imagine the eco- n

system as a tropical rain forest: the competition for space is ) ) ) .

severe, and as soon as a seed gets free space, it gromus the mean population size will remaig. The second

(thereby inhibiting the growth of other neighboring seeds Moment reads

The limiting resource here is the space, ahdenotes the

number of trees a plot of given area can contain. Rdl¢s d(n2)/dt=">, {2n[W*(n)—W~(n)]+[W*(n)

and (iii) also imply that at any given time, the number of n

individuals in the ecosystem is exactly Rule (iv) is the

neutrality hypothesis, and we will extend it to any other pa- +W~(n)]}P(n,t)= L{_2<n2>+2J<n>}.

rameter that we will introduce. Note the difference between J-1

this model and the logistic one: in the latter, a given species (5)

has a preferred population size, whereas in the former model,

only the population size of the whole ecosystem is imposetrhe variance is thusa?(7) =(n?)—(n)2=ng(J—n)(1

and a given specie can have between Odindiividuals with  —g=27) where 7= ut/(J—1) is the rescaled dimensionless

no preference. . time. The probability distribution converges to the stationary
Let us now recall some of the known results obtained byone onr~1 time scale. This is equivalent to stating that in

Hubbell. We will use the continuous time approach |nSteaqhiS closed neutral ecosystem, a popu|ation either goes ex-
of the nonoverlapping generations used by Hubbell. We wilkinct or dominant.

concentrate on the size of a given specie, sag, in the The important fact to note is that the evolution equation of
ecosystem. The probability per unit time farto increase its  the kth moment does not involve any moment higher than
size fromn to n+1 is the probability of an individual be- Therefore moments of arbitrary order can be obtained ex-
longing to another specie to die, multiplied by the probability actly and without any moment closure approximation. This

of one individual belonging té to duplicate feature will remain as we will add more and more ingredients
to the model.
W) = w(J— n 1 The ecosystenftermed communityneed not be isolated
(nN)=pn(3—n) () > .
J-1 and can receive migrants from an outside p@eétacommu-

) ) ) . nity), which we suppose to be extremely large. The classical
whereu is the death ratey is the size ofA population and  picture is that of an island not far from the shore of a conti-
(J—n) is the number of all individuals not belonging £ nent. Then, when a local individual dies, it can either be
The (J—1) factor is due to the fact that when an organismreplaced by a local or by a migrant one. The probability per
dies, there remain onlyJ(-1) in the ecosystem capable of ynit time for A to increase its size fromto n+1 is that one
duplicating. _ N organism not belonging tA dies and is replaced either by a

The same argument applies to the transition rate i"dm  |ocal or migrantA individual. Callingx, the proportion of
n—1: this is the probability for oné\-specie individual to  As in the metacommunity, anth the probability that the
die, and one organism not belongingAdo duplicate replacement is from migrant®f course, the same for all
specieg the transition rates read

W (n)= pn o 2
(n)—,unm- 2 N
W' (n)=pu(I—n) (I=m) 37 +mXa|, (6)
One can note that both transition rates are equal and that
there is no growth abovéd or below 0. Also, if a specie J-n
becomes dominann(=J) or extinct (1=0), it will stay so. W~ (n)=un (1—m)ﬁ+m(1—XA) ] 7)
Let P(n,t) be the probability ofA specie having indi-
viduals at timet. We callng the initial A-population size, i.e., . i
P(n,0)=4, ,.. The master equation fd? reads As before, the evolution equation of a moment does not con-
o tain higher order ones and can be obtained as in @ysnd
aP(N)=W*(n—1)P(n—1)+ W (n+1)P(n+1) (5). The ensemble average ién(t))=(ny—Jx,)e M
+Jx, and converges to its value in the metacommunity. The

—[W"(n)+W~(n)]P(n). (3)  variance converges to

061912-2



CLUSTERING IN NEUTRAL ECOLOGY PHYSICAL REVIEW E68, 061912 (2003

J-m tions remain 0: patches become independent and in each
1—2m+mJd’ patch, the population either goes extinct or dominant. To see
that, restore the real timeby multiplying Eqs.(11) and(12)
by mand letm— 0. Second, fom#0, the above equations
Ill. NEUTRAL ECOLOGY AT d=1 possess a homogeneous station@t) solution u,=nq(J

Until now we have assumed that an individual in the eco-— No)- This corresponds to speofeinvading all the space or
system can be replaced by any other one. The ecosystem $9IN9 extinct everywht_are. Whether the .actuall solution con-
however spatially extended, and the replacement probabilityerdes to the HS one is a question of dimension.
should decrease with the distance between individuals. It is 10 solve Egs.(11) and (12) let us note thatZ,(7)
not hard to generalize the formalism developed above: divide™ 8<P(~27)1(27), wherel, is the modified Bessel function,
the space into patches dfindividuals, each patch commu- IS @ solution of the bulk equatiortd2) [but not of Eq.(11)].
nicating with the neighboring ones. In this paper we will Therefore we look for solutions of the forffor details, see
consider the spatially infinite ecosystem. Physically, the siz&he Appendix
of a patch is of the order of the average distance to which
trees send their seeds. An individual dying in a given patch N P _
can then be replaced by the descendant of a local one with Un(7) = foe In(28)f(r=s)ds, (13
probability (1-m), or by a migrant from the immediate
neighbor patches with probability. Transition rates for the  \heref is a function to be determined. One can check by
patchi to change its\-population size fromm; tonj*1isan  direct differentiation that the above form is a solution of the
immediate generalization of Eq&) and (7) bulk Eqgs.(12) for arbitrary(and reasonably regulaiunction
f. Plugging Eq(13) into Eq.(11) allows one to find an inte-

0?(20) = I%a(1=Xp)

W* ()= (=) (1=m)3og + 5o (n_y+ny.y)|, 9%l equation for
(8 r
f(r)z—zf e 2 alo(25)+ B11(25)]f(r—s)ds+K.
J-nj m 0
W) = i) (1=m) 5=+ 55(23=Ni-1 = Niq) |- (14)

©) This equation is solved by the usual Laplace transform, and
If there is no migration hi=0), theA population in each W€ finally get, for the Laplace transform of correlations,

patch either goes extinct or dominant. We will see that al- _
lowing communication between patches generalizes this ten- Te(w) K T, (w) 15
s Up(w)=— = —
dgncy. brqader and b_roader ensemble Qf connected patches n ® 1+2a7y(w)+287,(w)
will go extinct or dominant togetheisee Fig. 1
Various momentsthe mean and correlationsan be ex- )
tracted without major difficulties from the master equation. 1z K
As bgfore, no moments higher thiis involved in the com- _; (z-1)2 22+ 2az+28-1
putation of thekth moment. The average reads

(16)

(d/dr)(n)y=—(n)+{(ni_ ) +(niL )12, (100  Where Z,(7) =exp(=27)I4(27), Z,(w) is its Laplace trans-
form andw=2z+1/z—2. The variablez is a shorthand nota-
wherer= umt is the dimensionless rescaled time. The averdion to avoid writing complicated combinations eof and
age thus obeys a simple diffusion equation. Taking homogeyw(w+4) on the right hand side of E¢L6). The validity of
neous initial conditions of all patches having exaatly A  Egs. (15 and (16) can be checked directly on the Laplace
organism att=0 [i.e., P(n;t=0)=II, o, n ], we see that transform of Egs(11) and(12).

the average remains constant. Without computing the inverse Laplace transform we can
The equations for the correlationsu,=(n;n;,,)  9ather much information from EcﬁlG). As w—0, the lead-
—(n;)(n; ) are less trivial and read ing terms in the development of,(») read(for n?<1/w)
(d/dr)ug=—2(1+ a)up+2(1- B)u;+K, (11 ~ Cn
Un(@)=No(J—Ng)| —— +0(1), 17
(d/dT) U= — 22Ut U 1+ U (k>0), (12 o o

wherea=(1-m)/m(J—1), B=1/1J andK=2(a+B)no(J  whereC is a constant. This implies that as—», u,(7)
—ny). Note that because of the homogeneous initial condi=ny(J—ny)[1— (C+n)/{m77] for n?<7. All correlations

tions, u (7=0)=0. converge to thesamestationary value, implying that species
Before going to the details of the solution, let us note aaggregate into bigger and bigger clusters.
few facts. First, ifm—0, the above equations uncouplg, In d=1, the large time approximation of,(7) can even

converges tang(J—ng) for t—o where all other correla- be extended uniformly to al (see the Appendix
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1§

~ K hj’m,n(‘”)
0.8 um,n(w)z_ = = , (20
w1+ ZZCI:ZiLc( ﬂ)) ‘F’:Z/;:Zb‘]( U))
0.6 ~
§2 where I, (1) =exp(27n)|(DNl(7) and I (w) is its

e Laplace transform. For large tim&,, ,(7)~1/7 and there-

fore?m,n(w) diverges logarithmically a®—0. The leading
terms in the development of the correlations are

0.2

0 250 500 750

1 C+logr
—+ , (21
w

. . . . . Um,n(w)*““no(J_no) |
FIG. 2. Numerical simulation and comparison to theoretical re- w10g w

sults of thed=1 neutral model for an ecosystem composed\of 5 5. 5 2
=5%10° patches ofJ=10 individual wherem=0.75 andx ~ Where r‘'=m°+n°>0 and r°*<l/w. For m=n=0, the

=2x1077. A maximum of 5< 10° death and replacement events @00ve expression is of the form (d)(1+C'/log ») (see the

have occurred. In both figures, solid lines represent theoretical vaAPPendix. Thus, as 7—c, Uy a(7)~Ne(J—ng)[1+(C

ues and dots are computed from the numerical simulat@rCor- +logr)/log 7] (for r2<7). Again, as in thed=1 case, all

relationsu,(t) as a function oft for n=0,2,4,8,16, and 32(b) correlations converge to tteamevalue for large times: The

Correlationsu,, as a function of their inder and normalized byi,  clustering occurs also at two dimension, but on a much

for various timest=21.1x(1,4,9,16,25,36). Dashed curves: long slower (logarithmig pace. Thed=2 clustering is illustrated

time approximation(18) (only the last four, where time is large in Fig. 1.

enough for this approximation to be valid, are displayed The clustering phenomenon at=3 is different and
reaches an equilibrium. To be precise, at three dimension,

1-8 1 ;{ n2) 18 following the same line of arguments as above, we have

n
Up(7)= l—erf(—

:2\/E a+ [3 NTTT 4t K EZ
o (@)= — m,n,p(w)
which, of course, reduces to E(L7) for n’<r. P ® 1+2aZg0d w)+ 2601 )

Finally, the inverse Laplace transforfsee the Appendix

gives the explicit and exact time dependent correlations ~ WhereZy n o(7) =exp(—27)ln(27/3)11(27/3)1 5(27/3).
To see the mathematical difference below and above the

% critical dimension 2, we should journey back and forth to
un(7-)=e*27k§_:l ayln4k(27), (199 Laplace space. The solutions at all dimensions are of the

same fornt, (w)/Zy(w). At d dimension, the leading term in

where Z,(t) for large times is~t~ %2, and is independent af.
This, At d=2, implies the divergence df,(w) for o«—0
1, . 1-B . with a leading termindependenbf n. The leading term in
a=2ny(J—ng)| 1— E(Zﬁ Zz)—ﬁ(zl—zz) the development ofi, therefore will also be independent of

n and all correlations converge to the same value.

_ . 32
and z, , are the roots ofz>+2az+28—1=0. Figure 2 At d=3, for large time,lmnp(7)~7 == its Laplace

shows correlations computed from a numerical simulation offansformZy, , ,(w) does not diverge anymore fas—0.
the neutral model at one dimension and its comparison to théhe development of the correlations reads

theoretical expressions E(.8) and Eq.(19), where only the c

16th first terms of the serigd9) have been computed. am’n’p(w): %jLo(l)

IV. NEUTRAL ECOLOGY AT HIGHER DIMENSIONS and thus the leading termependson the index. For large

A one dimensional ecosystem can be one along the shot#nes, correlations converge tcmanhomogeneolstationary
of an island or the bed of a river. Most often however, eco-Solution:uy, , ,(t=«)=C,, , where
systems are two dimensional. As the explicit Laplace trans-
forms of products of Bessel functions are not known, we _ ”
cannot exhibit an analytical form for correlations as in Eq. Cm'”*p_Ctefo Imnp(H)d. 22
(19). But the limit for large time, and its important implica-
tion on whether clustering occurs or not are not hard to coméoreover, it is not difficult to showsee the Appendixthat
by. Expressiong8), (9) and (11), (12) easily generalize to for larger (wherer?=m?+n?+p?), C,, ,~ 1. Because
higher dimension, where the summation has to be taken overf this slow 1f decrease in correlations, no characteristic
all the neighbors in the-dimensional space. The solution of cluster length scale can be defined at equilibrium. The ab-
the correlation equations can then be sought in the sam®ence of characteristic length scale means that when looking
manner as above as an integral equationdAR2, we have, at various scales of the ecosystéby using different mag-
for the Laplace transform of correlations, nificationg, one will always see the same picture or alterna-
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tively, one will not be able to determine the magnification = Another phenomenon which controls the long term be-

used by simply looking at a picture. If we represent onehavior of an ecosystem is mutation. Mutations give rise to

specie by black and all others by white, a big cluster of blackhe appearance of new species and provoke the extinction of

will be seen filled with smaller clusters of white, themselvesthe old ones. As noticed by Hubbell, they can be easily in-

filled with smaller clusters of black and so on. This is for cluded in the neutral model by assuming a unique mutation

example the classical picture of power law domain size disrate for all individuals in the ecosystefwhatever the specie

tribution at the critical point in a second order phase transito which they belong Let us callv the probability for the

tion. recently duplicated individual to be of a new specie. Then,

for example, the rat&/*(n) in Eq. (1) has to be multiplied

by (1—v). All the methods and results of this article can be

generalized to take into account mutations. The main result is
Let us summarize the main results of this paper. Begirthat the average will decrease uniformly{n(t))

with an ecosystem where various species are dispersed he-ngexp(—t): whenv+#0, the staten=J is not an adsorb-

mogeneously and allow them to evolve according to the neuing one anymore, as new species can appear even if one has

tral, zero-sum rules exposed above. Each species will thealready taken over the whole ecosystem. Correlationst

tend to self-organize into clusters, and the size of these cludeast their Laplace transfopnin spatially extended system

ters will grow with time, asyt in the one dimensional case can be computed in the same way. For example, at one di-

(such as an ecosystem along the bed of ayigad as log  mensions, correlations read

in the two dimensional one. If enough time is allocated, one

specie’s cluster will eventually reach the size of the system s ‘

and this specie will dominate the whole ecosystem. There is up(t)=e gl byl 2(1=»)7)

no need to invoke inter and/or intra species social interac-

tions between individuals; the stochasticity of birth and death, 4 converge to 0 for large tinfas exp¢»7)]. The mutation

events is enough to provoke clusterization. Note that thig, opapility is however very smalin the context of neutral
does not mean that social interactions in real ecosystems

_ ONsS 1n ¢ odels for tropical forests it has been estimated-tb0 1*

not exist or do not provoke organization into clusters, but7]) Therefore its effect on the result of the preceding sec-
only that their importance has to be compared to clusteringys is again to put a cut off for large times. It is beyond the
due to stochast.icity. Note also the consequence of this model ., of this paper to study the effect of mutations. The equi-
for the relative importance of aggregationdr-1 compared  jinriym g diversity (the probability for two individuals at

to d=2. In the former one, aggregates grow much fasteljisiancex to be of the same specjebas been computed
than in the latter. This implies that=1 ecosystems will be = gjaganily[8,9]. As » is extremely small, it is not clear, how-
much more likely to be dominated by a single specie than,er i such an equilibrium can be reached before a period of
d=2 ones. o _ global change.

The case ofd=3 systems is different. Let us first note = | conclusion, we have shown that in the ecological neu-
that these kinds of ecosystems are not common. They cefra| model proposed by Hubbell, species form aggregates
tainly do not exist for terrestrial species, and even maringyhich in average grow with time. The model we have treated
species such as fish tend to remain within a layer of smally giscrete (for individuals and spatial. Both of these as-
thickness compared to their horizontal expansiond#3,  nhects, despite their tremendous importance, are often ne-
species will also tendl to self—organll.ze.mto c_Iusters, but NQlected in ecological modelingl0]. One of the reasons be-
one will become dominant. An equilibrium will be reached hing this neglect is the difficulty of getting exact results from
where blg. clusters break into small ones and small ones fus@ese kind of models, even when approximation schemes like
to form bigger ones. Note however that the difference bemoments closurfl1] are used. The Hubbell model possesses
tweend=2 andd=3 is due to our hypothesis of spatially the particular beauty of allowing the computation of any mo-
infinite system. If the system is finite, evenda=3 system  mant without the invocation of moments of higher order.
will be dominated by a single specie if enough time is allo-  gjnce its apparition, the Hubbell model has stimulated a
cated. The qualitative difference be_tween dimensist®  neated debate both on the validity of its hypothese13
and >2 is not an unusual feature in problems related tognd its accuracy to describe field dffal4]. One aim of this

diffusion: the probability for a Brownian particle to come article is to provide ecologists with analytical tools helping
baCk to the OI’IgIn is£0 atd$2 and Zero OtherW|Se. to eva|uate Various aspects Of thlS modeL

Two phenomena, however, will limit the large time be-
havior of this model and the complete dominance by one
specie atd<3. The first hypothesis of the neutral model is
that environmental parameters do not change over time. This We are grateful to J. Lajzerowicz for fruitful discussions.
assumption can be reasonable for stiort geological scaje
period of time. But we know that there are global changes
like glaciation periods where environmental parameters do
change in radical ways. The time scale for these global (&) Solving the correlation equation¥he integral method
changes will put a cutoff for large time behavior of the neu-we used in Sec. lll to solve the correlation equations is a
tral model. variation of matrix exponentiation. The solution of the linear

V. CONCLUDING REMARKS
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system du/dt=(A+B)u+K involves the matrix exg
+B)t. In our caseA is the tridiagonal diffusion matrix and

is the (almost everywhepehollow matrix Bg o= —2a, By
=—28 andB, ,=0 for all other indexes. The exponential
of the sum of two matrice@vhether they commute or nas
given by

t
e(A+B)t:eAt+f A=) B a(A+B)sy g
0

This is known in quantum mechanics as the Dyson formula.

As expAt can be computed exactly alis nearly empty,
the components of expfB)t can be shown to obey integral

equations of the typé€l4). One then has to perform some
matrix vector multiplication to obtain the correlations. The
integral method we have used is a more compact version of Un(w)=
this matrix exponentiation, especially when working with di-

mensions higher than one.
(b) Large time behavior of correlationg’he large time

PHYSICAL REVIEW E 68, 061912 (2003

the modified Bessel function. For=0, 70'0(w) can be com-
puted explicitly and readsBX(4/(2+ w)?)/ w(w+2) where
Ek(m) is the complete elliptic integral of the first kind. The
limiting form of these expressions fap—0 is Zy o @)~
(— Um)log(w/16), andZ, ,(w)~Zy | w)—log(¢r) where ¢

is a numerical factor£1.78) andr<1/yw. Plugging these
into Eq. (20) gives the resul{21).

(c) Computing the exact inverse Laplace transform of
correlations. The  Laplace transform  of Z(t)
=exp(=2t)I(2t) is 7, (w)=(1/z")z/(z*—1), where w=2
+1/z— 2 is the Joukowski transform. The express{B) for
the correlations can be developed in Laurent series:

1 z

2" Z22—1 k=1 Z¢

o0
ay

and thus,u,(t) is a sum of Bessel functions times an expo-

behavior of correlations can be deduced from the limitingnential as proposed in Eq19). Alternatively, expression
form of the Laplace transform as explained in the text. In(19) can be plugged directly into Eqgl1) and(12) and the
order to derive the amplitude of convergence speed, i.e., theoefficientsa, computed through the recurrence relaten

numerical coefficient in front of 4/t or 1/logt and its de-

=K, a,=2(1l-a)K and a ;1= —2aay—(28—1)ay_;

pendence om, we have to perform some more Ca|cu|ations_+2K. This recurrence relation is a consequence of relations

In d=1, expressiori16) can be used directly to compute
the limit for o—0 [we will omit the factorny(J—ng)]

B
l_m

~ 1
Un(w)~ P

w

exp—n Vo). (A1)

between Bessel functions and their derivatives. The inverse
Laplace transform can also be computed directly, if one uses
the generating functions of modified Bessel functions:
expecosh)=1y(2)+23, 411 (2coskd). All these methods are,
of course, equivalent.

(d) Power law decrease in correlations at=3. As a

The inverse Laplace transform of this expression is knowrshorthand demonstration, we can notice that the function

and gives expressiofl8). This method cannot be extended

to d=2 where the exact Laplace transformZf ,(7) is not
known. But we can note that,(7) is the solution of the

Cm,n,p( 7)=K fo Zm,n,p(s)dS

discrete diffusion equation, the continuous version of whichs he solution of the discrete diffusion equation with a

IS

dc=Ac+ 8(r)8(t).

source at the origin, i.e., the three dimensional equivalent of
Egs.(11) and(12) wherea= =0 andK#0 (for more de-

tails, se€g[4]). The continuous version of diffusion equation

So for large 7 (when the diffusion front has progressed With pointlike source is written as

enough and the importance of spatial discreteness is negli-

gible) a very good approximation fdf, () is

exp(—Nn?/47),

1
2\Jnr

which possesses the Laplace transform exp(w)/2yw. In

dic=Ac+KJ5(r). (A2)

The stationary solutior{reached fort—o) of the above

equation obviously decreases asr.1/Thus, Cy,p
=Cpmnn,p(®) ~1Ir. We have also checked numerically the va-
lidity of 1/r decrease over three decades.

We should make a remark here. At one or two dimen-

fact, we could have plugged this expression directly into Eqgsions, the solution of the diffusion equation with a source at

(15) to obtain Eq.(A1).
This method can be generalized t=2. For r’=m
+n2+#0, we haveZ,, ,(7) ~exp(—r427)/2m 7 which can be

Laplace transformed t&m,n(w)zKO(r\/Zw) where K is

2

the origindiverges(as 't and logt). « andg act in Eqs(11)

and(12) as singular perturbations, killing all divergences. At
d=3, there is no more divergence of the solution, anand
B act as regular perturbations.
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