# Evolution of genetic systems

Nick Barton



Evolution of the genetic system:

- why are genomes so large?

- why are genomes so large?
- why introns?

- why are genomes so large?
- why introns?
- why two sexes?

- why are genomes so large?
- why introns?
- why two sexes?
- why are there 4 letters in the genetic alphabet?

- why are genomes so large?
- why introns?
- why two sexes?
- why are there 4 letters in the genetic alphabet?
- why is heredity digital?

Evolution of the genetic system:

- why are genomes so large?
- why introns?
- why two sexes?
- why are there 4 letters in the genetic alphabet?
- why is heredity digital?

Evolution of *evolvability*:

Evolution of the genetic system:

- why are genomes so large?
- why introns?
- why two sexes?
- why are there 4 letters in the genetic alphabet?
- why is heredity digital?

Evolution of *evolvability*:

- mutation rate

### Evolution of the genetic system:

- why are genomes so large?
- why introns?
- why two sexes?
- why are there 4 letters in the genetic alphabet?
- why is heredity digital?

### Evolution of *evolvability*:

- mutation rate
- sex and recombination

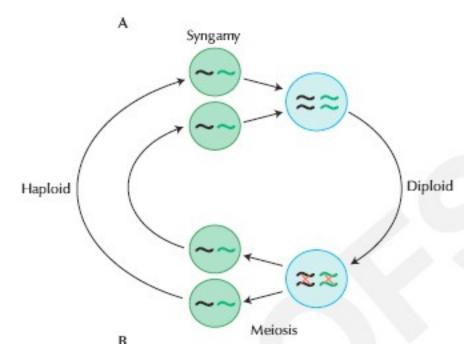
### Evolution of the genetic system:

- why are genomes so large?
- why introns?
- why two sexes?
- why are there 4 letters in the genetic alphabet?
- why is heredity digital?

### Evolution of *evolvability*:

- mutation rate
- sex and recombination
- modularity, robustness, additivity ...

How to understand why organisms are as they are?


- "for the good of the species"?
- as a side effect?
- through selection amongst individuals?
  - modifier alleles

## Why sex and recombination?

## Why sex and recombination?

Sex: the mixing of hereditary material to produce new genotypes

- selfing
- outcrossing sex



Union of haploid cells masks deleterious recessive mutations

Union of haploid cells masks deleterious recessive mutations

But, separation of the two genomes at meiosis uncovers them

Union of haploid cells masks deleterious recessive mutations

But, separation of the two genomes at meiosis uncovers them

Advantage may come from repair or recombination

- Recombination or repair ?
  - Recombination in bacteria
    - Transformation: uptake of DNA
    - Transduction: uptake with a 'phage
    - Conjugation: transfer with a plasmid



- Recombination in bacteria
  - Transformation: uptake of DNA
  - Transduction: uptake with a 'phage
  - Conjugation: transfer with a plasmid



Is recomb'n an accidental side-effect of adaptations for DNA repair?

- machinery evolved from repair enzymes
- repair of double-stranded damage may involve crossing-over

- Recombination in bacteria
  - Transformation: uptake of DNA
  - Transduction: uptake with a 'phage
  - Conjugation: transfer with a plasmid



Is recomb'n an accidental side-effect of adaptations for DNA repair?

- machinery evolved from repair enzymes
- repair of double-stranded damage may involve crossing-over

### BUT in eukaryotes:

meiosis is a regular part of the life cycle

- Recombination in bacteria
  - Transformation: uptake of DNA
  - Transduction: uptake with a 'phage
  - Conjugation: transfer with a plasmid



Is recomb'n an accidental side-effect of adaptations for DNA repair?

- machinery evolved from repair enzymes
- repair of double-stranded damage may involve crossing-over

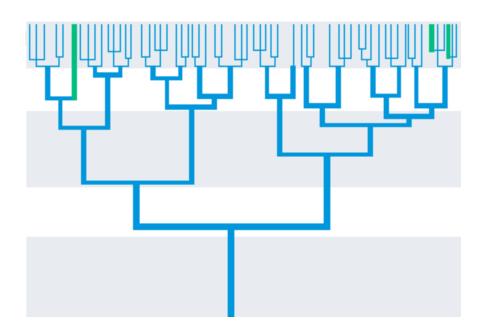
### BUT in eukaryotes:

meiosis is a regular part of the life cycle recombination generates double-stranded breaks

- Recombination in bacteria
  - Transformation: uptake of DNA
  - Transduction: uptake with a 'phage
  - Conjugation: transfer with a plasmid



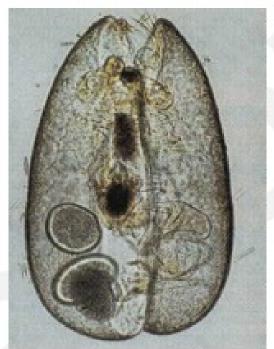
Is recomb'n an accidental side-effect of adaptations for DNA repair?


- machinery evolved from repair enzymes
- repair of double-stranded damage may involve crossing-over

### BUT in eukaryotes:

meiosis is a regular part of the life cycle recombination generates double-stranded breaks many organisms lack recombination (eg male *Drosophila*)

- Early arguments supposed that sex evolved "for the good of the species"
- Sex is maintained to some extent by selection amongst species:
  - In insects:
    - *Arrhenotoky* evolved ~ 8 times 5 of these -> families or greater
    - *Thelytoky* arose ~ 1000 times; sporadically distributed


- Early arguments supposed that sex evolved "for the good of the species"
- Sex is maintained to some extent by selection amongst species:
  - In insects, there are two kinds of parthenogenesis:
    - *Arrhenotoky* evolved ~ 8 times 5 of these -> families or greater
    - *Thelytoky* arose ~ 1000 times; sporadically distributed











D

- There must be a short-term advantage:
  - Cyclical parthenogenesis (aphids, gall wasps...)
  - Facultative parthenogenesis (nematodes, snails..)
  - Genetic variation in recombination rate

- There must be a short-term advantage:
  - Cyclical parthenogenesis (aphids, gall wasps...)
  - Facultative parthenogenesis (nematodes, snails..)
  - Genetic variation in recombination rate

Meiosis is slow

Courtship and mating are risky

- There must be a short-term advantage:
  - Cyclical parthenogenesis (aphids, gall wasps...)
  - Facultative parthenogenesis (nematodes, snails..)
  - Genetic variation in recombination rate

Meiosis is slow

Courtship and mating are risky

Two-fold **cost of sex** (with anisogamy)

- There must be a short-term advantage:
  - Cyclical parthenogenesis (aphids, gall wasps...)
  - Facultative parthenogenesis (nematodes, snails..)
  - Genetic variation in recombination rate

Meiosis is slow

Courtship and mating are risky

Two-fold **cost of sex** (with anisogamy)

Recombination breaks up good gene combinations e.g. *Drosophila* recombination load

- There must be a short-term advantage:
  - Cyclical parthenogenesis (aphids, gall wasps...)
  - Facultative parthenogenesis (nematodes, snails..)
  - Genetic variation in recombination rate

Meiosis is slow

Courtship and mating are risky

Two-fold **cost of sex** (with anisogamy)

Recombination breaks up good gene combinations

e.g. Drosophila recombination load

Selection has reduced recombination:

Y chromosomes, sticklebacks, supergenes...

