Rigid Analytic Vectors in Locally Analytic Representations: Exactness and Applications

Aranya Lahiri

Indiana University

September 18, 2019

Layout of the Talk

1 Introduction: Context of the Problem

2 Main Theorem

3 Applications And Future Directions

Context of The Problem

• Schneider-Stuhler in 1997 functorially associated a sheaf on the Bruhat-Tits building of a connected p-adic reductive group G to a smooth representation* of G. The first step of the construction was exactness of the functor $V \rightsquigarrow V^H$ for a uniform pro-p subgroup H.

Context of The Problem

- Schneider-Stuhler in 1997 functorially associated a sheaf on the Bruhat-Tits building of a connected p-adic reductive group G to a smooth representation* of G. The first step of the construction was exactness of the functor $V \rightsquigarrow V^H$ for a uniform pro-p subgroup H.
- Schneider-Teitelbaum (early 2000's) introduced the theory of *locally* analytic representations which has since become important in *p*-adic local Langlands.

Question

Can we mimic Schneider-Stuhler's construction for locally analytic representations?

• $\mathbb{Q}_p \subseteq F \subseteq E$ finite extensions.

- $\mathbb{Q}_p \subseteq F \subseteq E$ finite extensions.
- H is an F-analytic uniform pro-p group with added technical conditions. Associated to H are rigid analytic affinoid groups $\mathbb{H}_n \subseteq \mathbb{H}_{n-1} \subseteq ...$, and their "wide open" subgroups $\mathbb{H}_n^{\circ} \subseteq \mathbb{H}_{n-1}^{\circ}...$

- $\mathbb{Q}_p \subseteq F \subseteq E$ finite extensions.
- H is an F-analytic uniform pro-p group with added technical conditions. Associated to H are rigid analytic affinoid groups $\mathbb{H}_n \subseteq \mathbb{H}_{n-1} \subseteq ...$, and their "wide open" subgroups $\mathbb{H}_n^{\circ} \subseteq \mathbb{H}_{n-1}^{\circ}...$
- ullet V is a locally analytic **admissible** representation of H

- $\mathbb{Q}_p \subseteq F \subseteq E$ finite extensions.
- H is an F-analytic uniform pro-p group with added technical conditions. Associated to H are rigid analytic affinoid groups $\mathbb{H}_n \subseteq \mathbb{H}_{n-1} \subseteq ...$, and their "wide open" subgroups $\mathbb{H}_n^{\circ} \subseteq \mathbb{H}_{n-1}^{\circ}...$
- V is a locally analytic admissible representation of H
- $V_{\mathbb{H}_n^{\circ}-\mathsf{an}} := \{ v \in V | f_v : h \to h.v \in \mathcal{O}(\mathbb{H}_n^{\circ}, V) \}$

Main Theorem

• The main result for this talk is,

Theorem

The functor $V \rightsquigarrow V_{\mathbb{H}_n^{\circ}-\mathrm{an}}$ from the category of locally analytic admissible H-representations to the category of E-vector spaces is exact.

Main Theorem

• The main result for this talk is,

Theorem

The functor $V \rightsquigarrow V_{\mathbb{H}_n^{\circ}-\mathrm{an}}$ from the category of locally analytic admissible H-representations to the category of E-vector spaces is exact.

• We actually concentrate on proving $(V)'_b \rightsquigarrow (V_{\mathbb{H}_n^{\circ}-\mathrm{an}})'_b$ is exact, because it lets us algebraize the problem via distribution algebras and coamdissible modules over them.

Let A be a locally convex E-algebra, a **weak Fréchet-Stein structure** on A consists of the following data:

Let *A* be a locally convex *E*-algebra, a **weak Fréchet-Stein structure** on *A* consists of the following data:

1 A sequence $\{A_n\}_n$ of hereditarily complete, locally convex topological E-algebras A_n , for each $n \ge 1$.

Let *A* be a locally convex *E*-algebra, a **weak Fréchet-Stein structure** on *A* consists of the following data:

- **1** A sequence $\{A_n\}_n$ of hereditarily complete, locally convex topological E-algebras A_n , for each $n \ge 1$.
- ② A BH map $\tau_{n+1,n}^A: A_{n+1} \to A_n$, that is a continuous homomorphism of locally convex topological E vectors spaces, for each $n \ge 1$.

Let *A* be a locally convex *E*-algebra, a **weak Fréchet-Stein structure** on *A* consists of the following data:

- **1** A sequence $\{A_n\}_n$ of hereditarily complete, locally convex topological E-algebras A_n , for each $n \ge 1$.
- ② A BH map $\tau_{n+1,n}^A: A_{n+1} \to A_n$, that is a continuous homomorphism of locally convex topological E vectors spaces, for each $n \ge 1$.
- **3** An isomorphism of topological A-modules $A \cong \varprojlim_n A_n$, where each of the maps $A \to A_n$ has dense image. The right hand side is given a projective limit topology from the transition maps induced from part (2).

Examples

• The distribution algebra $D^{\mathrm{la}}(\mathbb{Z}_p,E):=C^{\mathrm{la}}(\mathbb{Z}_p,E)_b'=\varprojlim_n A_n$, has a WFS structure with

$$A_n:=(C^{\mathrm{la}}(\mathbb{Z}_p,E)_{p^n\mathfrak{m}_{\mathbb{C}_p}-an})_b^{'}=\Big(\bigoplus_{a\in\mathbb{Z}/p^{n+1}\mathbb{Z}}\mathcal{O}(a+p^n\mathfrak{m}_{\mathbb{C}_p})\Big)_b^{'}.$$

Examples

• The distribution algebra $D^{\mathrm{la}}(\mathbb{Z}_p,E):=C^{\mathrm{la}}(\mathbb{Z}_p,E)_b'=\varprojlim_n A_n$, has a WFS structure with

$$A_n:= (\mathit{C}^{\mathrm{la}}(\mathbb{Z}_p, E)_{p^n\mathfrak{m}_{\mathbb{C}_p}-an})_b^{'} = \Big(\bigoplus_{a\in \mathbb{Z}/p^{n+1}\mathbb{Z}} \mathcal{O}(a+p^n\mathfrak{m}_{\mathbb{C}_p})\Big)_b^{'}\,.$$

• There exists $0 < r_n < 1$'s.t the A_n 's can be described as,

$$A_n := \mathcal{O}_{r_n}(X)^{\dagger} := \Big\{ \sum_{n=0}^{\infty} a_n T^n \ \Big| \ \lim_{n \to \infty} a_n R^n = 0 \text{ for some } R > r_n \Big\}$$

Examples

• The distribution algebra $D^{\mathrm{la}}(\mathbb{Z}_p, E) := C^{\mathrm{la}}(\mathbb{Z}_p, E)'_b = \varprojlim_n A_n$, has a WFS structure with

$$A_n:=(\mathit{C}^{\mathrm{la}}(\mathbb{Z}_p,E)_{p^n\mathfrak{m}_{\mathbb{C}_p}-an})_b^{'}=\Big(\bigoplus_{a\in\mathbb{Z}/p^{n+1}\mathbb{Z}}\mathcal{O}(a+p^n\mathfrak{m}_{\mathbb{C}_p})\Big)_b^{'}\,.$$

• There exists $0 < r_n < 1$'s.t the A_n 's can be described as,

$$A_n := \mathcal{O}_{r_n}(X)^{\dagger} := \Big\{ \sum_{n=0}^{\infty} a_n T^n \ \Big| \ \lim_{n \to \infty} a_n R^n = 0 \text{ for some } R > r_n \Big\}$$

Theorem (Emerton)

The distribution algebra $D^{\mathrm{la}}(H,E) := (C^{\mathrm{la}}(H,E))_b'$ is a weak Fréchet-Stein algebra with a weak Fréchet-Stein structure

$$D^{\mathrm{la}}(H,E) \xrightarrow{\simeq} \varprojlim D(\mathbb{H}_n^{\circ},H) := \varprojlim (C^{\mathrm{la}}(H,E)_{\mathbb{H}_n^{\circ}-an})_b'$$

Coadmissible module

Let $A \cong \varprojlim_n A_n$ be a weak Fréchet-Stein algebra. A locally convex topological A-module M is called *coadmissible* if there exist the following data:

Coadmissible module

Let $A \cong \varprojlim_n A_n$ be a weak Fréchet-Stein algebra. A locally convex topological A-module M is called *coadmissible* if there exist the following data:

1 A sequence $\{M_n\}_{n\geq 1}$ of finitely generated topological A_n -modules, for each $n\geq 1$.

Coadmissible module

Let $A \cong \varprojlim_n A_n$ be a weak Fréchet-Stein algebra. A locally convex topological A-module M is called *coadmissible* if there exist the following data:

- **①** A sequence $\{M_n\}_{n\geq 1}$ of finitely generated topological A_n -modules, for each $n\geq 1$.
- ② An isomorphism of topological *A*-modules $M \cong \varprojlim_n M_n$ with $A_n \hat{\otimes}_{A_{n+1}} M_{n+1} \cong M_n$, for each $n \geq 1$.

The Idea of Proof

• By definition, a locally analytic representation V of H is admissible if $M := V_h'$ is a coadmissible $D^{\mathrm{la}}(H, E)$ module.

The Idea of Proof

- By definition, a locally analytic representation V of H is admissible if $M := V'_h$ is a coadmissible $D^{\mathrm{la}}(H, E)$ module.
- The coadmissible structure is given by $M = \varprojlim_n M_n$ with $M_n := (V_{\mathbb{H}^n_n an})'_n$

The Idea of Proof

- By definition, a locally analytic representation V of H is admissible if $M := V'_h$ is a coadmissible $D^{\mathrm{la}}(H, E)$ module.
- The coadmissible structure is given by $M = \varprojlim_n M_n$ with $M_n := (V_{\mathbb{H}\mathbb{S}-an})_h'$
- Emerton shows, $M_n \cong A_n \widehat{\otimes}_A M$,

with
$$A_n := D(\mathbb{H}_n^{\circ}, H)$$
,

$$M:=V_b', A=D^{\mathrm{la}}(H,E).$$

• A crucial step for the proof of main theorem is

$$(V_{\mathbb{H}_n^{\circ}-\mathsf{an}})_b^{'}\cong D^{\mathrm{la}}(\mathbb{H}_n^{\circ},H)\otimes_{D^{\mathrm{la}}(H)}V_b^{'}$$

• A crucial step for the proof of main theorem is $(V_{1}, V_{2}, V_{3}) = \frac{V_{1}}{V_{2}}$

$$\boxed{(V_{\mathbb{H}_n^{\circ}-\mathsf{an})_b^{'}}\cong D^{\mathrm{la}}(\mathbb{H}_n^{\circ},H)\otimes_{D^{\mathrm{la}}(H)}V_b^{'}}$$

 This result is an extension of a similar result of S-T, we do it for Weak Fréchet-Stein algebras which are also equipped with a Fréchet-Stein structure.

• Another crucial observation is that the natural map

$$D^{la}(H,E) \rightarrow D(\mathbb{H}_n^{\circ},H)$$

is flat.

Another crucial observation is that the natural map

$$D^{la}(H,E) \rightarrow D(\mathbb{H}_n^{\circ},H)$$

is flat.

 This flatness is result of a tour-de-force in commutative algebra and relies deeply on the interaction between the WFS and FS structure of the distribution algebra. And it is due to Emerton.

Future Directions of Research

Future Directions of Research

• By the work of Remy-Thuillier-Werner there is associated to every point x of the Bruhat-Tits building BT(G) of G a rigid-analytic affinoid group \mathbb{G}_x . This gives rise to a sheaf $U \mapsto \mathbb{G}(U) := \bigcup_{x \in U} \mathbb{G}_x$ of rigid analytic groups on the Bruhat-Tits building BT(G).

Attaching a sheaf to an (admissible) locally analytic representation.

Attaching a sheaf to an (admissible) locally analytic representation.

• Given such a representation V we consider for any open subset $U \subset BT(G)$ the subspace $V_{\mathbb{G}(U)-\mathrm{an}} \subset V$ of rigid analytic vectors for U, and its continuous dual $\mathcal{M}_V(U)$. Then

$$U \to \mathcal{M}_V(U)$$

is a sheaf on BT(G).

Question

Does the Schneider-Stuhler procedure, when applied to the sheaf \mathcal{M}_V lead to a canonical resolution of M=V' in the category of D(G)-modules.

References

Matthew Emerton (2017)

Locally analytic vectors in representations of locally p-adic analytic groups.

Memoirs of American Mathematical Society

Schneider, Peter; Stuhler, Ulrich

Representation theory and sheaves on the Bruhat-Tits building

Publications Mathmatiques de l'IHS, Volume 85 (1997), p. 97-191

Schneider P., Teitelbaum J

Locally analytic distributions and p-adic representation theory, with applications to GL_2

Journal of American Mathematical Society

Thank You