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Analytical solution of a neutral model of biodiversity
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The unified neutral model of biodiversity proposed by S. Hubbell is solved analytically: The distributions of
species abundance in the metacommunity and in a local community are calculated exactly as a function of
speciation and migration rates and of the size of the community. In the limit of large population sizes the
densities of species of given relative abundance are found to be given by universal functions depending only
on two parameters.
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One of the major goals of biodiversity theories is to e
plain the distribution of relative species abundance in e
logical communities. Recently S. Hubbell has given an
tensive description of a unified neutral theory of biodivers
@1# relevant for the description of taxons where trophica
similar species such as trees in forests or benthic ma
invertebrate communities are competing for resources
this framework the population dynamics obeys azero-sum
game: large landscapes are essentially biotically satura
with individuals and every death is rapidly followed by th
birth of an individual belonging to the same or to a differe
species. The time dependence of relative species abund
in a given community~an ‘‘island’’! is then the result of both
internal competition and immigration from outside~the
‘‘metacommunity’’!. The second major Hubbell’s hypothes
is that the game rules obey a principle ofneutrality: all the
species are equal competitors with the same per ca
chances of dying and reproducing.~The plausibility of such
an assumption relies on the fact that bad competitors h
been eliminated by Darwinian selection.! For such a neutra
theory, population dynamics is essentially a stochastic p
cess and is expected to obey universal laws depending
on a few number of parameters independent of specific p
erties of the species involved. This is at variance with
so-called ‘‘ecological niche theories’’ for which the particul
fitness of a given species to a particular environment is
predominant feature. The neutral model provides a ‘‘null h
pothesis’’ to which actual data can be compared and the
fluence of other parameters can be assessed. In this res
various aspects of neutral models have been reviewed
Bell @2#. Since its apparition, this model has generated c
siderable debate~see, for example, a critical review b
Riklefs @3# Hubbell’s reply @4#, and @5# and references
therein!.

In addition to immigration, the species evolution depen
also on speciation. Mutations, although being rare eve
drive the long term drift of large communities. In Hubbell
theory they are considered as the fundamental proces
determining the equilibrium distribution of species abu
dance in themetacommunity.He introduced a dimensionles
parameteru ~the ‘‘fundamental biodiversity number’’! pro-
portional to the product of the mutation raten with the total
number of individuals in the metacommunityJM ~the time
scale being fixed by the average lifetime of individuals!. The
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relative species abundance in a local community depe
essentially on its sizeJ, the immigration rate from the meta
community m, and the mutation raten ~through u). Hub-
bell’s formulation of the problem can only be solved throu
numerical calculations. The purpose of the present paper
report on anexact analytical solutionof the model which
gives directly the equilibrium distributions of species abu
dances both in the metacommunity and in the local comm
nity.

Let us first consider the metacommunity dynamics un
the influence of mutations. We assume that the death o
individual in a metacommunity of sizeJM is immediately
followed by the birth of another one. The lifetimes and t
mutation rates are assumed to be the same for all the sp
according to the neutral and the zero sum rules of Hubbe
model. In the continuous time limit, the probabilityPk(t),
where k individuals belonging to the same species a
present at timet, obeys a simple master equation

dPk /dt5Ak21Pk211Ck11Pk112~Ak1Ck!Pk , ~1!

where the coefficientsAk and Ck are the increase and de
crease rates of a species of abundancek, respectively, ex-
pressed in units of individual lifetime. These coefficients a
readily found to be given by@1#

Ak5
~JM2k!k

JM~JM21!
~12n!, ~2!

Ck5
k@JM2k1~k21!n#

JM~JM21!
. ~3!

The increase rateAk , for example, is proportional to the
probability of death of an individual which does not belon
to the considered species (JM2k)/JM times the probability
of birth of an individual which belongs to the considere
speciesk/(JM21) times the probability of no mutation (1
2n).

Let ^fk(t)&M designate the average number of species
abundancek. In the long time limit, the species which con
tribute to^fk(t)&M are those which have appeared by mu
tion at an earlier time (t2u) and have reached the sizek at
time t. As all species are assumed to be equivalent, they h
©2003 The American Physical Society02-1
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the same probabilityp(u)du5ndu to appear between time
u andu1du . The time evolution of̂ fk(t)&M is then simply
given by

^fk~ t !&M5E
0

t

Pk~ t2u!p~u!du5nE
0

t

Pk~u!du, ~4!

wherePk(t) is the solution of Eq.~1! with initial condition
Pk(0)5dk,1 . Using Laplace transformation, the equilibriu
distribution of the number of species with a given abunda
is then found to be~see the Appendix!

^fk&M5
uG~JM11!G~JM1u2k!

kG~JM112k!G~JM1u!
, ~5!

whereu is defined by

u5
~JM21!n

12n
~6!

This definition of u coincides~within a factor of 2! with
Hubbell’s universal biodiversity number in the limitJM@1
and n!1. One can easily check that^fk&M agrees exactly
with the expression calculated at smallJM by Hubbell’s
method. The total average number of species^S&M

5(k51
JM ^fk&M can be put under the form

^S&M5 (
i 50

JM21

u/~u1 i ! ~7!

in agreement with Ref.@6#. Typical distributions correspond
ing to Eq. ~5! are shown in Fig. 1 using Preston plots~his-
togram of the number of species per octave of abundan!.
They are in perfect agreement with our numerical simu
tions of the problem.

FIG. 1. Preston plot~binned by octave! of metacommunity spe-
cies distribution obtained by Monte Carlo simulation: at each ti
step, an individual is removed from the community and replac
with probability n by a new mutant, or with probability (12n) by
an existing individual replicate.JM51024. Solid lines represen
theoretical species distribution, as given by Eq.~8!.
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For largeJM and finite u, gM(v)5 limJM→` JM^fk&M ,
which represents the density of species of relative abunda
v5k/JM , reads

gM~v!5
u~12v!u21

v
. ~8!

This last result could have been obtained directly from
continuous reformulation of the evolution equation ofPk(t)
~Fokker–Planck equation!, analogous to the approach take
by Malécot @7#.

Let us now consider the distribution of species in a lo
community of sizeJ in contact with the above describe
metacommunity. IfJ!JM mutations within the community
can be neglected and the equilibrium distribution in t
metacommunity is negligibly modified by migrations from
towards the community. Let us now consider the probabi
Pn(t;v) of finding a given species with abundancen in the
community knowing that this species has relative abunda
v5k/JM in the metacommunity. Because of the large size
the metacommunity compared to the community,v can be
considered constant over time scales relevant for the ev
tion of the community. Thus,Pn(t;v) obeys a differential
equation similar to Eq.~1! but with coefficientsAn and Cn
given by

An5
~J2n!

J F n

J21
~12m!1mvG , ~9!

Cn5
n

J FJ2n

J21
~12m!1m~12v!G . ~10!

The equilibrium solutionPn(v) can be calculated~see the
Appendix! and it takes a concise form by introducing
rescaled immigration parameterm defined in a way similar
to u

m5
~J21!m

12m
, ~11!

Pn~v!5S J

nD ~mv!n@m~12v!#J2n

~m!J
. ~12!

In this expression (n
J) is the binomial coefficient and

(a)n5G(a1n)/G(a) is the Pochhammer coefficient@8#.
Note thatPn(v) is a polynomial of degreeJ in v which can
be conveniently written as

Pn~v!5v(
k51

J21

f nk~12v!k, ~13!

where the coefficientsf nk depend onJ andm.
The important point is now that Eqs.~5! and ~12! can be

combined to give the distribution of species^fn&C in the
local community:

^fn&C5 (
k51

JM

Pn~k/JM !^fk&M . ~14!

e
,
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This equation is the main result of the present paper. It
presses the way the internal population dynamics of an is
is modified by immigration from the environment. In th
extreme cases, ifm51, ^fn&C5^fk&M ~complete ‘‘thermal-
ization’’! and if m50, the isolated community undergoe
total dominance by a single specie as discussed below.

The proof of Eq.~14! can be derived in the following way
Let PjC(n) be the probability that a given speciej has an
abundancen in the community andPjM (k) the probability
that this same specie has an abundancek in the metacommu-
nity. SincePn(v) has the meaning of a conditional probab
ity, one has

PjC~n!5 (
k51

JM

Pn~k/JM !PjM ~k!

so that, ifs is the total number of species

^fn&C5K (
j 51

s

dn,njL
C

5(
j 51

s

PjC~n!

5 (
k51

JM

Pn~k/JM !(
j 51

s

PjM ~k!5 (
k51

JM

Pn~k/JM !^fk&M .

In the limit JM→`, ^fn&C can be computed using Eq
~8! and ~13!

^fn&C5E
0

1

Pn~v!gM~v!dv5 (
k51

J21

f nku/~u1k!

~n<J21!. ~15!

Preston plots corresponding to this result are shown
Fig. 2. Our analytical results are again in very good agr
ment with numerical simulations. The existence of a ma
mum in these curves is a feature often observed in natur
corresponds to an intermediate situation between full do
nance of a single specie in absence of immigration (m50)

FIG. 2. Preston plot of local community species distributi
obtained by Monte Carlo simulation forJM51024, J5128, and 2
values ofm and u. Dashed lines represent theoretical species
tribution, as given by Eq.~14!.
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and full equilibrium with the metacommunity (m5`). Typi-
cal ecosystems for which the distribution of species ab
dance has been experimentally measured and can be
described by the present model are closed canopy forest~in
Malaysia and Panama! @9# as cited in Ref.@1# .

The average total number of species in the local comm
nity ^S&C can be put in a form which generalizes Eq.~7! as
follows:

^S&C5 (
i 50

J21
u

~u1 i !~m!J
(

j 5 i 11

J

a jm
j , ~16!

wherea j are the coefficients of the polynomial expansion
the Pochhammer coefficient (m)J5( j 51

J a jm
j .

For large J, the density of species gC(v)
5 limJ→` J^fn&C in the continuum limit (v5n/J) is

gC~v!5muE
0

1S m

muD ~12v!mu21vm(12u)21uudu.

~17!

In this equationm.mJ is considered as finite whenJ→`.
This equation describes the asymptotic behavior of la

local communities, as a function of only two parametersu
andm. Figure 3 showsvgC(v) for several values ofm. This
function which is normalized to 1, represents the probabi
density of finding an individual belonging to a species
relative abundancev. This figure clearly shows the cross
over from dominance at smallm to diversity at largem.
When m increases at constantu, vgC(v) approaches con
tinuously vgM(v). This is the full thermalization of the
community with the metacommunity when the immigratio
ratem approaches unity.

Equation~17! however must be used cautiously. Our n
merical simulations show that species distribution depe
critically on the ratioJ/JM when bothJ and JM are large.
This emphasizes the importance of discrete formula@Eq.
~14!#.

-

FIG. 3. Probability density of finding an individual in a speci
of relative abundancev in the local community forJ→` @Eq.
~17!#. u55, and various values ofm as indicated on each curve
m5` corresponds to the metacommunity distribution.
2-3
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To conclude we have derived an analytical solution
Hubbell’s ‘‘unified’’ model of biodiversity: exact expression
for the equilibrium distributions of species abundance a
for the total number of species have been found for a co
munity and a metacommunity of finite sizes. In the limit
large population sizes we have shown that the equilibri
distributions of species are described by universal functi
depending only on two scaling parametersu andm related to
the mutation and migration rates, respectively. The mo
discussed above is essentially ‘‘zero dimensional,’’ wh
means that no spatial inhomogeneous distribution of the
cies has been considered. There is an obvious intere
extending the present results to one- and two-dimensio
systems: important results have been obtained for the p
ability of sampling the same species at two different lo
tions as a function of their separation, both theoretica
@7,10# and from field measurements@11#. The present work
opens the way to further analytical results in that directi
specially for deriving the full species distribution similar
Eq. ~14!.

APPENDIX

The set of master equations~1! can be written under a
matrix form:

dP/dt5HP

with P a (J11) dimensional vector corresponding toPn(t)
(n50 to J) andH a matrix defined by

H5F 2A0 C1

A0 2~A11C1! C2

A1 • •

• • CJ

AJ21 2CJ

G .

Using the Laplace transformationQ(E)5L@P(t)# and de-
fining the matrixG(E)5(EI2H)21 one has

P~ t !5L21@G~E!#P~0!.

The long time behavior ofP(t) is obtained by considering
the limit E→0 of G(E).

1. Metacommunity

The probabilityPk(t) that a specie which has appeared
time t50 has an abundancek at time t is given by

Pk~ t !5L21@Gk1~E!#.

According to Eq.~2!, A050. Using a recurrence method on
finds that, whenE→0:

G01~E!51/E1O~1!,

G11~E!51/C11O~E!,
06190
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Gk1~E!5
) j 51

k21Aj

) j 51
k Cj

1O~E! ~1,k<JM !.

Therefore, whent→`, Pk(t)→dk,0 : every specie disap
pears by mutation. However, as new species appear con
ously, the population distribution goes to a well-defined s
tionary value which can be calculated by taking the Lapla
transform of Eq.~4!

^fk&M5nL21@Gk1~E!/E#E50

and one gets

^f1&M5n/C1 ,

^fk&M5n
) j 51

k21Aj

) j 51
k Cj

~1,k<JM !.

Using the definition ofu @Eq. ~6!#, the coefficientsCj in Eq.
~2! can be written as

Cj5
j ~JM2 j 1u!

JM~JM21!
~12n!

so that one gets:

^fk&M5
u

k)j 51

k
~JM2 j 11!

~JM2 j 1u!
5

u

k

G~JM11!G~JM1u2k!

G~JM1u!G~JM112k!
,

which is Eq.~5!. One can easily check that this distributio
satisfies correctly the sum rule:

(
k51

JM

k^fk&M5JM .

Using this relation, the total average number of species in
metacommunitŷS(JM)&M5(k^fk&M can be shown to obey
the recurrence relation:

^S~JM11!&M5^S~JM !&M1
u

u1JM
.

Using ^S(1)&M51, one gets Eq.~7!.

2. Community

In this caseA0Þ0. In the limit E→0 one then finds tha

Gnm~E!5
Mn

E(n50
J Mn

1O~1!,

with

Mn5 )
j 50

n21

Aj )
j 5n11

J

Cj ~0,n,J!,

M05)
j 51

J

Cj ,
2-4
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MJ5)
j 50

J21

Aj .

Introducingm as defined in Eq.~11! into the coefficientsAn
andCn given in Eqs.~9! and ~10!, one gets

An5
m

Jm
~J2n!~n1mv!,

Cn5
m

Jm
n@J2n1m~12v!#.

When t→`, the probabilityPn(t;v) goes to a stationary
valuePn(v) given by

Pn~v!5
Mn

(n50
J Mn

.

The denominator of this expression is found to be indep
dent ofv and the probabilityPn(v) can be written as
d
J,

06190
-

Pn~v!5
) j 50

n21~J2 j !~ j 1mv!) j 5n11
J j @J2 j 1m~12v!#

) j 50
J21~J2 j !~ j 1m!

~0,n,J!,

which finally leads to Eq.~12!. Pn(v) is a polynomial of
degreeJ which can be written as

Pn~v!5vS J

nD m

~m!J
)
j 51

n21

@m1 j 2m~12v!#

3 )
j 50

J2n21

@m~12v!1 j #,

which is of the form Eq.~13! and defines the coefficientsf nk
in that equation.
,
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