Reduction of Galois representations and local constancy with respect to weight

Shalini Bhattacharya

IISER Tirupati

Crystalline representations

Notations

p: prime number, $G_p:=\operatorname{Gal}(\bar{\mathbb{Q}}_p|\mathbb{Q}_p)$ with profinite topology.

 E/\mathbb{Q}_p : finite extension of local fields.

 \mathcal{O}_E : ring of integers in E.

 \mathfrak{m}_E : the unique maximal ideal in \mathcal{O}_E .

 $k_E \cong \mathcal{O}_E/\mathfrak{m}_E$: residue field of E.

Crystalline representations

Notations

p: prime number, $G_p:=\operatorname{Gal}(\bar{\mathbb{Q}}_p|\mathbb{Q}_p)$ with profinite topology.

 E/\mathbb{Q}_p : finite extension of local fields.

 \mathcal{O}_E : ring of integers in E.

 \mathfrak{m}_E : the unique maximal ideal in \mathcal{O}_E .

 $k_E \cong \mathcal{O}_E/\mathfrak{m}_E$: residue field of E.

The objects in $\operatorname{Rep}_E(G_p)$ are characterised by p-adic Hodge theory. The most nicely behaved subcategory consists of the 'crystalline representations'.

Crystalline representations

Notations

p: prime number, $G_p := \operatorname{Gal}(\bar{\mathbb{Q}}_p | \mathbb{Q}_p)$ with profinite topology.

 E/\mathbb{Q}_p : finite extension of local fields.

 \mathcal{O}_E : ring of integers in E.

 \mathfrak{m}_E : the unique maximal ideal in \mathcal{O}_E .

 $k_E \cong \mathcal{O}_E/\mathfrak{m}_E$: residue field of E.

The objects in $\operatorname{Rep}_E(G_p)$ are characterised by p-adic Hodge theory. The most nicely behaved subcategory consists of the 'crystalline representations'.

Colmez-Fontaine, 2000: Equivalence of categories

Crystalline representations V of G_n ; dim V = n

D_{cris}

Admissible filtered φ -modules D; dim $_F D = n$

For $k \in \mathbb{Z}_{\geq 2}$ and $a \in \mathfrak{m}_E$, let $D_{k,a}$ be the irreducible filtered φ -module given by

$$D_{k,a} = Ee_1 \oplus Ee_2, \qquad \varphi e_1 = e_2, \ \varphi e_2 = -p^{k-1}e_1 + ae_2$$
$$\operatorname{Fil}^i D_{k,a} = \begin{cases} Ee_1 \oplus Ee_2, & i \leq 0 \\ Ee_1, & 1 \leq i \leq k-1 \\ 0, & k \leq i. \end{cases}$$

 $V_{k,a}$: the crystalline representation V determined by $D_{cris}(V^*) = D_{k,a}$.

For $k \in \mathbb{Z}_{\geq 2}$ and $a \in \mathfrak{m}_E$, let $D_{k,a}$ be the irreducible filtered φ -module given by

$$D_{k,a} = Ee_1 \oplus Ee_2, \qquad \varphi e_1 = e_2, \ \varphi e_2 = -p^{k-1}e_1 + ae_2$$
$$\operatorname{Fil}^i D_{k,a} = \begin{cases} Ee_1 \oplus Ee_2, & i \leq 0 \\ Ee_1, & 1 \leq i \leq k-1 \\ 0, & k \leq i. \end{cases}$$

 $V_{k,a}$: the crystalline representation V determined by $D_{\mathrm{cris}}(V^*) = D_{k,a}$. $\overline{V}_{k,a}$: semi-simplified mod p reduction of a G_p -stable lattice in $V_{k,a}$.

For $k \in \mathbb{Z}_{\geq 2}$ and $a \in \mathfrak{m}_E$, let $D_{k,a}$ be the irreducible filtered φ -module given by

$$D_{k,a} = Ee_1 \oplus Ee_2, \qquad \varphi e_1 = e_2, \ \varphi e_2 = -p^{k-1}e_1 + ae_2$$
$$Fil^i D_{k,a} = \begin{cases} Ee_1 \oplus Ee_2, & i \le 0 \\ Ee_1, & 1 \le i \le k-1 \\ 0, & k \le i. \end{cases}$$

 $V_{k,a}$: the crystalline representation V determined by $D_{\rm cris}(V^*) = D_{k,a}$. $\bar{V}_{k,a}$: semi-simplified mod p reduction of a G_p -stable lattice in $V_{k,a}$. With this notation, we are interested in the map

$$(k,a) \mapsto \bar{V}_{k,a} \in \operatorname{Rep}_{k_E}(G_p)$$

as $k \in \mathbb{Z}_{\geq 2}$ and $a \in \mathfrak{m}_{\bar{\mathbb{Q}}_n}$ vary.

For $k \in \mathbb{Z}_{\geq 2}$ and $a \in \mathfrak{m}_E$, let $D_{k,a}$ be the irreducible filtered φ -module given by

$$D_{k,a} = Ee_1 \oplus Ee_2, \qquad \varphi e_1 = e_2, \ \varphi e_2 = -p^{k-1}e_1 + ae_2$$
$$Fil^i D_{k,a} = \begin{cases} Ee_1 \oplus Ee_2, & i \le 0 \\ Ee_1, & 1 \le i \le k-1 \\ 0, & k \le i. \end{cases}$$

 $V_{k,a}$: the crystalline representation V determined by $D_{\rm cris}(V^*) = D_{k,a}$. $\bar{V}_{k,a}$: semi-simplified mod p reduction of a G_p -stable lattice in $V_{k,a}$. With this notation, we are interested in the map

$$(k,a) \mapsto \bar{V}_{k,a} \in \operatorname{Rep}_{k_E}(G_p)$$

as $k \in \mathbb{Z}_{\geq 2}$ and $a \in \mathfrak{m}_{\bar{\mathbb{Q}}_n}$ vary.

 $\mathcal{W} = \operatorname{Hom}_{cont}(\mathbb{Z}_p^*, \mathbb{C}_p^*)$: the *p*-adic weight space.

 $\mathcal{W} = \operatorname{Hom}_{cont}(\mathbb{Z}_p^*, \mathbb{C}_p^*)$: the *p*-adic weight space.

 \mathcal{W} is a disjoint union of (p-1)-many connected components, each isomorphic to the open unit disc in \mathbb{C}_p .

 $\mathcal{W} = \operatorname{Hom}_{cont}(\mathbb{Z}_p^*, \mathbb{C}_p^*)$: the *p*-adic weight space.

 \mathcal{W} is a disjoint union of (p-1)-many connected components, each isomorphic to the open unit disc in \mathbb{C}_p .

Recall $\mathbb{Z}_p^* = \langle \zeta_{p-1} \rangle \otimes \Gamma$, where $\Gamma = 1 + p\mathbb{Z}_p = \langle \gamma \rangle$. For any $\kappa \in \mathcal{W}$, the connected component of κ is determined by $\kappa(\zeta_{p-1})$ and inside the corresponding disc its coordinate is given by $\kappa(\gamma) - 1$.

 $\mathcal{W} = \operatorname{Hom}_{cont}(\mathbb{Z}_p^*, \mathbb{C}_p^*)$: the *p*-adic weight space.

 $\mathcal W$ is a disjoint union of (p-1)-many connected components, each isomorphic to the open unit disc in $\mathbb C_p$.

Recall $\mathbb{Z}_p^* = \langle \zeta_{p-1} \rangle \otimes \Gamma$, where $\Gamma = 1 + p\mathbb{Z}_p = \langle \gamma \rangle$. For any $\kappa \in \mathcal{W}$, the connected component of κ is determined by $\kappa(\zeta_{p-1})$ and inside the corresponding disc its coordinate is given by $\kappa(\gamma) - 1$.

Classical weights $k \in \mathbb{Z}_{\geq 2}$ lie in \mathcal{W} as the homomorphism $z \mapsto z^k$.

 $\mathcal{W} = \operatorname{Hom}_{cont}(\mathbb{Z}_p^*, \mathbb{C}_p^*)$: the *p*-adic weight space.

 \mathcal{W} is a disjoint union of (p-1)-many connected components, each isomorphic to the open unit disc in \mathbb{C}_p .

Recall $\mathbb{Z}_p^* = \langle \zeta_{p-1} \rangle \otimes \Gamma$, where $\Gamma = 1 + p\mathbb{Z}_p = \langle \gamma \rangle$. For any $\kappa \in \mathcal{W}$, the connected component of κ is determined by $\kappa(\zeta_{p-1})$ and inside the corresponding disc its coordinate is given by $\kappa(\gamma) - 1$.

Classical weights $k \in \mathbb{Z}_{\geq 2}$ lie in \mathcal{W} as the homomorphism $z \mapsto z^k$.

So the congruence class $k \mod (p-1)$ determines the connected component of $\mathcal W$ where a classical weight k lies. Thus two classical weights k_1 and k_2 are p-adically 'close' in $\mathcal W$ if

- ② $k_1 k_2$ is divisible by high power of p.

Let $v: \bar{\mathbb{Q}}_p^* \to \mathbb{Q}$ be the standard *p*-adic valuation normalised by v(p) = 1.

Thm A (local constancy with respect to a)

Let
$$k \ge 2$$
 be fixed. If $v(a-a') > 2v(a) + \lfloor (k-1)p/(p-1)^2 \rfloor$, then $\bar{V}_{k,a} \cong \bar{V}_{k,a'}$.

Let $v: \bar{\mathbb{Q}}_p^* \to \mathbb{Q}$ be the standard *p*-adic valuation normalised by v(p) = 1.

Thm A (local constancy with respect to a)

Let $k \geq 2$ be fixed. If $v(a-a') > 2v(a) + \lfloor (k-1)p/(p-1)^2 \rfloor$, then $\bar{V}_{k,a} \cong \bar{V}_{k,a'}$.

Thm B (local constancy with respect to k)

Let $a \neq 0$ be fixed.

For all
$$k > \frac{3v(a)}{1 - \frac{p}{(p-1)^2}} + 1$$
, there exists $m = m(k, a) \in \mathbb{N}$ such that:

if
$$k'-k\in (p-1)p^{m-1}\mathbb{Z}_{>0}$$
, then $ar{V}_{k,a}\cong ar{V}_{k',a}$.

Let $v: \bar{\mathbb{Q}}_p^* \to \mathbb{Q}$ be the standard *p*-adic valuation normalised by v(p) = 1.

Thm A (local constancy with respect to a)

Let $k \geq 2$ be fixed. If $v(a-a') > 2v(a) + \lfloor (k-1)p/(p-1)^2 \rfloor$, then $\bar{V}_{k,a} \cong \bar{V}_{k,a'}$.

Thm B (local constancy with respect to k)

Let $a \neq 0$ be fixed.

For all
$$k>\frac{3v(a)}{1-\frac{p}{(p-1)^2}}+1$$
, there exists $m=m(k,a)\in\mathbb{N}$ such that: if $k'-k\in(p-1)p^{m-1}\mathbb{Z}_{>0}$, then $\bar{V}_{k,a}\cong\bar{V}_{k',a}$.

- ▶ Berger gives no estimate for m(k, a).
- ▶ It is not clear if the lower bound on k is necessary to ensure local constancy around a classical point $k \in \mathcal{W}$.

Theorem(- , 2018)

Fix an $a \in \mathfrak{m}_{\bar{\mathbb{Q}}_p}$ with 3 < v := v(a) < p/2.

Theorem(-, 2018)

Fix an $a \in \mathfrak{m}_{\bar{\mathbb{Q}}_p}$ with 3 < v := v(a) < p/2. If $2v + 2 < k \le 4p - 2$ and $k \notin S$, an explicit finite set,

Theorem(-, 2018)

Fix an $a \in \mathfrak{m}_{\bar{\mathbb{Q}}_p}$ with 3 < v := v(a) < p/2. If $2v + 2 < k \le 4p - 2$ and $k \notin S$, an explicit finite set, then Berger's constant m(k,a) exists and is bounded above by 2v + 1.

Theorem(-, 2018)

Fix an $a \in \mathfrak{m}_{\bar{\mathbb{Q}}_p}$ with 3 < v := v(a) < p/2. If $2v + 2 < k \le 4p - 2$ and $k \notin S$, an explicit finite set, then Berger's constant m(k,a) exists and is bounded above by 2v + 1.

▶ Here S consists of 12 weights k = p + 2, p + 4, 2p + 1, 2p + 2, 2p + 3, 2p + 5, 3p, 3p + 1, 3p + 2, 3p + 3, 3p + 4, 3p + 6. However, the hypothesis $k \notin S$ is purely technical and thus the set S is not particularly significant.

Theorem(-, 2018)

Fix an $a \in \mathfrak{m}_{\bar{\mathbb{Q}}_p}$ with 3 < v := v(a) < p/2. If $2v + 2 < k \le 4p - 2$ and $k \notin S$, an explicit finite set, then Berger's constant m(k,a) exists and is bounded above by 2v + 1.

- ▶ Here S consists of 12 weights k = p + 2, p + 4, 2p + 1, 2p + 2, 2p + 3, 2p + 5, 3p, 3p + 1, 3p + 2, 3p + 3, 3p + 4, 3p + 6. However, the hypothesis $k \notin S$ is purely technical and thus the set S is not particularly significant.
- ➤ The above theorem is not the best that we have, as here we strengthened the hypotheses a bit to make the statement little less technical.

Theorem(-, 2018)

Fix an $a \in \mathfrak{m}_{\bar{\mathbb{Q}}_p}$ with 3 < v := v(a) < p/2. If $2v + 2 < k \le 4p - 2$ and $k \notin S$, an explicit finite set, then Berger's constant m(k,a) exists and is bounded above by 2v + 1.

- ▶ Here S consists of 12 weights k = p + 2, p + 4, 2p + 1, 2p + 2, 2p + 3, 2p + 5, 3p, 3p + 1, 3p + 2, 3p + 3, 3p + 4, 3p + 6. However, the hypothesis $k \notin S$ is purely technical and thus the set S is not particularly significant.
- ➤ The above theorem is not the best that we have, as here we strengthened the hypotheses a bit to make the statement little less technical.

More notation: $G_{p^2} := \operatorname{Gal}(\bar{\mathbb{Q}}_p | \mathbb{Q}_{p^2})$ and $\omega_2 : G_{p^2} \to \bar{\mathbb{F}}_p^*$ is the fundamental character of level 2.

More notation: $G_{p^2} := \operatorname{Gal}(\bar{\mathbb{Q}}_p|\mathbb{Q}_{p^2})$ and $\omega_2 : G_{p^2} \to \bar{\mathbb{F}}_p^*$ is the fundamental character of level 2.

For $\lambda \in \overline{\mathbb{F}}_p^*$, let μ_λ denote the unramified character of G_p sending the geometric Frobenius element to λ .

• Recall that a=0 was excluded in Berger's Theorem B quoted above. Analysing the known formula $\bar{V}_{k,0}\cong \mathrm{ind}_{G_{p^2}}^{G_p}\omega_2^{k-1}\otimes \mu_{\sqrt{-1}}$ closely, we note that local constancy fails at a=0!

More notation: $G_{p^2} := \operatorname{Gal}(\bar{\mathbb{Q}}_p|\mathbb{Q}_{p^2})$ and $\omega_2 : G_{p^2} \to \bar{\mathbb{F}}_p^*$ is the fundamental character of level 2.

For $\lambda \in \overline{\mathbb{F}}_p^*$, let μ_λ denote the unramified character of G_p sending the geometric Frobenius element to λ .

- Recall that a=0 was excluded in Berger's Theorem B quoted above. Analysing the known formula $\bar{V}_{k,0}\cong \mathrm{ind}_{G_{p^2}}^{G_p}\omega_2^{k-1}\otimes \mu_{\sqrt{-1}}$ closely, we note that local constancy fails at a=0!
- ② The lower bound 2v + 2 on k is necessary, as the mod p reduction shows all kinds of irregularities near k = 2v + 2. For example

More notation: $G_{p^2} := \operatorname{Gal}(\bar{\mathbb{Q}}_p|\mathbb{Q}_{p^2})$ and $\omega_2 : G_{p^2} \to \bar{\mathbb{F}}_p^*$ is the fundamental character of level 2.

For $\lambda \in \overline{\mathbb{F}}_p^*$, let μ_λ denote the unramified character of G_p sending the geometric Frobenius element to λ .

- Recall that a=0 was excluded in Berger's Theorem B quoted above. Analysing the known formula $\bar{V}_{k,0}\cong \mathrm{ind}_{G_{p^2}}^{G_p}\omega_2^{k-1}\otimes \mu_{\sqrt{-1}}$ closely, we note that local constancy fails at a=0!
- ② The lower bound 2v + 2 on k is necessary, as the mod p reduction shows all kinds of irregularities near k = 2v + 2. For example
 - $ightharpoonup m(4,a) = \lceil v(a^2 p^2) \rceil$ if v = 1 but $a \neq \pm p$.

More notation: $G_{p^2} := \operatorname{Gal}(\bar{\mathbb{Q}}_p|\mathbb{Q}_{p^2})$ and $\omega_2 : G_{p^2} \to \bar{\mathbb{F}}_p^*$ is the fundamental character of level 2.

For $\lambda \in \overline{\mathbb{F}}_p^*$, let μ_λ denote the unramified character of G_p sending the geometric Frobenius element to λ .

- ① Recall that a=0 was excluded in Berger's Theorem B quoted above. Analysing the known formula $\bar{V}_{k,0}\cong \mathrm{ind}_{G_{p^2}}^{G_p}\omega_2^{k-1}\otimes \mu_{\sqrt{-1}}$ closely, we note that local constancy fails at a=0!
- ② The lower bound 2v + 2 on k is necessary, as the mod p reduction shows all kinds of irregularities near k = 2v + 2. For example
 - $ightharpoonup m(4,a) = \lceil v(a^2 p^2) \rceil$ if v = 1 but $a \neq \pm p$.
 - ▶ $m(4, \pm p)$ does not exist, as $\bar{V}_{4,a}$ is irreducible but for large values of k p-adically close to 4, we observed that $\bar{V}_{k,\pm p}$ is reducible!

About the proof

Our approach is independent of Berger's, i.e., around the specific weight points mentioned above, we give a proof of local constancy together with an estimate for the constant m(k, a) that comes for free.

About the proof

Our approach is independent of Berger's, i.e., around the specific weight points mentioned above, we give a proof of local constancy together with an estimate for the constant m(k, a) that comes for free.

We use the compatibility of the mod p and p-adic Local Langlands correspondence (LLC).

By-product of our proof

▶ Berger's lower bound on k for the local constancy in the weight space was $(\cdots) > 3v + 1$. However, our result is valid for k > 2v + 2. Thus the bound is improved, though we could not avoid a bound that is linear in slope.

About the proof

Our approach is independent of Berger's, i.e., around the specific weight points mentioned above, we give a proof of local constancy together with an estimate for the constant m(k, a) that comes for free.

We use the compatibility of the mod p and p-adic Local Langlands correspondence (LLC).

By-product of our proof

- ▶ Berger's lower bound on k for the local constancy in the weight space was $(\cdots) > 3v + 1$. However, our result is valid for k > 2v + 2. Thus the bound is improved, though we could not avoid a bound that is linear in slope.
- Let k be a classical weight satisfying the hypotheses in our main theorem. If the p-adic distance of k' from k in \mathcal{W} is $\leq p^{-2\nu}$, then we manage to show

$$\bar{V}_{k',a} = \operatorname{ind}_{G_{p^2}}^{G_p}(\omega_2^{k-1}).$$

$$G = \mathrm{GL}_2(\mathbb{Q}_p)$$
,

$$G = \mathrm{GL}_2(\mathbb{Q}_p)$$
, $K = \mathrm{GL}_2(\mathbb{Z}_p) \subset G$,

$$G = \mathrm{GL}_2(\mathbb{Q}_p), \ K = \mathrm{GL}_2(\mathbb{Z}_p) \subset G, \ Z = Z(G) \cong \mathbb{Q}_p^*,$$

$$G=\operatorname{GL}_2(\mathbb{Q}_p), \ K=\operatorname{GL}_2(\mathbb{Z}_p)\subset G, \ Z=Z(G)\cong \mathbb{Q}_p^*, \ \Gamma=\operatorname{GL}_2(\mathbb{F}_p).$$

The automorphic side of LLC

$$G = \mathrm{GL}_2(\mathbb{Q}_p)$$
, $K = \mathrm{GL}_2(\mathbb{Z}_p) \subset G$, $Z = Z(G) \cong \mathbb{Q}_p^*$, $\Gamma = \mathrm{GL}_2(\mathbb{F}_p)$.

For $V \in \operatorname{Rep}(\Gamma)$, the action of Γ can be inflated to K and further extended to KZ by making $p \in Z$ act trivially on the whole space. Then we consider the compact induction $\mathcal{I}(V) := \operatorname{ind}_{KZ}^{\mathcal{G}} V \in \operatorname{Rep}(\mathcal{G})$.

The automorphic side of LLC

$$G=\operatorname{GL}_2(\mathbb{Q}_p), \ K=\operatorname{GL}_2(\mathbb{Z}_p)\subset G, \ Z=Z(G)\cong \mathbb{Q}_p^*, \ \Gamma=\operatorname{GL}_2(\mathbb{F}_p).$$

For $V \in \operatorname{Rep}(\Gamma)$, the action of Γ can be inflated to K and further extended to KZ by making $p \in Z$ act trivially on the whole space. Then we consider the compact induction $\mathcal{I}(V) := \operatorname{ind}_{KZ}^{\mathcal{G}} V \in \operatorname{Rep}(\mathcal{G})$.

An element in $\mathcal{I}(V)$ must be a linear combination of finitely many elementary functions [g, v] for $g \in G$ and $v \in V$ given by:

$$g' \xrightarrow{[g,v]} \begin{cases} (g'g) \cdot v & \text{if } g' \in KZg^{-1}, \\ 0 & \text{otherwise.} \end{cases}$$

The automorphic side of LLC

$$G = \mathrm{GL}_2(\mathbb{Q}_p), \ K = \mathrm{GL}_2(\mathbb{Z}_p) \subset G, \ Z = Z(G) \cong \mathbb{Q}_p^*, \ \Gamma = \mathrm{GL}_2(\mathbb{F}_p).$$

For $V \in \operatorname{Rep}(\Gamma)$, the action of Γ can be inflated to K and further extended to KZ by making $p \in Z$ act trivially on the whole space. Then we consider the compact induction $\mathcal{I}(V) := \operatorname{ind}_{KZ}^{\mathcal{G}} V \in \operatorname{Rep}(\mathcal{G})$.

An element in $\mathcal{I}(V)$ must be a linear combination of finitely many elementary functions [g, v] for $g \in G$ and $v \in V$ given by:

$$g' \xrightarrow{[g,v]} \begin{cases} (g'g) \cdot v & \text{if } g' \in KZg^{-1}, \\ 0 & \text{otherwise.} \end{cases}$$

For all $r \geq 0$, let $V_r := \operatorname{Sym}^r \bar{\mathbb{F}}_p^2 \in \operatorname{Rep}_{\bar{\mathbb{F}}_p}(\Gamma)$ be modelled on the space of homogeneous polynomials F(x,y) with $\deg(F) = r$. The matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$ acts on both variables $(x,y) \mapsto (ax + cy, bx + dy)$.

▶ By the compatibility of p-adic and mod p LLC and its explicit nature in the crystalline case, determining $\bar{V}_{k',a}$ boils down to computing the mod p reduction of the following lattice in the automorphic side:

$$\Theta_{k',a} = \frac{\mathcal{I}(\operatorname{Sym}^{k'-2}\bar{\mathbb{Z}}_p^2)}{(T-a)\mathcal{I}(\operatorname{Sym}^{k'-2}\bar{\mathbb{Q}}_p^2) \, \cap \, \mathcal{I}(\operatorname{Sym}^{k'-2}\bar{\mathbb{Z}}_p^2)},$$

▶ By the compatibility of p-adic and mod p LLC and its explicit nature in the crystalline case, determining $\bar{V}_{k',a}$ boils down to computing the mod p reduction of the following lattice in the automorphic side:

$$\Theta_{k',a} = \frac{\mathcal{I}(\operatorname{Sym}^{k'-2}\bar{\mathbb{Z}}_p^2)}{(T-a)\mathcal{I}(\operatorname{Sym}^{k'-2}\bar{\mathbb{Q}}_p^2) \, \cap \, \mathcal{I}(\operatorname{Sym}^{k'-2}\bar{\mathbb{Z}}_p^2)},$$

where T denotes the Hecke operator acting on the induced representation space $\mathcal{I}(\operatorname{Sym}^{k'-2}\bar{\mathbb{Q}}_p^2)$.

▶ By the compatibility of p-adic and mod p LLC and its explicit nature in the crystalline case, determining $\bar{V}_{k',a}$ boils down to computing the mod p reduction of the following lattice in the automorphic side:

$$\Theta_{k',a} = \frac{\mathcal{I}(\operatorname{Sym}^{k'-2}\bar{\mathbb{Z}}_p^2)}{(T-a)\mathcal{I}(\operatorname{Sym}^{k'-2}\bar{\mathbb{Q}}_p^2) \, \cap \, \mathcal{I}(\operatorname{Sym}^{k'-2}\bar{\mathbb{Z}}_p^2)},$$

where T denotes the Hecke operator acting on the induced representation space $\mathcal{I}(\operatorname{Sym}^{k'-2}\bar{\mathbb{Q}}_p^2)$.

► There is a natural surjection

$$P: \mathcal{I}(V_r) \twoheadrightarrow \bar{\Theta}_{k',a} = \Theta_{k',a} \otimes \bar{\mathbb{F}}_p,$$

where r = k' - 2. To compute $\bar{\Theta}_{k',a}$, we study the map P closely and also use the fact that $\bar{\Theta}_{k',a}$ lies in the image of mod p LLC.

For any $r \geq 0$, the Γ -representation V_r possesses a filtration defined using the Dickson polynomial $\theta = X^p Y - XY^p$, each factor of the filtration $W_i = \frac{\theta^i V_{r-i(p+1)}}{\theta^{i+1} V_{r-(i+1)(p+1)}}$ is reducible of length 2:

$$V_r: W_0 - W_1 - \cdots - W_i - \cdots - W_{|r/(p+1)|}.$$

The structure of W_i are determined by $r \mod (p-1)$ and i.

For any $r \geq 0$, the Γ -representation V_r possesses a filtration defined using the Dickson polynomial $\theta = X^p Y - XY^p$, each factor of the filtration $W_i = \frac{\theta^i V_{r-i(p+1)}}{\theta^{i+1} V_{r-(i+1)(p+1)}}$ is reducible of length 2:

$$V_r: W_0 - W_1 - \cdots - W_i - \cdots - W_{|r/(p+1)|}.$$

The structure of W_i are determined by $r \mod (p-1)$ and i.

▶ If $k' \in \mathcal{W}$ is close enough to some k in our range, then we show that contribution of W_i to $\bar{\Theta}_{k',a}$ via the map P is 0 unless i = |(k-2)/(p+1)| = c, say. Thus inducing a map

$$\mathcal{I}(W_c) \twoheadrightarrow \bar{\Theta}_{k',a}$$
.

For any $r \ge 0$, the Γ -representation V_r possesses a filtration defined using the Dickson polynomial $\theta = X^p Y - XY^p$, each factor of the filtration $W_i = \frac{\theta^i V_{r-i(p+1)}}{\theta^{i+1} V_{r-(i+1)(p+1)}}$ is reducible of length 2:

$$V_r: W_0-W_1-\cdots-W_i-\cdots-W_{\lfloor r/(p+1)\rfloor}.$$

The structure of W_i are determined by $r \mod (p-1)$ and i.

▶ If $k' \in \mathcal{W}$ is close enough to some k in our range, then we show that contribution of W_i to $\bar{\Theta}_{k',a}$ via the map P is 0 unless i = |(k-2)/(p+1)| = c, say. Thus inducing a map

$$\mathcal{I}(W_c) \twoheadrightarrow \bar{\Theta}_{k',a}$$
.

Structure of $W_c + \text{mod } p \text{ LLC} + \text{some standard analysis}$ \implies the shape of $\bar{\Theta}_{k',a}$.

Fix any $a \in \mathfrak{m}_{\bar{\mathbb{Q}}_p}$ with slope v = v(a) < p/2. Recall

Fix any
$$a \in \mathfrak{m}_{\bar{\mathbb{Q}}_p}$$
 with slope $v = v(a) < p/2$. Recall

Fix any $a \in \mathfrak{m}_{\bar{\mathbb{Q}}_p}$ with slope v = v(a) < p/2. Recall

Fix any $a \in \mathfrak{m}_{ar{\mathbb{Q}}_p}$ with slope v = v(a) < p/2. Recall

- - Buzzard-Gee, '09: Complete solution to the reduction problem when 0 < v < 1, at least for $k \equiv 4 \mod (p-1)$. Analysing, we get m(p+3, a) = 1 if v < 1.

Fix any $a \in \mathfrak{m}_{\bar{\mathbb{Q}}_p}$ with slope v = v(a) < p/2. Recall

- **3** Buzzard-Gee, '09: Complete solution to the reduction problem when 0 < v < 1, at least for $k \equiv 4 \mod (p-1)$. Analysing, we get m(p+3,a) = 1 if v < 1.
- **3** B-Ghate-Rozensztajn, '18: Solved the problem for v=1. Analysing, m(p+3,a)=2 if v=1.

Fix any $a \in \mathfrak{m}_{\bar{\mathbb{Q}}_p}$ with slope v = v(a) < p/2. Recall

- **3** Buzzard-Gee, '09: Complete solution to the reduction problem when 0 < v < 1, at least for $k \equiv 4 \mod (p-1)$. Analysing, we get m(p+3,a) = 1 if v < 1.
- **3** B-Ghate-Rozensztajn, '18: Solved the problem for v=1. Analysing, m(p+3,a)=2 if v=1.
- Remaining case: v > 1: similar results not available as both the weight and slope are unbounded. We expect $V_{k',a} \cong \operatorname{ind}_{G_{p^2}}^{G_p}(\omega_2^{p+2})$ if k' is close enough to p+3. But how close?

We prove:

• If k' and p+3 lie in same component of \mathcal{W} and further if $v(k'-(p+3))\geq 2v$, then the map P induces a surjection

 $\operatorname{ind}_{KZ}^G W_1 \to \bar{\Theta}_{K'}$ a.

We prove:

① If k' and p+3 lie in same component of $\mathcal W$ and further if $v(k'-(p+3))\geq 2v$, then the map P induces a surjection

$$\operatorname{ind}_{KZ}^G W_1 \twoheadrightarrow \bar{\Theta}_{k',a}.$$

② Here W_1 lies in the short exact sequence of Γ -modules below:

$$0 \to V_{p-1} \otimes \det \to W_1 \to V_0 \otimes \det \to 0.$$

We prove:

• If k' and p+3 lie in same component of \mathcal{W} and further if $v(k'-(p+3))\geq 2v$, then the map P induces a surjection

$$\operatorname{ind}_{KZ}^G W_1 \twoheadrightarrow \bar{\Theta}_{k',a}.$$

② Here W_1 lies in the short exact sequence of Γ-modules below:

$$0 \to V_{p-1} \otimes \det \to W_1 \to V_0 \otimes \det \to 0.$$

3 The object $\bar{\Theta}_{k',a}$ is the image of $\bar{V}_{k',a}$ under the mod p LLC, and it is also quotient of $\mathrm{ind}_{KZ}^GW_1$ with the structure of W_1 as above. Together this implies that

$$\bar{\Theta}_{k',a} \cong \operatorname{ind}_{G_{p^2}}^{G_p}(\omega_2^{2p+1}) \cong \operatorname{ind}_{G_{p^2}}^{G_p}(\omega_2^{2+p}).$$

We prove:

• If k' and p+3 lie in same component of \mathcal{W} and further if $v(k'-(p+3)) \geq 2v$, then the map P induces a surjection

$$\operatorname{ind}_{KZ}^G W_1 \twoheadrightarrow \bar{\Theta}_{k',a}.$$

② Here W_1 lies in the short exact sequence of Γ -modules below:

$$0 \to V_{p-1} \otimes \det \to W_1 \to V_0 \otimes \det \to 0.$$

3 The object $\bar{\Theta}_{k',a}$ is the image of $\bar{V}_{k',a}$ under the mod p LLC, and it is also quotient of $\mathrm{ind}_{KZ}^GW_1$ with the structure of W_1 as above. Together this implies that

$$\bar{\Theta}_{k',a} \cong \operatorname{ind}_{G_{p^2}}^{G_p}(\omega_2^{2p+1}) \cong \operatorname{ind}_{G_{p^2}}^{G_p}(\omega_2^{2+p}).$$

So our answer: a distance of p^{-2v} in the weight space is close enough!

Answer: by eliminating possible non-zero contribution of

- (1) $\mathcal{I}(W_0)$ and
- (2) $\mathcal{I}(W_m)$ for $m \geq 2$, via the map P.

Answer: by eliminating possible non-zero contribution of

- (1) $\mathcal{I}(W_0)$ and
- (2) $\mathcal{I}(W_m)$ for $m \geq 2$, via the map P.

For each m as above, we take the following steps:

Answer: by eliminating possible non-zero contribution of

- (1) $\mathcal{I}(W_0)$ and
- (2) $\mathcal{I}(W_m)$ for $m \geq 2$, via the map P.

For each m as above, we take the following steps:

For r = k' - 2, the image of $F_m(x, y) = x^m y^{r-m} - y^{p+1-m} x^{r-p-1+m}$ generates the subquotient W_m of V_r over K, whenever $v(k'-k) \ge 1$.

Answer: by eliminating possible non-zero contribution of

- (1) $\mathcal{I}(W_0)$ and
- (2) $\mathcal{I}(W_m)$ for $m \geq 2$, via the map P.

For each m as above, we take the following steps:

- For r = k' 2, the image of $F_m(x, y) = x^m y^{r-m} y^{p+1-m} x^{r-p-1+m}$ generates the subquotient W_m of V_r over K, whenever $v(k'-k) \ge 1$.
- For both m=0 and for all $m \geq 2$, find $f=f_m \in \mathcal{I}(\mathrm{Sym}^r \bar{\mathbb{Q}}_p^2)$ such that (T-a)f is integral and further

$$\overline{(T-a)f} \equiv [g, F_m(x, y)] \mod p$$

for some $g \in G$. Thus we have found a typical element in ker P.

Answer: by eliminating possible non-zero contribution of

- (1) $\mathcal{I}(W_0)$ and
- (2) $\mathcal{I}(W_m)$ for $m \geq 2$, via the map P.

For each m as above, we take the following steps:

- For r = k' 2, the image of $F_m(x, y) = x^m y^{r-m} y^{p+1-m} x^{r-p-1+m}$ generates the subquotient W_m of V_r over K, whenever $v(k'-k) \ge 1$.
- For both m=0 and for all $m \geq 2$, find $f=f_m \in \mathcal{I}(\operatorname{Sym}^r \bar{\mathbb{Q}}_p^2)$ such that (T-a)f is integral and further

$$\overline{(T-a)f} \equiv [g, F_m(x, y)] \mod p$$

for some $g \in G$. Thus we have found a typical element in ker P.

As $\langle \bar{F_m} \rangle_{KZ} = W_m$, the *G*-span of $[g, F_m]$ covers $\mathcal{I}(W_m)$. Hence all of $\mathcal{I}(W_m)$ contributes to ker P and not to $\bar{\Theta}_{k',a}$!

How does the functions look like?

The case m=0: To eliminate W_0 , which is a quotient of V_r of length 2, r=k'-2, we use the following function in $\mathcal{I}(\mathrm{Sym}^r\bar{\mathbb{Q}}_p^2)$:

$$f = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \sum_{\substack{p+1 \le j < r \\ j \equiv 2 \mod (p-1)}} \frac{1}{pa} \binom{r}{j} x^{r-j} y^j \end{bmatrix}$$

How does the functions look like?

The case m=0: To eliminate W_0 , which is a quotient of V_r of length 2, r=k'-2, we use the following function in $\mathcal{I}(\mathrm{Sym}^r\bar{\mathbb{Q}}_p^2)$:

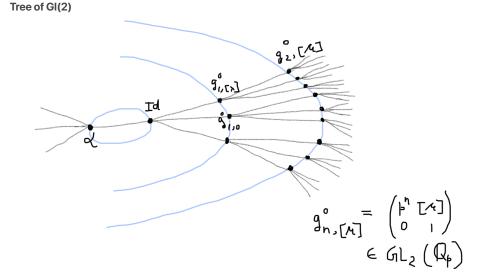
$$f = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, & \sum_{\substack{p+1 \leq j < r \\ j \equiv 2 \mod(p-1)}} \frac{1}{pa} \binom{r}{j} x^{r-j} y^j \end{bmatrix} \\ + \sum_{\lambda \in \mathbb{F}_{+}^{*}} \begin{bmatrix} \binom{p}{0} \begin{bmatrix} \lambda \\ 0 \end{bmatrix}, \frac{F_0(x, y)}{p(p-1)} \end{bmatrix}$$

How does the functions look like?

The case m=0: To eliminate W_0 , which is a quotient of V_r of length 2, r=k'-2, we use the following function in $\mathcal{I}(\mathrm{Sym}^r\bar{\mathbb{Q}}_p^2)$:

$$f = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, & \sum_{\substack{p+1 \le j < r \\ j \equiv 2 \mod (p-1)}} \frac{1}{pa} \binom{r}{j} x^{r-j} y^{j} \\ + \sum_{\lambda \in \mathbb{F}_{n}^{*}} \begin{bmatrix} \begin{pmatrix} p & [\lambda] \\ 0 & 1 \end{pmatrix}, \frac{F_{0}(x, y)}{p(p-1)} \end{bmatrix} - \begin{bmatrix} \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix}, \frac{F_{0}(x, y)}{p} \end{bmatrix},$$

where [·] stands for the Teichmuller representative.



Vertices of the tree are labelled as coset representatives of G/KZ. So Elements in I(V) can be seen as V-valued functions on the tree with finite support. The Hecke operator T takes function on a vertex to one supported on its neighbour vertices, 1 backward and p-many forward neighbours.

C

$$T([g,v]) = \sum_{\lambda \in \mathbb{F}_p} \left[g \begin{pmatrix} p & [\lambda] \\ 0 & 1 \end{pmatrix}, \ v \left(X, -[\lambda] X + p Y \right) \right] + \left[g \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix}, \ v(pX,Y) \right]$$

$$\mathcal{T}([g,v]) = \sum_{\lambda \in \mathbb{F}_p} \left[g \left(\begin{smallmatrix} p & [\lambda] \\ 0 & 1 \end{smallmatrix} \right), \ v \left(X, -[\lambda] X + p Y \right) \right] + \left[g \left(\begin{smallmatrix} 1 & 0 \\ 0 & p \end{smallmatrix} \right), \ v(pX,Y) \right]$$

to the function f to show that (T-a)f is integral and its image generates all of $\mathcal{I}(W_0)$. This particular calculation works under the condition v(k'-(p+3))>v(a)+1.

$$T([g,v]) = \sum_{\lambda \in \mathbb{F}_p} \left[g \begin{pmatrix} p & [\lambda] \\ 0 & 1 \end{pmatrix}, \ v \left(X, -[\lambda] X + p Y \right) \right] + \left[g \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix}, \ v(pX,Y) \right]$$

to the function f to show that (T-a)f is integral and its image generates all of $\mathcal{I}(W_0)$. This particular calculation works under the condition v(k'-(p+3))>v(a)+1.

Next step: For $m=2,3,\cdots$ etc., construct different functions in $\overline{\mathcal{I}}(\mathrm{Sym}^r\bar{\mathbb{Q}}_p^2)$ to eliminate the contribution of $\overline{\mathcal{I}}(W_m)$ in $\bar{\Theta}_{k',a}$ in a similar fashion as for m=0.

$$\mathcal{T}([g,v]) = \sum_{\lambda \in \mathbb{F}_p} \left[g \begin{pmatrix} p & [\lambda] \\ 0 & 1 \end{pmatrix}, \ v \left(X, -[\lambda] X + p Y \right) \right] + \left[g \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix}, \ v(pX,Y) \right]$$

to the function f to show that (T-a)f is integral and its image generates all of $\mathcal{I}(W_0)$. This particular calculation works under the condition v(k'-(p+3))>v(a)+1.

Next step: For $m=2,3,\cdots$ etc., construct different functions in $\overline{\mathcal{I}}(\operatorname{Sym}^r\bar{\mathbb{Q}}_p^2)$ to eliminate the contribution of $\overline{\mathcal{I}}(W_m)$ in $\bar{\Theta}_{k',a}$ in a similar fashion as for m=0.

Consequence: the map $P: \mathcal{I}(V_r) \twoheadrightarrow \bar{\Theta}_{k',a}$ induces a surjection

$$\mathcal{I}(W_1) \twoheadrightarrow \bar{\Theta}_{k',a},$$

as required. We need v(k'-k) to be at least 2v(a), to make sure each step of the calculation works...

$$\mathcal{T}([g,v]) = \sum_{\lambda \in \mathbb{F}_p} \left[g \begin{pmatrix} p & [\lambda] \\ 0 & 1 \end{pmatrix}, \ v \left(X, -[\lambda] X + p Y \right) \right] + \left[g \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix}, \ v(pX,Y) \right]$$

to the function f to show that (T-a)f is integral and its image generates all of $\mathcal{I}(W_0)$. This particular calculation works under the condition v(k'-(p+3))>v(a)+1.

Next step: For $m=2,3,\cdots$ etc., construct different functions in $\overline{\mathcal{I}}(\operatorname{Sym}^r\bar{\mathbb{Q}}_p^2)$ to eliminate the contribution of $\overline{\mathcal{I}}(W_m)$ in $\bar{\Theta}_{k',a}$ in a similar fashion as for m=0.

Consequence: the map $P: \mathcal{I}(V_r) \twoheadrightarrow \bar{\Theta}_{k',a}$ induces a surjection

$$\mathcal{I}(W_1) \twoheadrightarrow \bar{\Theta}_{k',a},$$

as required. We need v(k'-k) to be at least 2v(a), to make sure each step of the calculation works...

Thank You!