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Clustering in neutral ecology
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The ‘‘neutral ecology’’ model assumes that all organisms in the same trophic level have the same death,
duplication, migration and mutation rates and are subjected to a zero sum rule. We show by exact analytical
methods that under the assumption of this model, organisms tend to aggregate and form clusters. At dimensions
less than or equal to 2, cluster size grows in average and one specie will dominate the whole ecosystem if
enough time is allocated. At dimensiond53 ~or higher!, an equilibrium is reached and cluster sizes are
distributed as a power law.

DOI: 10.1103/PhysRevE.68.061912 PACS number~s!: 87.18.Ed, 05.40.2a, 05.50.1q, 02.50.2r
ig
an
li
x
th
na
re
ia
d

ra
e

ite
en

u
th

o-

us
o
ve
e’
o
b
,
i-

is
a
tio
n
ed
iffu

rs
es

ut
ion
ise
ate
l
ic
dent

es
d to
ath,
to
ies
lic-
ve
se
na-
u-
em
ed,
ibu-

he
’s
en
s
t
rib-
I. INTRODUCTION

In most ecological models the ecosystem under invest
tion is zero dimensional. This approach may allow for
understanding of some fundamental aspects without dea
with mathematical difficulties associated to spatially e
tended systems. It is, however, a common observation
living organisms are not distributed homogeneously in
ture, but tend~more or less! to aggregate into patches. The
is now a fast growing branch of ecology, termed spat
metapopulation/landscape ecology that is entirely devote
the investigation of spatial effects@1#.

The spatial pattern of biodiversity can be due to seve
causes such as social and/or nonlinear interactions betw
one or more species. In classical theories of ecology c
above, the clustering is attributed to spatial variation of
vironmental conditions ~local humidity, exposition to
sun, . . .!: each species fitness~i.e., growth rate, probability
of successful migration and colonization, . . . ! is supposed to
be a specific function of environmental parameters. Th
species tend to occupy the spatial niches that allow for
highest fitness~for a review of various flavors of these the
ries, see@2#!.

Another more intrinsic and often neglected source of cl
tering can be the stochastic noise. Death and duplication
living organism arediscreterandom processes and can ha
drastic effects on the distribution of an organism. ‘‘Discret
refers to the unit of population change: one. If a cluster
size 10 loses 9 of its individuals, it can be rescued later
the duplication of the remaining one. On the other hand
cluster of one individual losing one will disappear defin
tively. Therefore if there is no density dependent effect~such
as an increase in the death rate when density increases!, big
clusters tend to get bigger and small ones tend to van
This aggregation phenomenon is a pure discrete effect
cannot be found in continuous models where the popula
size can change by arbitrary small values. The aggregatio
planktons on the ocean surface has recently been propos
be due to such an effect, where it was also shown that d
sion cannot smoothen the clustering phenomena@3,4#.

The assumption of no density dependence is of cou
rather harsh and of limited applicability: limited resourc
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will ultimately stop further growth of a big aggregate. B
looking at a given pattern of biodiversity, one can quest
what part of it has been caused by intrinsic stochastic no
and what part is due to external effects. In order to evalu
these contributions, Hubbell@5# has proposed a neutra
model where all individuals of all species in a given troph
level have the same parameters. There is a density depen
threshold in this model which limits the growth of all speci
in the same way. Competition between species, subjecte
a zero sum rule, is driven by the stochastic noise of de
birth and immigration events. The aim of the model is
provide a null hypothesis to which actual pattern of spec
distribution can be compared. Despite the apparent simp
ity of neutral models, many numerical simulations ha
shown striking similarity between the prediction of the
models and observed patterns of species distribution in
ture @6#. Figure 1 shows a two-dimensional numerical sim
lation of the Hubbell model with snapshots of the ecosyst
at various times. Only one specie’s population is display
and as it can be observed, the initial homogeneous distr
tion gives rise to a clustered one.

This paper is devoted to the study of clustering in t
framework of neutral models. We will first recall Hubbell
model and known results at zero dimension. We will th
show by exact analytical computation, that at dimensiond
<2, species tend to aggregate into growing clusters. Ad
>3, a stable limit is reached, where cluster sizes are dist
uted according to a power law.

FIG. 1. Numerical simulation of ad52 Hubbell model with
m50.75. Only one species~A! distribution is displayed.~a! The
initial, homogeneous distribution ofA population;~b! at t5500; ~c!
at t55000. The unit of time corresponds toN death and duplica-
tion, whereN is the total size of the ecosystem.
©2003 The American Physical Society12-1



ve
a

ll
es

nd
u

-
e
ro
s

of

a
e
ie
d

se

b
a
i

-
ity

m
f

th

on

o-
x-
age

s
ry
in
ex-

of

ex-
his
nts

ical
ti-
be
er

a

l

on-

he

B. HOUCHMANDZADEH AND M. VALLADE PHYSICAL REVIEW E 68, 061912 ~2003!
II. NEUTRAL ECOLOGY AT dÄ0

The ingredients of Hubbell’s model are the following@5#:
~i! there is no restriction on the number of species in a gi
ecosystem;~ii ! resources are limited, so the ecosystem c
carry only a limited number of individuals, which we wi
call J; ~iii ! as soon as an individual of a given species di
another one~from the same or another species! duplicates
instantly; ~iv! all individuals have the same death rate a
probability of replacing a dead organism by one of their d
plicates.

To illustrate rules~ii ! and ~iii !, we can imagine the eco
system as a tropical rain forest: the competition for spac
severe, and as soon as a seed gets free space, it g
~thereby inhibiting the growth of other neighboring seed!.
The limiting resource here is the space, andJ denotes the
number of trees a plot of given area can contain. Rules~ii !
and ~iii ! also imply that at any given time, the number
individuals in the ecosystem is exactlyJ. Rule ~iv! is the
neutrality hypothesis, and we will extend it to any other p
rameter that we will introduce. Note the difference betwe
this model and the logistic one: in the latter, a given spec
has a preferred population size, whereas in the former mo
only the population size of the whole ecosystem is impo
and a given specie can have between 0 andJ individuals with
no preference.

Let us now recall some of the known results obtained
Hubbell. We will use the continuous time approach inste
of the nonoverlapping generations used by Hubbell. We w
concentrate on the sizen of a given specie, sayA, in the
ecosystem. The probability per unit time forA to increase its
size fromn to n11 is the probability of an individual be
longing to another specie to die, multiplied by the probabil
of one individual belonging toA to duplicate

W1~n!5m~J2n!
n

J21
, ~1!

wherem is the death rate,n is the size ofA population and
(J2n) is the number of all individuals not belonging toA.
The (J21) factor is due to the fact that when an organis
dies, there remain only (J21) in the ecosystem capable o
duplicating.

The same argument applies to the transition rate fromn to
n21: this is the probability for oneA-specie individual to
die, and one organism not belonging toA to duplicate

W2~n!5mn
J2n

J21
. ~2!

One can note that both transition rates are equal and
there is no growth aboveJ or below 0. Also, if a specie
becomes dominant (n5J) or extinct (n50), it will stay so.

Let P(n,t) be the probability ofA specie havingn indi-
viduals at timet. We calln0 the initial A-population size, i.e.,
P(n,0)5dn,n0

. The master equation forP reads

] tP~n!5W1~n21!P~n21!1W2~n11!P~n11!

2@W1~n!1W2~n!#P~n!. ~3!
06191
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The existence of the two adsorbing statesn50 and n5J
implies that there is a stable stationary solution centered
these two states:P(0)512n0 /J, P(J)5n0 /J andP(0,n
,J)50 as it can be checked directly on Eq.~3!.

Because of the symmetries in transition rates, various m
ments of theA-population size can be computed without e
plicitly solving the master equation. The ensemble aver
reads

d^n&/dt5(
n

@W1~n!2W2~n!#P~n,t !50. ~4!

Thus the mean population size will remainn0. The second
moment reads

d^n2&/dt5(
n

$2n@W1~n!2W2~n!#1@W1~n!

1W2~n!#%P~n,t !5
m

J21
$22^n2&12J^n&%.

~5!

The variance is thuss2(t)5^n2&2^n&25n0(J2n0)(1
2e22t) wheret5mt/(J21) is the rescaled dimensionles
time. The probability distribution converges to the stationa
one ont'1 time scale. This is equivalent to stating that
this closed neutral ecosystem, a population either goes
tinct or dominant.

The important fact to note is that the evolution equation
thekth moment does not involve any moment higher thank.
Therefore moments of arbitrary order can be obtained
actly and without any moment closure approximation. T
feature will remain as we will add more and more ingredie
to the model.

The ecosystem~termed community! need not be isolated
and can receive migrants from an outside pool~metacommu-
nity!, which we suppose to be extremely large. The class
picture is that of an island not far from the shore of a con
nent. Then, when a local individual dies, it can either
replaced by a local or by a migrant one. The probability p
unit time forA to increase its size fromn to n11 is that one
organism not belonging toA dies and is replaced either by
local or migrantA individual. Calling xA the proportion of
As in the metacommunity, andm the probability that the
replacement is from migrants~of course, the same for al
species! the transition rates read

W1~n!5m~J2n!F ~12m!
n

J21
1mxAG , ~6!

W2~n!5mnF ~12m!
J2n

J21
1m~12xA!G . ~7!

As before, the evolution equation of a moment does not c
tain higher order ones and can be obtained as in Eqs.~4! and
~5!. The ensemble average iŝn(t)&5(n02JxA)e2mmt

1JxA and converges to its value in the metacommunity. T
variance converges to
2-2
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s2~`!5JxA~12xA!
J2m

122m1mJ
.

III. NEUTRAL ECOLOGY AT dÄ1

Until now we have assumed that an individual in the e
system can be replaced by any other one. The ecosyste
however spatially extended, and the replacement probab
should decrease with the distance between individuals.
not hard to generalize the formalism developed above: div
the space into patches ofJ individuals, each patch commu
nicating with the neighboring ones. In this paper we w
consider the spatially infinite ecosystem. Physically, the s
of a patch is of the order of the average distance to wh
trees send their seeds. An individual dying in a given pa
can then be replaced by the descendant of a local one
probability (12m), or by a migrant from the immediat
neighbor patches with probabilitym. Transition rates for the
patchi to change itsA-population size fromni to ni61 is an
immediate generalization of Eqs.~6! and ~7!

W1~ni !5m~J2ni !F ~12m!
ni

J21
1

m

2J
~ni 211ni 11!G ,

~8!

W2~ni !5mniF ~12m!
J2ni

J21
1

m

2J
~2J2ni 212ni 11!G .

~9!

If there is no migration (m50), theA population in each
patch either goes extinct or dominant. We will see that
lowing communication between patches generalizes this
dency: broader and broader ensemble of connected pa
will go extinct or dominant together~see Fig. 1!.

Various moments~the mean and correlations! can be ex-
tracted without major difficulties from the master equatio
As before, no moments higher thank is involved in the com-
putation of thekth moment. The average reads

~d/dt!^ni&52^ni&1~^ni 21&1^ni 11&!/2, ~10!

wheret5mmt is the dimensionless rescaled time. The av
age thus obeys a simple diffusion equation. Taking homo
neous initial conditions of all patches having exactlyn0 A
organism att50 @i.e., P(n;t50)5)ni

dni ,n0
], we see that

the average remains constant.
The equations for the correlationsuk5^nini 1k&

2^ni&^ni 1k& are less trivial and read

~d/dt!u0522~11a!u012~12b!u11K, ~11!

~d/dt!uk522uk1uk211uk11 ~k.0!, ~12!

wherea5(12m)/m(J21), b51/J and K52(a1b)n0(J
2n0). Note that because of the homogeneous initial con
tions,uk(t50)50.

Before going to the details of the solution, let us note
few facts. First, ifm→0, the above equations uncouple,u0
converges ton0(J2n0) for t→` where all other correla-
06191
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tions remain 0: patches become independent and in e
patch, the population either goes extinct or dominant. To
that, restore the real timet by multiplying Eqs.~11! and~12!
by m and letm→0. Second, formÞ0, the above equation
possess a homogeneous stationary~HS! solution un5n0(J
2n0). This corresponds to specieA invading all the space o
going extinct everywhere. Whether the actual solution c
verges to the HS one is a question of dimension.

To solve Eqs. ~11! and ~12! let us note thatIn(t)
5exp(22t)In(2t), whereI n is the modified Bessel function
is a solution of the bulk equations~12! @but not of Eq.~11!#.
Therefore we look for solutions of the form~for details, see
the Appendix!

un~t!5E
0

t

e22sI n~2s! f ~t2s!ds, ~13!

where f is a function to be determined. One can check
direct differentiation that the above form is a solution of t
bulk Eqs.~12! for arbitrary~and reasonably regular! function
f. Plugging Eq.~13! into Eq. ~11! allows one to find an inte-
gral equation forf:

f ~t!522E
0

t

e22s@aI 0~2s!1bI 1~2s!# f ~t2s!ds1K.

~14!

This equation is solved by the usual Laplace transform,
we finally get, for the Laplace transform of correlations,

ũn~v!5
K

v

Ĩn~v!

112aĨ0~v!12bĨ1~v!
~15!

5
1

zn

z2

~z21!2

K

z212az12b21
, ~16!

where In(t)5exp(22t)In(2t), Ĩn(v) is its Laplace trans-
form andv5z11/z22. The variablez is a shorthand nota
tion to avoid writing complicated combinations ofv and
Av(v14) on the right hand side of Eq.~16!. The validity of
Eqs. ~15! and ~16! can be checked directly on the Laplac
transform of Eqs.~11! and ~12!.

Without computing the inverse Laplace transform we c
gather much information from Eq.~16!. As v→0, the lead-
ing terms in the development ofũn(v) read~for n2!1/v)

ũn~v!5n0~J2n0!F 1

v
2

C1n

Av
G1O~1!, ~17!

where C is a constant. This implies that ast→`, un(t)
'n0(J2n0)@12(C1n)/Apt# for n2!t. All correlations
converge to thesamestationary value, implying that specie
aggregate into bigger and bigger clusters.

In d51, the large time approximation ofun(t) can even
be extended uniformly to alln ~see the Appendix!
2-3
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un~t!512erfS n

2At
D 2

12b

a1b

1

Apt
expS 2

n2

4t D , ~18!

which, of course, reduces to Eq.~17! for n2!t.
Finally, the inverse Laplace transform~see the Appendix!

gives the explicit and exact time dependent correlations

un~t!5e22t(
k51

`

akI n1k~2t!, ~19!

where

ak52n0~J2n0!F12
1

2
~z1

k1z2
k!2

12b

z12z2
~z1

k2z2
k!G

and z1,2 are the roots ofz212az12b2150. Figure 2
shows correlations computed from a numerical simulation
the neutral model at one dimension and its comparison to
theoretical expressions Eq.~18! and Eq.~19!, where only the
16th first terms of the series~19! have been computed.

IV. NEUTRAL ECOLOGY AT HIGHER DIMENSIONS

A one dimensional ecosystem can be one along the s
of an island or the bed of a river. Most often however, e
systems are two dimensional. As the explicit Laplace tra
forms of products of Bessel functions are not known,
cannot exhibit an analytical form for correlations as in E
~19!. But the limit for large time, and its important implica
tion on whether clustering occurs or not are not hard to co
by. Expressions~8!, ~9! and ~11!, ~12! easily generalize to
higher dimension, where the summation has to be taken
all the neighbors in thed-dimensional space. The solution o
the correlation equations can then be sought in the s
manner as above as an integral equation. Atd52, we have,
for the Laplace transform of correlations,

FIG. 2. Numerical simulation and comparison to theoretical
sults of thed51 neutral model for an ecosystem composed ofN
553105 patches ofJ510 individual wherem50.75 and m
5231027. A maximum of 531010 death and replacement even
have occurred. In both figures, solid lines represent theoretical
ues and dots are computed from the numerical simulation.~a! Cor-
relationsun(t) as a function oft for n50,2,4,8,16, and 32.~b!
Correlationsun as a function of their indexn and normalized byu0

for various timest521.13(1,4,9,16,25,36). Dashed curves: lon
time approximation~18! ~only the last four, where time is larg
enough for this approximation to be valid, are displayed!.
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ũm,n~v!5
K

v

Ĩm,n~v!

112aĨ0,0~v!12bĨ0,1~v!
, ~20!

where Im,n(t)5exp(22t)Im(t)In(t) and Ĩm,n(v) is its
Laplace transform. For large time,Im,n(t);1/t and there-
fore Ĩm,n(v) diverges logarithmically asv→0. The leading
terms in the development of the correlations are

ũm,n~v!'n0~J2n0!F 1

v
1

C1 log r

v logv G , ~21!

where r 25m21n2.0 and r 2!1/v. For m5n50, the
above expression is of the form (1/v)(11C8/ logv) ~see the
Appendix!. Thus, as t→`, um,n(t)'n0(J2n0)@11(C
1 log r)/logt# ~for r 2!t). Again, as in thed51 case, all
correlations converge to thesamevalue for large times: The
clustering occurs also at two dimension, but on a mu
slower ~logarithmic! pace. Thed52 clustering is illustrated
in Fig. 1.

The clustering phenomenon atd53 is different and
reaches an equilibrium. To be precise, at three dimens
following the same line of arguments as above, we have

ũm,n,p~v!5
K

v

Ĩm,n,p~v!

112aĨ0,0,0~v!12bĨ0,0,1~v!
,

whereIm,n,p(t)5exp(22t)Im(2t/3)I n(2t/3)I p(2t/3).
To see the mathematical difference below and above

critical dimension 2, we should journey back and forth
Laplace space. The solutions at all dimensions are of
same formĨn(v)/Ĩ0(v). At d dimension, the leading term in
In(t) for large times is;t2d/2, and is independent ofn.
This, At d<2, implies the divergence ofĨn(v) for v→0
with a leading termindependentof n. The leading term in
the development ofun therefore will also be independent o
n and all correlations converge to the same value.

At d53, for large time, I m,n,p(t);t23/2: its Laplace
transform Ĩm,n,p(v) does not diverge anymore forv→0.
The development of the correlations reads

ũm,n,p~v!5
Cm,n,p

v
1O~1!

and thus the leading termdependson the index. For large
times, correlations converge to anonhomogeneousstationary
solution:um,n,p(t5`)5Cm,n,p where

Cm,n,p5CteE
0

`

Im,n,p~ t !dt. ~22!

Moreover, it is not difficult to show~see the Appendix! that
for large r ~where r 25m21n21p2), Cm,n,p;1/r . Because
of this slow 1/r decrease in correlations, no characteris
cluster length scale can be defined at equilibrium. The
sence of characteristic length scale means that when loo
at various scales of the ecosystem~by using different mag-
nifications!, one will always see the same picture or altern

-

l-
2-4
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CLUSTERING IN NEUTRAL ECOLOGY PHYSICAL REVIEW E68, 061912 ~2003!
tively, one will not be able to determine the magnificati
used by simply looking at a picture. If we represent o
specie by black and all others by white, a big cluster of bla
will be seen filled with smaller clusters of white, themselv
filled with smaller clusters of black and so on. This is f
example the classical picture of power law domain size d
tribution at the critical point in a second order phase tran
tion.

V. CONCLUDING REMARKS

Let us summarize the main results of this paper. Be
with an ecosystem where various species are dispersed
mogeneously and allow them to evolve according to the n
tral, zero-sum rules exposed above. Each species will
tend to self-organize into clusters, and the size of these c
ters will grow with time, asAt in the one dimensional cas
~such as an ecosystem along the bed of a river! and as logt
in the two dimensional one. If enough time is allocated, o
specie’s cluster will eventually reach the size of the syst
and this specie will dominate the whole ecosystem. Ther
no need to invoke inter and/or intra species social inter
tions between individuals; the stochasticity of birth and de
events is enough to provoke clusterization. Note that
does not mean that social interactions in real ecosystem
not exist or do not provoke organization into clusters, b
only that their importance has to be compared to cluste
due to stochasticity. Note also the consequence of this m
for the relative importance of aggregation ind51 compared
to d52. In the former one, aggregates grow much fas
than in the latter. This implies thatd51 ecosystems will be
much more likely to be dominated by a single specie th
d52 ones.

The case ofd53 systems is different. Let us first not
that these kinds of ecosystems are not common. They
tainly do not exist for terrestrial species, and even mar
species such as fish tend to remain within a layer of sm
thickness compared to their horizontal expansion. Ind53,
species will also tend to self-organize into clusters, but
one will become dominant. An equilibrium will be reache
where big clusters break into small ones and small ones
to form bigger ones. Note however that the difference
tweend52 andd53 is due to our hypothesis of spatial
infinite system. If the system is finite, even ad53 system
will be dominated by a single specie if enough time is al
cated. The qualitative difference between dimensions<2
and .2 is not an unusual feature in problems related
diffusion: the probability for a Brownian particle to com
back to the origin isÞ0 at d<2 and zero otherwise.

Two phenomena, however, will limit the large time b
havior of this model and the complete dominance by o
specie atd,3. The first hypothesis of the neutral model
that environmental parameters do not change over time.
assumption can be reasonable for short~on geological scale!
period of time. But we know that there are global chang
like glaciation periods where environmental parameters
change in radical ways. The time scale for these glo
changes will put a cutoff for large time behavior of the ne
tral model.
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Another phenomenon which controls the long term b
havior of an ecosystem is mutation. Mutations give rise
the appearance of new species and provoke the extinctio
the old ones. As noticed by Hubbell, they can be easily
cluded in the neutral model by assuming a unique muta
rate for all individuals in the ecosystem~whatever the specie
to which they belong!. Let us calln the probability for the
recently duplicated individual to be of a new specie. Th
for example, the rateW1(n) in Eq. ~1! has to be multiplied
by (12n). All the methods and results of this article can
generalized to take into account mutations. The main resu
that the average will decrease uniformly:̂ n(t)&
5n0exp(2nt): whennÞ0, the staten5J is not an adsorb-
ing one anymore, as new species can appear even if one
already taken over the whole ecosystem. Correlations~or at
least their Laplace transform! in spatially extended system
can be computed in the same way. For example, at one
mensions, correlations read

un~ t !5e22t(
k51

`

bkI n1k„2~12n!t…

and converge to 0 for large time@as exp(2nt)]. The mutation
probability is however very small~in the context of neutral
models for tropical forests it has been estimated to;10211

@7#!. Therefore its effect on the result of the preceding s
tions is again to put a cut off for large times. It is beyond t
aim of this paper to study the effect of mutations. The eq
librium b diversity ~the probability for two individuals at
distancex to be of the same species! has been computed
elegantly@8,9#. As n is extremely small, it is not clear, how
ever if such an equilibrium can be reached before a perio
global change.

In conclusion, we have shown that in the ecological ne
tral model proposed by Hubbell, species form aggrega
which in average grow with time. The model we have trea
is discrete ~for individuals! and spatial. Both of these as-
pects, despite their tremendous importance, are often
glected in ecological modeling@10#. One of the reasons be
hind this neglect is the difficulty of getting exact results fro
these kind of models, even when approximation schemes
moments closure@11# are used. The Hubbell model possess
the particular beauty of allowing the computation of any m
ment without the invocation of moments of higher order.

Since its apparition, the Hubbell model has stimulated
heated debate both on the validity of its hypotheses@12,13#
and its accuracy to describe field data@5,14#. One aim of this
article is to provide ecologists with analytical tools helpin
to evaluate various aspects of this model.
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APPENDIX: MATHEMATICAL DETAILS

~a! Solving the correlation equations.The integral method
we used in Sec. III to solve the correlation equations i
variation of matrix exponentiation. The solution of the line
2-5
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system du/dt5(A1B)u1K involves the matrix exp(A
1B)t. In our case,A is the tridiagonal diffusion matrix andB
is the ~almost everywhere! hollow matrix B0,0522a, B0,1
522b and Bm,n50 for all other indexes. The exponenti
of the sum of two matrices~whether they commute or not! is
given by

e(A1B)t5eAt1E
0

t

eA(t2s)Be(A1B)sds.

This is known in quantum mechanics as the Dyson formu
As expAt can be computed exactly andB is nearly empty,
the components of exp(A1B)t can be shown to obey integra
equations of the type~14!. One then has to perform som
matrix vector multiplication to obtain the correlations. Th
integral method we have used is a more compact versio
this matrix exponentiation, especially when working with d
mensions higher than one.

(b) Large time behavior of correlations.The large time
behavior of correlations can be deduced from the limit
form of the Laplace transform as explained in the text.
order to derive the amplitude of convergence speed, i.e.,
numerical coefficient in front of 1/At or 1/logt and its de-
pendence onn, we have to perform some more calculation

In d51, expression~16! can be used directly to comput
the limit for v→0 @we will omit the factorn0(J2n0)]

ũn~v!'
1

v F12
12b

a1b
AvGexp~2nAv!. ~A1!

The inverse Laplace transform of this expression is kno
and gives expression~18!. This method cannot be extende
to d52 where the exact Laplace transform ofIm,n(t) is not
known. But we can note thatIn(t) is the solution of the
discrete diffusion equation, the continuous version of wh
is

] tc5Dc1d~r !d~ t !.

So for large t ~when the diffusion front has progresse
enough and the importance of spatial discreteness is n
gible! a very good approximation forIn(t) is

1

2Apt
exp~2n2/4t!,

which possesses the Laplace transform exp(2nAv)/2Av. In
fact, we could have plugged this expression directly into
~15! to obtain Eq.~A1!.

This method can be generalized tod52. For r 25m2

1n2Þ0, we haveIm,n(t)'exp(2r2/2t)/2pt which can be
Laplace transformed toĨm,n(v)5K0(rA2v) where K0 is
i

06191
.

of

he

.

n

h

li-

.

the modified Bessel function. Forr 50, Ĩ0,0(v) can be com-
puted explicitly and reads 2Ek„4/(21v)2

…/p(v12) where
Ek(m) is the complete elliptic integral of the first kind. Th
limiting form of these expressions forv→0 is Ĩ0,0(v)'
(21/p)log(v/16), andĨm,n(v)'Ĩ0,0(v)2 log(zr) where z
is a numerical factor ('1.78) andr !1/Av. Plugging these
into Eq. ~20! gives the result~21!.

(c) Computing the exact inverse Laplace transform
correlations. The Laplace transform of In(t)
5exp(22t)In(2t) is Ĩn(v)5(1/zn)z/(z221), where v5z
11/z22 is the Joukowski transform. The expression~15! for
the correlations can be developed in Laurent series:

ũn~v!5
1

zn

z

z221
(
k51

`
ak

zk

and thus,un(t) is a sum of Bessel functions times an exp
nential as proposed in Eq.~19!. Alternatively, expression
~19! can be plugged directly into Eqs.~11! and ~12! and the
coefficientsak computed through the recurrence relationa1
5K, a252(12a)K and ak11522aak2(2b21)ak21
12K. This recurrence relation is a consequence of relati
between Bessel functions and their derivatives. The inve
Laplace transform can also be computed directly, if one u
the generating functions of modified Bessel function
exp(zcosu)5I0(z)12(k51Ik(z)cos(ku). All these methods are
of course, equivalent.

(d) Power law decrease in correlations at d53. As a
shorthand demonstration, we can notice that the function

Cm,n,p~t!5KE
0

t

Im,n,p~s!ds

is the solution of the discrete diffusion equation with
source at the origin, i.e., the three dimensional equivalen
Eqs.~11! and ~12! wherea5b50 andKÞ0 ~for more de-
tails, see@4#!. The continuous version of diffusion equatio
with pointlike source is written as

] tc5Dc1Kd~r !. ~A2!

The stationary solution~reached fort→`) of the above
equation obviously decreases as 1/r . Thus, Cm,n,p
5Cm,n,p(`);1/r . We have also checked numerically the v
lidity of 1/r decrease over three decades.

We should make a remark here. At one or two dime
sions, the solution of the diffusion equation with a source
the origindiverges~asAt and logt). a andb act in Eqs.~11!
and~12! as singular perturbations, killing all divergences.
d53, there is no more divergence of the solution, anda and
b act as regular perturbations.
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