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Analytical solution of a neutral model of biodiversity

M. Vallade and B. Houchmandzadeh
Laboratoire de Spectronée Physique (CNRS), UMR 5588, Universiteseph Fourier, BP 87,
38402 Saint Martin d'Hees Cedex, France
(Received 13 February 2003; revised manuscript received 4 September 2003; published 11 December 2003

The unified neutral model of biodiversity proposed by S. Hubbell is solved analytically: The distributions of
species abundance in the metacommunity and in a local community are calculated exactly as a function of
speciation and migration rates and of the size of the community. In the limit of large population sizes the
densities of species of given relative abundance are found to be given by universal functions depending only
on two parameters.
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One of the major goals of biodiversity theories is to ex-relative species abundance in a local community depends
plain the distribution of relative species abundance in ecoessentially on its sizé, the immigration rate from the meta-
logical communities. Recently S. Hubbell has given an excommunitym, and the mutation rate (through ). Hub-
tensive description of a unified neutral theory of biodiversitybell's formulation of the problem can only be solved through
[1] relevant for the description of taxons where trophically numerical calculations. The purpose of the present paper is to
similar species such as trees in forests or benthic maringeport on anexact analytical solutiorof the model which
invertebrate communities are competing for resources. I@ives directly the equilibrium distributions of species abun-
this framework the population dynamics obeygero-sum dances both in the metacommunity and in the local commu-
game large landscapes are essentially biotically saturatedity.
with individuals and every death is rapidly followed by the  Let us first consider the metacommunity dynamics under
birth of an individual belonging to the same or to a differentthe influence of mutations. We assume that the death of an
species. The time dependence of relative species abundanigglividual in a metacommunity of sizéy is immediately
in a given communityan “island”) is then the result of both  followed by the birth of another one. The lifetimes and the
internal competition and immigration from outsid¢ghe  Mmutation rates are assumed to be the same for all the species
“metacommunity”). The second major Hubbell’'s hypothesis according to the neutral and the zero sum rules of Hubbell’s
is that the game rules obey a principler@utrality. all the ~ model. In the continuous time limit, the probabili(t),
species are equal competitors with the same per capitehere k individuals belonging to the same species are
chances of dying and reproducin@he plausibility of such ~ present at time¢, obeys a simple master equation
an assumption relies on the fact that bad competitors have
been eliminated by Darwinian selectipi:or such a neutral dP/dt=A,_ 1P 1+ Cy 1Pii1— (Ak+CP, (D
theory, population dynamics is essentially a stochastic pro-
cess and is expected to obey universal laws depending onlyhere the coefficient®\, and C, are the increase and de-
on a few number of parameters independent of specific progerease rates of a species of abundakicesspectively, ex-
erties of the species involved. This is at variance with thepressed in units of individual lifetime. These coefficients are
so-called “ecological niche theories” for which the particular readily found to be given bj1]
fitness of a given species to a particular environment is the
predominant feature. The neutral model provides a “null hy- (Iu—k)k
pothesis” to which actual data can be compared and the in- Ak=w—_1)(1— v), 2
fluence of other parameters can be assessed. In this respect, MM

various aspects of neutral models have been reviewed by K[ 3y —k+ (k—1) ]
p— M_ —

Bell [2]. Since its apparition, this model has generated con- = 3)
siderable debatdsee, for example, a critical review by Inu—1)

Riklefs [3] Hubbell's reply [4], and [5] and references

therein. The increase raté\,, for example, is proportional to the

In addition to immigration, the species evolution dependsgprobability of death of an individual which does not belong
also on speciation. Mutations, although being rare eventdp the considered speciedy(—k)/Jy times the probability
drive the long term drift of large communities. In Hubbell's of birth of an individual which belongs to the considered
theory they are considered as the fundamental process #peciesk/(Jy,—1) times the probability of no mutation (1
determining the equilibrium distribution of species abun-—v).
dance in themetacommunity-e introduced a dimensionless  Let (¢ (t))w designate the average number of species of
parameterd (the “fundamental biodiversity numbey”pro-  abundancé. In the long time limit, the species which con-
portional to the product of the mutation ratewith the total  tribute to(¢,(t) )y are those which have appeared by muta-
number of individuals in the metacommunifly, (the time tion at an earlier timet(~u) and have reached the siket
scale being fixed by the average lifetime of individgalthe  timet. As all species are assumed to be equivalent, they have
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For largeJ,, and finite 6, gM(w)zlimJM_,wJka)M,
which represents the density of species of relative abundance

w0 . w=k/Jy, reads
] 0(1—w)? !
30 . Im(@)=———. ()
= (0]
AE
o
Yok | This last result could have been obtained directly from the

continuous reformulation of the evolution equationRft)
(Fokker—Planck equatignanalogous to the approach taken
7 by Malecot [7].
1 Let us now consider the distribution of species in a local
community of sizeJ in contact with the above described
metacommunity. [fJ<Jy, mutations within the community
can be neglected and the equilibrium distribution in the
FIG. 1. Preston plotbinned by octaveof metacommunity spe- metacommunity is negligibly modified by migrations from or
cies distribution obtained by Monte Carlo simulation: at each timetowards the community. Let us now consider the probability
step, an individual is removed from the community and replacedp (t: ) of finding a given species with abundancén the
with probability » by a new mutant, or with probability (2») by community knowing that this species has relative abundance
an existing individual replicateJ,;=1024. Solid lines represent w=k/Jy in the metacommunity. Because of the large size of
theoretical species distribution, as given by ER). the metacommunity compared to the communitycan be
considered constant over time scales relevant for the evolu-
the same probabilitp(u)du=rdu to appear between times tjon of the community. ThusP,(t;») obeys a differential
uandu-+du. The time evolution of (1)) is then simply  equation similar to Eq(1) but with coefficientsA,, and C,,

given by given by
t t (J=n)| n
(D(V)m= OPk(t—u)p(u)du=v OPk(u)du, (4) A= 3 J_—l(l—m)"‘mw : 9
whereP,(t) is the solution of Eq(1) with initial condition _mJ-n _
P(0)= 6y 1. Using Laplace transformation, the equilibrium C”_J J—l(l m+ml-w)). (10
distribution of the number of species with a given abundance
is then found to bdésee the Appendjx The equilibrium solutiorP,(w) can be calculatetsee the
Appendi¥ and it takes a concise form by introducing a
6T (Iy+1)T (I + 6—K) rescaled immigration parametgr defined in a way similar
DIV TGy T 1= 00T (37 6)° ® tos
i . (J=1)m
where ¢ is defined by mw=— (11)
1-m
(JM_l)V J
- 1- _
0=—— (6) P ()= (o) [u(l=w)]y-p 12
n (m);

This definition of & coincides(within a factor of 2 with
Hubbell's universal biodiversity number in the limig,>1
and v<<1. One can easily check tha,), agrees exactly
with the expression calculated at smal, by Hubbell's
method. The total average number of speci€S)y

In this expression ) is the binomial coefficient and
(a),=I'(a+n)/T'(a) is the Pochhammer coefficied8].
Note thatP,(w) is a polynomial of degreé in » which can
be conveniently written as

=Eiﬁ1<q’>k)m can be put under the form -1
Po(w)=0, fu(l-ow), (13)
Iv—1 k=1
(Shw= ;O 61(6+1) (@) where the coefficient$,, depend onJ and .

The important point is now that Eq&) and(12) can be
combined to give the distribution of speciég,)c in the

in agreement with Ref6]. Typical distributions correspond- -
local community:

ing to Eq.(5) are shown in Fig. 1 using Preston pldgtss-
togram of the number of species per octave of abundance Iy
They are in perfect agreement with our numerical simula- (dn)c= E Pa(KIIw){( - (14)
tions of the problem. k=1
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FIG. 2. Preston plot of local community species distribution ~ FIG. 3. Probability density of finding an individual in a species
obtained by Monte Carlo simulation fdf,=1024,J=128, and 2  ©of relative abundance» in the local community forJ— [Eq.
values of and 6. Dashed lines represent theoretical species dis{17)]. #=5, and various values gf as indicated on each curve.
tribution, as given by Eq(14). pu =00 corresponds to the metacommunity distribution.

This equation is the main result of the present paper. It exand full equilibrium with the metacommunityu= ). Typi-

presses the way the internal population dynamics of an islangal ecosystems for which the distribution of species abun-

is modified by immigration from the environment. In the dance has been experimentally measured and can be well

extreme cases, i=1, (¢,)c={d)m (complete “thermal- described by the present model are closed canopy foiiests

ization”) and if m=0, the isolated community undergoes Malaysia and Panam#9] as cited in Ref[1] .

total dominance by a single specie as discussed below. The average total number of species in the local commu-
The proof of Eq(14) can be derived in the following way. nity (S)c can be put in a form which generalizes Kad) as

Let Pjc(n) be the probability that a given spegiehas an  follows:

abundancen in the community andPjy (k) the probability

that this same specie has an abundadnicethe metacommu- i ’ J.
nity. SinceP,(w) has the meaning of a conditional probabil- (S)c= 20 1)), j;rl aju’, (16)
ity, one has
I whereq; are the coefficients of the polynomial expansion of
Pic(n)= 2, Pu(k/Iy)Pju (k) the Pochhammer coefficienmj_zxleajm. _
k=1 For large J, the density of species ge(w)

. . =lim;_.J in the continuum limit w=n/J) is
so that, ifs is the total number of species 1= A dnle © )

s s Iy
= Hf ( ) 1— ) Lt =1yfqy,
<¢n>cz< 21 5n’nj> :'21 Pic(n) Jc(w)=pn o\ u (1-0)""
= c 1= (17
Im s Im ) ) _ ) o
=> P(kldy) > Pim(k)= > Pkl bim - In this equationu=mJ is considered as finite wheh-o.
k=1 =1 k=1 This equation describes the asymptotic behavior of large

local communities, as a function of only two parametérs
In the limit Jy—, (¢n)c can be computed using EQs. andu. Figure 3 showsagc(w) for several values of.. This
(8) and (13 function which is normalized to 1, represents the probability
density of finding an individual belonging to a species of
relative abundance. This figure clearly shows the cross-
over from dominance at smalk to diversity at largeu.
When v increases at consta®t wgc(w) approaches con-
(n<J-1). (15 tinuously wgy(w). This is the full thermalization of the
community with the metacommunity when the immigration
Preston plots corresponding to this result are shown imate m approaches unity.
Fig. 2. Our analytical results are again in very good agree- Equation(17) however must be used cautiously. Our nu-
ment with numerical simulations. The existence of a maxi-merical simulations show that species distribution depends
mum in these curves is a feature often observed in nature. tritically on the ratioJ/Jy, when bothJ and Jy, are large.
corresponds to an intermediate situation between full domiThis emphasizes the importance of discrete formlg.
nance of a single specie in absence of immigratigr=Q) 19)].

J-1

1
(¢n)c= fo Pn(w)gm(w)dw=k21 frokb/ (6+K)
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To conclude we have derived an analytical solution of H}‘;fAj
Hubbell's “unified” model of biodiversity: exact expressions G (E)= ﬁkTH)(E) (1<k=dy).
for the equilibrium distributions of species abundance and =1~
for thte totgl numli[)er of speg;es P?V('et begn fo?n?hforl.a.forfn'_l'herefore, whent—oe, Py (t)— dco: every specie disap-
munity and a metacommunity ot finite Sizes. in the Imit ot ¢, . by mutation. However, as new species appear continu-
large population sizes we have shown that the equilibriu

Co ; . : .~ ously, the population distribution goes to a well-defined sta-
distributions of species are described by universal funCt'onﬁonary value which can be calculated by taking the Laplace
depending only on two scaling parameté@rand u related to ransform of Eq(4)
the mutation and migration rates, respectively. The modeﬁ '
discussed above is essentially “zero dimensional,” which (pdm=rL [Gu(E)/Ele—o
means that no spatial inhomogeneous distribution of the spe-
cies has been considered. There is an obvious interest #hd one gets
extending the present results to one- and two-dimensional
systems: important results have been obtained for the prob- (p1)m=vICq,
ability of sampling the same species at two different loca-
tions as a function of their separation, both theoretically A
[7,10] and from field measuremenf$l]. The present work (Dom= VK G (1<k=Jdu).
opens the way to further analytical results in that direction, =17

specially for deriving the full species distribution similar to ysing the definition o [Eq. (6)], the coefficientsC; in Eq.

k—1
ji=1

Eq. (14). (2) can be written as
APPENDIX c JQu—it 0)(1 "
Im73 (3. -1) ‘&
The set of master equatiori$) can be written under a In(Im=1)
matrix form: so that one gets:
dP/dt=HP 05 (Iu—j+1) 0T+ DI+ 0-k)

with P a (J+1) dimensional vector corresponding Bg(t) ki1 Qu=i+6) kIQu+OHIGu+1-k)

(n=0t0J) andH a matrix defined by which is Eq.(5). One can easily check that this distribution

- A, c, - satisfies correctly the sum rule:

Ay —(AL+Cy Gy

Im
H= A, gl K{rym=Im -

C
) Using this relation, the total average number of species in the

L Ay-r —Cyl metacommunity S(Jy) )m = Z{ $x)m can be shown to obey
the recurrence relation:

Using the Laplace transformati@(E) =L[ P(t)] and de-
fining the matrixG(E) = (El—H) ! one has 0
(SEOm+D)m=(SOmm+ 55—
P(t)=L"'[G(E)]P(0). M
Usin 1))m=1, one gets Eq.7).
The long time behavior dP(t) is obtained by considering 9{S(L)m 9 “0
the limit E—0 of G(E). 2. Community

1. Metacommunity In this caseAy# 0. In the limitE—O one then finds that

The probabilityP,(t) that a specie which has appeared at

n

time t=0 has an abundandeat timet is given by Gim(E)= EST M, +0(1),
Pu)=L Gu(BE)]. with
According to Eq(2), A;=0. Using a recurrence method one n-1 J
finds that, wherE—0: M,=11 A, 11 C; (0<n<)),
]=0 j=n+1

Goi(E)=1/E+0(1),
Gll(E):1/C1+O(E), =1
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y Jﬁl A o (o) MZ0@= D +po),,j[3= [+ p(1- )]
= i w)= = R
N " M/Z5(3-)(j +w)
Introducingu as defined in Eq(11) into the coefficient®\,
andC,, given in Egs.(9) and(10), one gets (0<n<),
m
An=g3, (7NNt po), which finally leads to Eq(12). P,(w) is a polynomial of

degreeJ which can be written as

m
Cho==—n[J-—n+u(l-w)].

Ju J n-1
. | Po@)=0| | I [u+j-p1-w)]

Whent—w, the probabilityP,(t;w) goes to a stationary nj (w)ij=
value P,(w) given by P

o M, < 1L twa-o)+,

I

The denominator of this expression is found to be indepenwhich is of the form Eq(13) and defines the coefficients
dent of w and the probability?,(w) can be written as in that equation.
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