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Lecture I: Moduli of p-divisible groups

1 Background:
1 Finite �at group schemes
2 p-divisible groups
3 Isogenies

2 More background:
1 Adic rings
2 Formal groups
3 Liftings

3 The Lubin Tate tower M∞

1 The Lubin Tate moduli space
2 Drinfeld level structure and the tower
3 The case h = 1



Motivation

A an abelian variety /k �eld of char . 6= `

Gal(k̄/k) y T`A = lim
←

A(k̄)[`n]' Z2g
`

Tate/Faltings: T`A determines isogeny class of A when k is a
�nite/number �eld.

Ogg-Néron-Shafarevitch: k a number �eld, then T`A
unrami�ed at v - `⇔ A has good reduction at v .

In char .p : T`A inadequate to study deformations or variation in

families (`-adic and p-adic topologies incompatible). On the other
hand 0≤ rk TpA≤ g (not enough information).
Solution: Consider A[p∞] as a p-divisible group !

Theorem (Serre-Tate)

Given A/k , the category of deformations of A is naturally

equivalent to the category of deformations of A[p∞].
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Finite �at group schemes (�gs)

G/R �nite �at (commutative) group scheme, G = Spec(A),
locally A' Rn as a module, n = rk(G ).

Group structure! (cocommutative) Hopf algebra structure
on A

A
m∗→ A⊗R A, A

i∗→ A, A
e∗→ R.

Example

(1) Γ �nite abelian group, A = RΓ = ∏γ∈ΓR, constant Γ = Spec(A).
(2) µn = Spec(R[X ]/(X n−1)), m∗(X ) = X ⊗X , i∗(X ) = X−1,
e∗(X ) = 1.
(3) R : Fp-algebra, αp = Spec(R[X ]/(X p)),
m∗(X ) = X ⊗1+1⊗X , i∗(X ) =−X , e∗(X ) = 0.
(4) A/R abelian scheme, G = A [m], rk(G ) = m2g .

Functor of points: G (−) : AlgR →Ab, S 7→ G (S), fppf sheaf.
Caution: G (S) need not be �nite, but killed by n = rk(G ).



Finite �at group schemes (�gs)

G/R �nite �at (commutative) group scheme, G = Spec(A),
locally A' Rn as a module, n = rk(G ).

Group structure! (cocommutative) Hopf algebra structure
on A

A
m∗→ A⊗R A, A

i∗→ A, A
e∗→ R.

Example

(1) Γ �nite abelian group, A = RΓ = ∏γ∈ΓR, constant Γ = Spec(A).
(2) µn = Spec(R[X ]/(X n−1)), m∗(X ) = X ⊗X , i∗(X ) = X−1,
e∗(X ) = 1.
(3) R : Fp-algebra, αp = Spec(R[X ]/(X p)),
m∗(X ) = X ⊗1+1⊗X , i∗(X ) =−X , e∗(X ) = 0.
(4) A/R abelian scheme, G = A [m], rk(G ) = m2g .

Functor of points: G (−) : AlgR →Ab, S 7→ G (S), fppf sheaf.
Caution: G (S) need not be �nite, but killed by n = rk(G ).



Finite �at group schemes (�gs)

G/R �nite �at (commutative) group scheme, G = Spec(A),
locally A' Rn as a module, n = rk(G ).

Group structure! (cocommutative) Hopf algebra structure
on A

A
m∗→ A⊗R A, A

i∗→ A, A
e∗→ R.

Example

(1) Γ �nite abelian group, A = RΓ = ∏γ∈ΓR, constant Γ = Spec(A).
(2) µn = Spec(R[X ]/(X n−1)), m∗(X ) = X ⊗X , i∗(X ) = X−1,
e∗(X ) = 1.
(3) R : Fp-algebra, αp = Spec(R[X ]/(X p)),
m∗(X ) = X ⊗1+1⊗X , i∗(X ) =−X , e∗(X ) = 0.
(4) A/R abelian scheme, G = A [m], rk(G ) = m2g .

Functor of points: G (−) : AlgR →Ab, S 7→ G (S), fppf sheaf.
Caution: G (S) need not be �nite, but killed by n = rk(G ).



Cartier duality: A∨ = HomR(A,R) �nite �at module,
coalgebra (algebra) structure of A algebra (coalgebra)
structure on A∨ by duality.

G∨ = Spec(A∨), G∨∨ = G .

Represents the functor

G∨(S) = HomSgps(GS ,Gm,S).

E.g. µ∨n ' Z/nZ, α∨p ' αp, A [m]∨ 'A t [m] (Weil pairing).

Lie algebra:

Lie(G ) = ker(G (R[ε])→ G (R))

an R-module ([r ] : a+bε 7→ a+ rbε). Check: Lie(G )'{
derivations of G/R centered at 0

}
' HomR(ωG/R ,R)

where ωG/R = ΩA/R ⊗A,e∗ R .

Ehud de Shalit Moduli of p-divisible groups



Cartier duality: A∨ = HomR(A,R) �nite �at module,
coalgebra (algebra) structure of A algebra (coalgebra)
structure on A∨ by duality.

G∨ = Spec(A∨), G∨∨ = G .

Represents the functor

G∨(S) = HomSgps(GS ,Gm,S).

E.g. µ∨n ' Z/nZ, α∨p ' αp, A [m]∨ 'A t [m] (Weil pairing).

Lie algebra:

Lie(G ) = ker(G (R[ε])→ G (R))

an R-module ([r ] : a+bε 7→ a+ rbε). Check: Lie(G )'{
derivations of G/R centered at 0

}
' HomR(ωG/R ,R)

where ωG/R = ΩA/R ⊗A,e∗ R .

Ehud de Shalit Moduli of p-divisible groups



Cartier duality: A∨ = HomR(A,R) �nite �at module,
coalgebra (algebra) structure of A algebra (coalgebra)
structure on A∨ by duality.

G∨ = Spec(A∨), G∨∨ = G .

Represents the functor

G∨(S) = HomSgps(GS ,Gm,S).

E.g. µ∨n ' Z/nZ, α∨p ' αp, A [m]∨ 'A t [m] (Weil pairing).

Lie algebra:

Lie(G ) = ker(G (R[ε])→ G (R))

an R-module ([r ] : a+bε 7→ a+ rbε). Check: Lie(G )'{
derivations of G/R centered at 0

}
' HomR(ωG/R ,R)

where ωG/R = ΩA/R ⊗A,e∗ R .

Ehud de Shalit Moduli of p-divisible groups



Étale and connected: G is étale ⇔ ωG/R = 0⇔∃R → S
�nite étale s.t. GS is constant. G is connected if A has no
idempotents other than 0,1.

R Henselian local ring (e.g. complete), lifting idempotents  
connected-étale exact sequence

0→ G 0→ G → G et → 0.

If R is a perfect �eld, the sequence splits canonically:

G red ↪→ G , G red ' G et .

The category FfgsR is additive, but in general not abelian
(unless R is a �eld). A sequence

0→ G ′
α→ G

β→ G ′′→ 0

is a SES if α is a closed immersion, β is faithfully �at and
α = ker(β ) (equiv. SES as fppf sheaves).
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p-divisible groups

De�nition

A p-divisible group of height h over R is a system (Gn, in,pn) where
Gn is a �gs of rank pnh, in : Gn ↪→ Gn+1 is a closed immersion
identifying Gn with Gn+1[pn], and pn : Gn� Gn−1 is faithfully �at
and satis�es pn+1 ◦ in = in−1 ◦pn = [p]Gn .

G = lim→Gn, Gn = G [pn] as an fppf sheaf

Examples: Qp/Zp, µp∞ , A [p∞] hts 1,1,2g

Notion of SES

Cartier-Serre duality: (Gn, in,pn)∨ = (G∨n ,p
∨
n+1, i

∨
n−1), e.g.

µ
∨
p∞ 'Qp/Zp, A [p∞]∨ 'A t [p∞].
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Lie algebra: Suppose pN = 0. Since Gn = Gn+1[pn],

Lie(Gn) = Lie(Gn+1)[pn] = Lie(Gn+1)

if n ≥ N. Call this common module Lie(G ).

Facts: (1) Lie(G ) is locally free of rank d ≤ h = ht(G ). Call
d = dim(G ) the dimension.

(2) Lie(GS) = Lie(G )S , (3) dim(G ) + dim(G∨) = ht(G ).

Connected-étale exact sequence: R Henselian local ring  

0→ G 0→ G → G et → 0.

Splits if R = perfect �eld of char. p. Same for G∨ 

G = Gmult ×Gbiloc ×G et

Gmult,∨ étale, Gbiloc,∨ connected.
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Isogenies

Hom(G ,G ′) is a �at Zp-module. Let

qHom(G ,G ′) = Hom(G ,G ′)[1/p].

The category of p-divisible groups up to isogeny has the same
objects but Hom is replaced by qHom. A quasi-isogeny is an
isomorphism in this category. An isogeny is a quasi-isogeny
which is a homomorphism.

If G and G ′ are isogenous then they have the same height and
dimension, and the kernel of any isogeny is a �gs. Any
quasi-isogeny has ht ∈ Z and ht(f ′ ◦ f ) = ht(f ) +ht(f ′).

Important isogenies if R is an Fp-algebra: Frobenius and
Verschiebung

FG : G → G (p), VG : G (p)→ G .

Here G (p) = G ×R,φ R , φ(x) = xp, FG = relative Frobenius
morphism, VG = (FG∨)∨.
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Adic rings

De�nition

An adic ring is a complete and separated topological ring R for
which ∃ ideal I s.t.

R ' lim
←

R/I n

(topologically). Any such I is an ideal of de�nition, and R is
�I -adic�. Adic = category of adic rings and continuous hom's.

Examples: R discrete (I = 0); completion of any ring w.r.t. a
f.g. ideal; (Zp[[u]], I = (p,u)); (Zp 〈u〉 , I = (p)).

J is also an ideal of de�nition if Im ⊂ J, Jn ⊂ I .

If R is I -adic, J ⊂ I and Jn is closed for all n (e.g. R
noetherian) then R is complete and separated in the J-adic
topology as well.

If R ∈Adic, Nil(R) = ideal of topologically nilpotent elements.
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Formal groups

De�nition

Let R ∈ Adic, A = R[[X1, . . . ,Xd ]]. A d-dimensional (commutative)

formal group law over R is Φ(X ,Y ) ∈ (A⊗̂RA)d such that

1 Φ(X ,0) = X

2 Φ(X ,Y ) = Φ(Y ,X )

3 Φ(Φ(X ,Y ),Z ) = Φ(X ,Φ(Y ,Z )).

∃!ι(X ) ∈ Ad without constant term s.t. Φ(X , ι(X )) = 0.

Examples: Ĝa: Φ(X ,Y ) = X +Y ; Ĝm:
Φ(X ,Y ) = X +Y +XY ; A/R abelian scheme, A = ÔA ,0.

GΦ : AdicR → Ab, GΦ(S) = (Nil(S)d , [+]Φ). By Yoneda,
determines Φ up to isomorphism.

A formal group G over R is a functor AdicR → Ab which,
locally on R , is of the form GΦ.
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p-divisible formal groups

Let R ∈ AdicZp . GΦ is p-divisible if [p]∗ : A→ A is �nite �at.

(Examples: Ĝm because [p]∗(X ) = pX + · · ·+X p, but not Ĝa

where [p]∗(X ) = pX ).

Fact: G p-divisible ⇒ deg[p]∗ = ph, h = ht(G ), otherwise
ht = ∞.

Theorem (Tate, Messing)

Let G be a p-divisible formal group. De�ne

G = G (p) = (G [pn], in,pn)

as presheaves on AdicR . Then (i) G is a p-divisible group (ii) The

functor G → G (p) is fully faithful from the category �p-divisible
formal groups� onto a full subcategory �formal p-divisible groups�.

(iii) If R is local complete mR -adic then G/R is formal i� it is

connected (iv) the functor preserves height and dimension (where

we de�ne Lie(G ) = lim←N Lie(GR/pNR)).
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Let R ∈ AdicZp , S ∈ AdicR , IS an ideal of def'n. If G is a
p-divisible group over R we re-de�ne

G (S) = lim
←

G (S/I nS ).

Assume R local complete mR -adic. If S is discrete or G is
étale, have not changed the def'n. If G is connected, and
G = G (p) then G (S) = G (S).

Example: µp∞(OC ) = lim← µp∞(OC/p
n) = lim←(1+mC

mod pn) = 1+mC = Ĝm(OC ). Here C = Cp.

Notation: G ,G ′/R . Write HomS(G ,G ′) for HomSgps(GS ,G
′
S).
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Liftings of formal groups

Theorem (Lazard, 1955)

Let R ∈ Adic, J ⊂ R a closed ideal. Then any formal group over

R/J lifts to a formal group over R.

Reason: there exists a universal d-dimensional formal group and it
is de�ned over a free polynomial ring over Z.

Theorem (Rigidity of quasi-isogenies )

Let F ,G be p-divisible formal groups over R ∈ AdicZp , J a closed

topologically nilpotent ideal in R . Then (i)

HomR(F ,G ) ↪→ HomR/J(F ,G )
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Caution:

EndR(Ĝa)→ EndR/J(Ĝa) not injective (Ĝa not p-div).

EndOC
(G )→ EndOC /mC

(G ) not injective (mC not top. nilp.).

qEndZp(G )→ qEndFp(G ) not surjective (pZp not nilpotent).

Example (One dimensional formal groups)

k algebraically closed �eld, char. p. For any h ≥ 1∃! 1-dimensional
formal p-divisible group H0 of height h.

Construction: H/Z
ph
Lubin-Tate formal group law with

[p]H = pX +X ph  H0 = H×Z
ph
k .

Endomorphisms: Let OD = Zph [Π], Πh = p, Πa = σ(a)Π, the
maximal order in the division algebra D of invariant 1/h with
center Qp. Then

Endk(H0) = OD .

Exercise: H0 de�ned over Fp. Find End over Fp (Fph), and
which of them lift to endomorphisms of H over Zp (Zph).
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The Lubin-Tate moduli space

Let k , H0 as above, W = W (k). Let Ck ⊂ AdicW be the full
subcategory of local complete noetherian rings with residue
�eld k . Consider the deformation functor M 0 : Ck → Sets

M 0(R) = {(G , ι)|G/R 1 dim p div gp, ι : G ×R k ' H0}/' .

Rigid: Aut(G , ι) = {1}
O×D y M 0 via δ (G , ι) = (G ,δ ◦ ι)
Variant: ι quasi-isogeny, M =

⊔
ht(ι)=i M

i , D×y M ,

Π(M i ) = M i+1.

Theorem (Lubin-Tate)

M 0 is representable by Spf (A0) where

A0 = W [[u1, . . . ,uh−1]].

Remark

(i) h = 1 : a unique deformation = Ĝm. (ii) Action of O×D
non-trivial!
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Sketch: Let v1,v2, . . . be variables. De�ne bi ∈ p−iZp[v1,v2, . . . ]

b0 = 1, pbi = vi +b1v
p
i−1 +b2v

p2

i−2 + · · ·+bi−1v
pi−1

1

f =
∞

∑
i=0

biX
pi , F (X ,Y ) = f −1(f (X ) + f (Y )).

Lemma (Lazard, Hazewinkel)

(i) F ∈ Zp[v ][[X ,Y ]] is a universal 1-dimensional formal group law

over Zp-algebras. (ii)

logF = f ≡ X +p−1vhX
ph mod (v1, . . . ,vh−1,X

ph+1)

[p]F ≡ vhX
ph mod (p,v1, . . . ,vh−1,X

ph+1).

Corollary

If R is an Fp algebra and G is obtained from F by vi 7→ 0
(1≤ i < h), vh 7→ 1 then G has height h.
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Let Huniv
/A0

be obtained from F by vi 7→ ui (1≤ i < h), vh 7→ 1,

vi 7→ 0 (h < i). Identify Huniv
k = H0. Need to show that for

every (G , ι) ∈M 0(R), R ∈ Ck , ∃!ϕ : A0→ R and a unique
isomorphism

G ' Huniv ×A0,ϕ R

lifting ι : Gk ' H0.

In�nitesimal deformations: Identify M 0(k[ε])'

Ext1(H0,Lie(H0))'Ext1(H0,Ĝa)⊗k Lie(H0)' Lie(H∨0 )⊗k Lie(H0)

(Ext group to be discussed later), so of dimension h−1 (in
general (h−d)d). Identify it with the tangent space to
A0⊗W k . This essentially shows that M 0 is representable by a
quotient A0/a.

Deformation problem is unobstructed: Show a = 0.
Follows from Ext2(H0,Ĝa) = 0.

Remark: Ext i (H0,Ĝa)' H i+1(H0,Ĝa)s , certain cohomology
groups.
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Remarks on Lubin-Tate's paper

Lubin-Tate paper (1966) is only 10 pages long. Recommended!

May replace formal groups by �formal A-modules� (A a
CDVR), p (uniformizer) by π, p (degree) by q etc. See
Gross-Hopkins, Drinfeld. Works in the function �eld case too,
theory of Drinfeld modules.

When all ui = 0 one gets the �canonical lifting �. If R = W
get the Lubin-Tate formal group of height h over W . More
generally, for every [L : Qp] < ∞ and uniformizer π of L get a
unique-up-to-isomorphism �Lubin-Tate formal group� over
OL associated with π. It plays an important role in Class Field
Theory. Over L̂nr the dependence on π disappears.

Let (G , ι) ∈M 0(R). Let EndR(G ) = O
ι
↪→ OD = Endk(H0).

The pairs (G ′, ι ′) ∈M 0(R) with G ′ ' G are classi�ed by
O×D/O

× under the action of O×D on M 0(R). Note O ⊃ Zp.
[L-T]⇒∃ elliptic curves without CM whose p-divisible group
has End ) Zp.
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Drinfeld Level Structure

De�nition

A Drinfeld level-n structure on (G , ι) ∈M (R) is a homomorphism
of �gs/R

αn : (Z/pnZ)h→ G [pn]

such that ∑x∈(Z/pnZ)h αn(x) = G [pn] as Cartier divisors.

Each αn(x) : Spec(R)→ G [pn]←→ ideal Ix in the Hopf
algebra of G [pn]. The condition is ∏x∈(Z/pnZ)h Ix = 0.

Equivalently, if G (p)' G ,

[pn]∗(X )∼ ∏
x∈(Z/pnZ)h

(X −αn(x))

in R[[X ]] (generate the same ideal). Note αn(x) ∈mR .

E.g. αn : Z/pnZ→ µpn is a Drinfeld structure
⇔ Φpn(αn(1)) = 0 (the cyclotomic polynomial).
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The Lubin-Tate tower

Mn(R) = {(G , ι ,αn)|(G , ι) ∈M (R), αn level n structure}.
(g1,g2) ∈ D××GLh(Z/pnZ) y Mn(R)

(g1,g2)(G , ι ,αn) = (G ,g1 ◦ ι ,αn ◦g−12 ).

Theorem (Drinfeld)

(i) M 0
n = Spf (An) is representable.

(ii) An is a regular complete local ring, �nite �at over A0.

(iii) if M0 = Spa(A0,A0) and M0
n = Spa(An,An) (the adic spaces

associated to these formal schemes) and

M0
η = M0×Spa(W ,W ) Spa(W [1/p],W ), M0

n,η = · · ·

are their generic �bers, then M0
n,η

πn→M0
η is Galois étale of Galois

group GLh(Z/pnZ).

Caution: M0
η (M0

n,η) is not an a�noid, but an �open polydisk�.
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A∞ = (lim→An)̂ (I -adic completion, I = (p,u1, . . . ,uh−1))
non-noetherian but I f.g. so A∞ is complete and separated.
Then

M 0
∞ = Spf (A∞) = lim

←
M 0

n .

M0
∞ = Spa(A∞,A∞) is an adic space. (A point to check: its

structure presheaf is sheafy, follows from the fact that A∞ is a
perfectoid ring).

M0
∞,η the generic �ber of M0

∞ (open set of valuations where
|p| 6= 0), is the analytic Lubin-Tate space at the in�nite
level.

In Scholze's terminology

M0
∞,η ∼ lim

←
M0

n,η .
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The Lubin-Tate tower, h = 1

A0 = W , unique deformation is Ĝm.

αn level-n structure i� Φpn(αn(1)) = 0 so

An = W [X ]/(Φpn) = W [ζpn ], A∞ = OL, L = Q̂ab
p .

Proposition

L is a perfectoid �eld, i.e. φ : OL/p→ OL/p is surjective.

Proof. φ is surjective on W /p and φ(ζpn+1) = ζpn .

Tilt: L[ = F̄p((t1/p
∞

))

First instance of: �the Lubin-Tate tower at the in�nite level�
M0

∞,η is a perfectoid space.

Action of O×D (resp. GL1(Zp)) via the (resp. inverse of)
cyclotomic character χcyc : Gal(Qab

p /Qnr
p )' Z×p .
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The universal covering of G

R ∈ AdicZp , G/R a p-div gp. Recall G (S) = lim←G (S/I nS ).

De�nition

G̃ (S) = lim←×pG (S) = {(x0,x1...)|xi ∈ G (S), [p]G (xi+1) = xi}.
Presheaf on AdicR , values in Qp-vector spaces.

Examples: G = Qp/Zp, G̃ = Qp; G = µp∞ , G̃ (OC ) = 1+mC [ .

If G ∼ G ′ then G̃ ' G̃ ′.

Lemma (Crystalline nature of G̃ )

I ⊂ S closed topologically nilpotent ⇒ G̃ (S) = G̃ (S/I ).

Proof. Let y = (y0,y1, . . .) ∈ G̃ (S/I ), zi ∈ G (S) lifting yi . Then
xi = limj→∞[pj ](zi+j) exists, is independent of the lifting, and
de�nes the unique x 7→ y .
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Corollary. Let T � S ∈ AdicR be a (pro-)nilpotent thickening. For

any lift G ′ of G to T , G̃ ′(T ) = G̃ (S). Write G̃ ′(T ) = G̃ (T ).

Proposition

Assume R perfect Fp-algebra (φ bijective), G formal. Then G̃ is

(locally on R) representable by a formal scheme

G̃ = Spf (R[[X
1/p∞

1 , . . . ,X
1/p∞

d ]]).

Key idea: May replace lim←×p by lim←×F and get isomorphic
groups. For this need to consider

G
F← G (p−1) F← G (p−2) F← ·· ·

so R has to be perfect.
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R = OC , k = OC/mC = F̄p.

Theorem (Isotriviality)

There exists a quasi-isogeny

ρ : G ×OC
OC/p 99K Gk ×k OC/p.

Much deeper than �rigidity of quasi-isogenies� because mC/(p) not
nilpotent - relies on theorems of Fargues and �full-faithfullness�
result of Scholze-Weinstein. Crucial ingredient: C is perfectoid.

Corollary

G̃ ' Spf (OC [[X
1/p∞

1 , . . . ,X
1/p∞

d ]]), hence its associated analytic

space (Spa(..., ...)η ) is a perfectoid (a �perfectoid open unit

polydisk�).

Proof. Apply (i) crystalline nature of G̃ (ii) isotriviality +
invariance under isogenies: G̃ (S) = G̃ (S/p)' G̃k(S/p), but Gk is
already de�ned over a perfect �eld.
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The Tate module

Tate module: TpG = lim←×pG [pn], VpG = TpG [1/p] ↪→ G̃ .

Example: When R is a perfect �eld

TpGm = Spf (R[[X 1/p∞

]]/(X )) = Spec(R[X 1/p∞

]/(X )).

Warning: If G ′ is a lifting to a nilpotent thickening T � S ,
G̃ ′(T ) = G̃ (S), but the subspace VpG

′(T ) very much depends
on the lifting.

Goal: an exact sequence (S �at over Zp)

(LOG) 0→ VpG (S)→ G̃ (S)
θ→ Lie(GS)[1/p].

Spoiler: we shall later recover this sequence (when S is a
perfectoid) as the global sections of a �modi�cation of vector
bundles� on the Fargues-Fontaine curve.
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Logarithms

G/R formal p-div! G = Spf (A), A = R[[X1. . . . ,Xd ]].

ωG/R =⊕RdXi |0 ' {ω ∈ ΩA/R |m∗(ω) = ω⊗1+1⊗ω}=
translation invariant di�erentials (all closed: dω = 0).

R �at over Zp: Then ∀ω ∃!λω ∈ A[1/p]̂ without constant
term, dλω = ω , λω ∈ HomR[1/p](G ,Ĝa) (formal Poincaré

lemma).

Hom(ωG/R ,Hom(G ,Ĝa)) = Hom(G ,Hom(ωG/R ,Ĝa)).

Lie(G ) = Hom(ωG/R ,Ĝa) logG ∈ HomR[1/p](G ,Lie(G )).

Let θ = logG ◦pr0 where pr0 : G̃ → G is x 7→ x0. Then (LOG)
is exact.

If pr0 : G̃ (S)→ G (S) is surjective θ is surjective too.

θ will be related to the �θ � of Fontaine's rings.
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A simple description of M∞

R ∈ Ck , (G , ι) ∈M (R), ι : G ×R k 99K H0, ht(H0) = h. Let
H/W be the Lubin-Tate group (�canonical lifting�) of H0.

Theorem (Hedayatzadeh, 2015)

There exists a canonical alternating multilinear λn : G [pn]h→ µpn

satisfying a universal property.  λG : G̃h→ G̃m.

Via ι : G̃ (S) = G̃ (S/mS)
ι' H̃(S/mS) = H̃(S). Get

∃!λ (ι) ∈Q×p , ordp(λ (ι)) = ht(ι), λH ◦ ι = λ (ι) ·λG .

H̃ = Spf (W [[X 1/p∞

]]), G̃m = Spf (W [[T 1/p∞

]]), λH!

T 1/pn 7→ compatible δ
1/pn ∈ R[[X

1/p∞

1 , . . . ,X
1/p∞

h ]]

δ (· · · ,Xi [+]HX
′
i , · · ·) = δ (· · · ,Xi · · ·)[+]Gmδ (· · · ,X ′i , · · ·) and

alternating condition.
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A commutative diagram of formal schemes over Spf (W ) (L = Q̂ab
p )

(LT∞)

M∞ −→
⊔

ht(ι)=iSpf (OL)
↓ ↓ t
H̃h λH−→ G̃m,W

Right t! T 1/pn 7→
(

limm(ζpm −1)p
m−n−i

)
i∈Z
∈∏i∈ZOL

Top (G , ι ,α∞) ∈M 0
∞ 7→ (ζpn 7→ λ (ι) ·λn,G (αn,1, . . . ,αn,h)) .

Left (G , ι ,α∞) 7→ (αn,1, . . . ,αn,h)∞
n=1 ∈ G̃h ι' H̃h.

Theorem (Weinstein, 2016)

(i) The diagram is cartesian. (ii) Action of g ∈ GLh(Qp): on H̃h via

right action of g−1 on row vectors, on G̃m,W via detg−1, similarly

on
⊔

ht(ι)=iSpf (OL) (p shifts between copies, Z×p acts like inverse

cyclotomic character) (iii) Action of D×: via D = qEnd(H0) on

H̃ = H̃0, via Nrd on right column.
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Remark. (i = 0) Spf (OL)' TpĜprim
m,W ⊂ VpĜm,W ↪→ G̃m,W . When

h = 1 the bottom row is the identity. In general M 0
∞ is the �ber of

λH at the OL-point t of G̃m,W . Unlike the horizontal maps, the
vertical maps do not make sense at �nite levels.

Corollary

(i) The group (GLh(Qp)×D×)det=Nrd acts on the cartesian

diagram (trivially on G̃m,W ).

(ii) Explicitly, let t1/p
n

= t∗(T 1/pn), M∞ = Spf (A∞),

A∞ = OL[[X
1/p∞

1 , . . . ,X
1/p∞

h ]]/(δ
1/pn − t1/p

n
).

(iii) φ(x) = xp is surjective on A∞/p.
(iv) M∞,η is a perfectoid space.

Scholie: The Lubin-Tate tower at the in�nite level is in�nitely
simpler than at �nite levels, and in addition is a perfectoid!
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The universal vectorial extension

G/R p-div gp, pN = 0 in R . The sequence of fppf sheaves on AlgR

0→ G [pn]→ G
pn→ G → 0

is exact. Applying RHom(−,Ga) get a SES

0→ Hom(G ,Ga)/pn→ Hom(G [pn],Ga)→ Ext(G ,Ga)[pn]→ 0.

Hom(G ,Ga) = 0 since G is p-divisible but pNGa = 0.

n ≥ N ⇒ Ext(G ,Ga) = Hom(G [pn],Ga) = {a ∈ An|m∗G (a) =
a⊗1+1⊗a}= Lie(G∨[pn]) = Lie(G∨) = Hom(ωG∨ ,R).

Similarly for any R-module Ext(G ,M)' Hom(ωG∨/R ,M).

Taking M = ωG∨/R and the identity  �universal� extension

0→ ωG∨/R → EG → G → 0

from which any (fppf sheaf) extension of G by a vector-group
M is gotten by a unique push-out.
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The Grothendieck-Messing crystal MG
Take Lie(−). Get a SES of vector groups (MG = Lie(EG ))

0→ ωG∨/R →MG → Lie(G )→ 0.

∀S ∈ AlgR , MG (S) a locally free module, rk(MG ) = ht(G ).

Goal: enhance MG to a crystal of modules on the crystalline
site. Need: MG classi�es rigidi�ed extensions of G∨ by Ga.

A rigidi�cation of an extension E of G by Ga is a splitting

0→Ga→ Lie(E )
L99→ Lie(G )→ 0.

Any two rigidi�cations di�er by a homomorphism from Lie(G )
to Ga, i.e. by an element of ωG/R . The group of rigidi�ed

extensions Ext\(G∨,Ga) sits in an exact sequence

0 → ωG∨/R → Ext\(G∨,Ga) → Ext(G∨,Ga) → 0

|| || ||
0 → ωG∨/R → MG (R) → Lie(G ) → 0.
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Big crystalline site over R ∈ AlgZp
: Objects are diagrams

T
pd
� S

↑
R

S ∈ AlgR , T a nilpotent divided powers thickening of S . If S
is Zp-�at: x ∈ I = ker(T � S)⇒ xn/n! ∈ I , and ∃N s.t.
(xn11 /n1!) · · ·(xnrr /nr !) = 0 if xi ∈ I , ∑ni ≥ N. Morphisms

�preserve the pd structure�.

Coverings of T
pd
� S : {(Ti

pd
� Si )→ (T

pd
� S)} s.t.

Spec(T ) =
⋃
Spec(Ti ) a Zariski cover , Si = S⊗T Ti .

Structure sheaf O(T
pd
� S) = O(T ).

Theorem (Grothendieck-Messing)

If (T
pd
� S) as above and G ′T is a lifting of GS to T then MG ′T

depends functorialy only on G . Denote it by

MG (T � S).Ehud de Shalit Moduli of p-divisible groups
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A locally free coherent sheaf, MG (S) = M(GS) is MG (S� S).

Explanation (Katz): R ∈ AdicZp , Zp-�at. Let F/R a p-divisible
formal group, F = Spf (R[[X1, . . . ,Xd ]]).

H1
dR(F/R) = {[η]|η closed,m∗F (η)−η⊗1−1⊗η exact}

translation invariant cohomology classes.

ωF/R = {η |m∗F (η) = η⊗1+1⊗η} ↪→ H1
dR(F/R), because

R is p-adic, and F is p-divisible, so η exact and translation
invariant ⇒ η = 0. (Logarithms need R[1/p].)

0 → ωF/R → H1
dR(F/R)

∂→ H2(F ;Ga)s → 0

|| || ||
0 → ωF/R → Ext\(F ;Ga) → Ext(F ;Ga) → 0

Bottom row identi�ed, when G∨!F , with

0→ ωG∨/R →MG (R)→ Lie(G )→ 0.

We explain the map ∂ :
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.

H2(F ;Ga)s =
{∆(X ,Y ) ∈ R[[X ;Y ]]|symm.,δ (∆) = 0}
{δ (f ) = f (X [+]Y )− f (X )− f (Y )}

δ (∆) = ∆(Y ,Z )−∆(X [+]Y ,Z ) + ∆(X ,Y [+]Z )−∆(X ,Y ).

The map from H1
dR(F/R) is: �nd a primitive f (X ) ∈ R[1/p][[X ]]

for η , let ∆ = δ (f ). [η] is translation invariant ⇒∆ is integral:
δ (η) = d∆. Set ∂ ([η]) = [∆].
The identi�cation H2(F ;Ga)s ' Ext(F ;Ga) is standard, that of

H1
dR(F/R)' Ext\(F ;Ga) requires only a little more work.

Lemma

Let F ′,F ′′ be liftings of F to T
pd
� R . Let ϕ : F ′→F ′′ be a

morphism of pointed Lie varieties reducing to the identity on R .
Then (i) ϕ∗ : H1

dR(F ′′/T )' H1
dR(F ′/T ) (preserving the invariance

under the group law). (ii) ϕ∗ is independent of ϕ . (iii) Similarly, if

ϕ reduces to an endomorphism ϕ0 of F , ϕ∗ is a homomorphism

that depends only on ϕ0.

Ehud de Shalit Moduli of p-divisible groups
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Proof.

(d = 1) Let η = df , f ∈ T [1/p][[X ]], represent [η] ∈ H1
dR(F ′′/T ).

Let I = ker(T
pd
� R), ϕ1,ϕ2 ∈ T [[Y ]], ϕi (0) = 0, ϕ1 ≡ ϕ2 mod I .

Then by Taylor

ϕ
∗
2(η)−ϕ

∗
1(η) = d

(
∞

∑
n=1

f (n)(ϕ1) · (ϕ2−ϕ1)n

n!

)

and (· · ·) ∈ T [[Y ]] since I has divided powers and f (1) is already
integral. This shows (ii) ϕ∗2([η]) = ϕ∗1([η]). A similar argument
proves (i) and (iii).

Explains phrase: �MG ′T (T ) depends functorially only on G �.

It is blatantly false that ϕ∗ maps ωF ′′/T to ωF ′/T .

The proof highlights the use of �divided powers�.

Also: relation between crystalline and de Rham cohomology.

For a proof when R is not Zp-�at see Messing's thesis.
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Dieudonné modules

k perfect �eld, char .p, W = W (k), σ the Frobenius automorphism.
G/k p-div gp. Its Dieudonné module is

D(G ) = M(G∨)(W � k).

Contravariant, free W -module rk h = ht(G ).

FG : G → G (p), dual isogeny VG∨ : G∨(p)→ G∨. By
functoriality of M(−) get F : D(G )(p)→ D(G ), i.e. σ -linear
D(G )→ D(G ). Similarly, VG : G (p)→ G  σ−1-linear V .

F ◦V = V ◦F = p.

(D(G ),F ,V ) - an F -crystal over k . Form an additive category.

Theorem (Dieudonné-Manin )

D(−) is an anti-equivalence between pdivgpk and Fcrystk .

Ehud de Shalit Moduli of p-divisible groups
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F -isocrystals

M(G∨)(k) = D(G )/pD(G ) (' H1
dR(A /k) if G = A [p∞]).

ωG/k ' VD(G )(p−1)/pD(G ).

Original equivalent def'n: D(G ) = Homk(G ,CW ) where CW
is the group of co-Witt vectors x F ,V .

F -isocrystals (N,F ,V ) - N a f.dim. W [1/p]-vector space, F ,V as
above. An equivalence of categories between �p-div gps up to
isogeny� and �F -isocrystals containing an invariant F -crystal�.

Standard example: (r ,s) = 1, s > 0, λ = r/s. Let
Nλ = ∑

s
i=1W [1/p]ei , Fei = ei+1 (i < s), Fes = pre1. Call λ

the (Frobenius) slope.

Theorem

Let k be alg. closed. The category of F -isocrystals over k is

semisimple. Its simple objects are the Nλ . An F -isocrystal contains
an F -crystal i� all its slopes are contained in [0,1].
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End(Nλ ) = D−λ , division ring over Qp with invariant −λ

mod 1. (If N = D(G )[1/p] this means qEnd(G )' Dλ .)

Lubin-Tate case λ = 1/h.

Exercise: If 0≤ r ≤ s extend e ′i by e ′i+ms = pme ′i , de�ne the
F -crystal

Mλ =
s

∑
i=1

We ′i ,Fe
′
i = e ′i+r ,Ve

′
i = e ′i+s−r .

Then Nλ has a lattice isomorphic to Mλ (but there are others).

Let k be perfect. Call N isoclinic of slope λ if N⊗k k̄ ' Nn
λ
.

Proposition (Slope decomposition)

Let k be perfect and N an F -isocrystal over k . Then
N =⊕λ∈QN(λ ) where N(λ ) is isoclinic of slope λ .

Let λ1 < λ2 < · · ·< λn be the slopes of N. Then the Newton
polygon NP(N) is convex, starts at (0,0), and has slopes λi with
horizontal length rk(N(λi )). Break points are in Z2.

Ehud de Shalit Moduli of p-divisible groups
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Lubin-Tate case λ = 1/h.

Exercise: If 0≤ r ≤ s extend e ′i by e ′i+ms = pme ′i , de�ne the
F -crystal

Mλ =
s

∑
i=1

We ′i ,Fe
′
i = e ′i+r ,Ve

′
i = e ′i+s−r .

Then Nλ has a lattice isomorphic to Mλ (but there are others).

Let k be perfect. Call N isoclinic of slope λ if N⊗k k̄ ' Nn
λ
.

Proposition (Slope decomposition)

Let k be perfect and N an F -isocrystal over k . Then
N =⊕λ∈QN(λ ) where N(λ ) is isoclinic of slope λ .

Let λ1 < λ2 < · · ·< λn be the slopes of N. Then the Newton
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Lecture III: Period maps

1 The Grothendieck-Messing (GM) period map
1 The quasi-logarithm and a big diagram
2 Rapoport-Zink deformation spaces
3 The Grothendieck-Messing period map
4 Period domains and admissibility

2 The Hodge-Tate (HT) period map
1 The Hodge-Tate decomposition
2 Hodge-Tate period map

3 Example: Drinfeld's p-adic symmetric domain
1 Rapoport-Zink spaces with PEL structure
2 The Drinfeld moduli problem



Quasi logarithms and a big diagram

R,S ∈ AdicZp , π : S
pd
� R , S ' lim←S/(ker π)n. Assume S �at

over Zp, e.g. OC � OC/p.

Let G/S lift G0/R . Both G̃ and MG have a �crystalline nature�.
We relate them. Top maps to bottom via log's (not shown).

ωG∨/S ↪→ EG0(S) · · · → G (S)
↗ αG ↗ sG ↗ |

TpG(S) ↪→ G̃0(S) →
pr0

G(S) logG

| ↓
... ωG∨/S ,Q ↪→ MG0(S)Q · · · → Lie(G )Q
↓ ↗ ↗ qlog ↗

VpG(S) ↪→ G̃0(S) →
θ

Lie(G)Q
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sG (x0,x1, . . .) = lim[pn]EG (ξn), if EG (S) 3 ξn 7→ xn ∈ G (S).

αG = sG |TpG(S) has the following interpretation:

x ∈ TpG (S) xn ∈ G (S)[pn] = HomS(G∨[pn],Ĝm)

 Lie(x) ∈ Hom(Lie(G∨),Ĝa) = ωG∨/S .

qlogG = logEG ◦sG . If G! G , �x coordinates on EG , let
x = (x0,x1, . . .) and ξn as above, then

qlogG (x) = lim
m

lim
n

1

pm
[pn+m]EG (ξn).

θ = logG ◦pr0 = prMG
Lie(G) ◦qlogG .

The maps sG ,qlogG are morphisms of crystals; θ , αG depend
on G and will be related to the GM / HT period maps.
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Rapoport-Zink deformation spaces

Generalize Lubin-Tate space: k alg. closed char. p, W = W (k),
H0/k p-div gp, ht = h, dim = d . Set

M0 = MH0(W � k) = D(H∨0 )'W h.

S ∈NilpW = W -algebras on which p is loc. nilp., e.g. OC/p
N .

D(S) = {(G , ι)|G/S p div gp, ι : G ×S S/p
q.i .
99K H0×k S/p}.

If S = p-adic W -algebra, let D(S) = lim←D(S/pN).

If S also �at over W , ι induces MG (S)Q 'M0⊗W SQ.

Lubin-Tate case: d = 1, H0 formal, R ∈ Ck and S = R/mN
R ,

D(S) = M (S), since by rigidity of quasi-isogenies

qHomS/p(G ,H0)' qHomR/mR
(G ,H0),

but note D(k[[u]]) 6= M (k[[u]]).
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In general, a quasi-isogeny G0→ H0 of height 0 need not be

an isomorphism, so can not replace
q.i .
99K by ', even on D0.

Example

1) d = 1, h = 2, H0 = Qp/Zp×µp∞ . Since Qp/Zp and µp∞ do not
deform,

D0(S) = ExtS(Qp/Zp,µp∞)' Ĝm(S)

(�Serre-Tate canonical coordinate�). Note D0(k) is a point.
2) d = 2, h = 4, H0 = H1/2×H1/2 where H1/2 is the 1-dimensional
formal group of height 2 (the formal group of a supersingular
elliptic curve). D0(k) will be in�nite because there are P1(k)'s of
pairwise non-isomorphic G isogenous to H0 (Moret-Bailly families).
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Example

3) Lubin-Tate case: H0 the unique 1-dimensional ht h formal p-div
gp over k . Then D0 = M 0 and again D0(k) is a point.

Theorem (Drinfeld, Rapoport-Zink)

The functor D is �representable� by a formal scheme over W whose

ideal of de�nition is locally �nitely generated. Every irreducible

component of its (reduced) special �ber is proper over k .

The period map πGM will be a map of analytic spaces (over
W [1/p]) from Dad

η (the generic �ber of the adic space

associated with the formal scheme D) to Gr(d ,M0)adη . For
simplicity we only describe it on (C ,OC )-points.
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The Grothendieck-Messing period map

Take S = OC . For (G , ι) ∈D(OC ) we have a quotient map

M0⊗W C
ι−1' MG (OC )Q� Lie(GC )

from our �xed M0⊗W C ' Ch onto a d-dimensional vector
space.

This de�nes a �period map� from the moduli space to a
Grassmanian

πGM(G , ι) ∈ Gr(d ,M0)(C )' Gr(d ,h)(C ).

Fact: The period map πGM : Dad
η → Gr(d ,M0)adη is an étale

analytic map.

Example (Dwork): d = 1, h = 2, H0 = Qp/Zp×µp∞ . Then

D = Ĝm, Dad
η is the open unit disk ∆ around 1, and

πGM :∆→ A1 ⊂ P1 is q 7→ log(q).
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If (G , ι) ∈D(W ) (unrami�ed) the Grothendieck-Messing
theorem allows to identify the deformation with its period:

Theorem (Grothendieck-Messing)

The assignment G 7→ Lie(G ) is a bijection between the liftings G of

H0 to W (up to strict isomorphism) and the liftings of

MH0(k)� Lie(H0) to a free quotient M0� L over W .

As a corollary, in the Lubin-Tate case, the map sending
(G , ι) ∈M 0(W ) to πGM(G , ι) ∈ Gr(1,M0)(W )' Ph−1(W ) is
one-to-one, and its image is the W -points of the residue disk
Rx in Ph−1(W ) reducing to x = [MH0(k)� Lie(H0)].
However:

The relation between the Lubin-Tate coordinates
(u1, . . . ,uh−1) ∈mh−1

W and the projective-space coordinates on
the residue disk Rx is the period morphism.
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If K is a �nite rami�ed extension of W [1/p], OK � k is no
longer a pd thickening, so the theorem does not apply. We still
have D0(OK )'M 0(OK )≈mh−1

K , but a quasi-isogeny of
height 0 over OK/p is not necessarily an isomorphism, so
(G , ι) ∈D0(OK ) only provides a map

M0⊗W K 'MG (OK )Q→ Lie(GK ),

i.e. a point of Gr(1,M0)(K )' Ph−1(K ). Since it is not
de�ned integrally, we can not talk about its reduction.

The resulting period map from D0(OK ) to Ph−1(K ) is not 1 : 1
in general, and its image is not con�ned any more to a residue
disk. In the Lubin-Tate case (but not in general), when K is
replaced by C it is even surjective, and its �bers are in�nite.
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The period map (Lubin-Tate case)

πGM : M (OC )→ Ph−1(C ) studied by Gross-Hopkins.

Theorem (Gross-Hopkins)

(i) πGM is D×-equivariant.

(ii) πGM(G , ι) = πGM(G ′, ι ′)⇔∃f : G
q.i .→ G ′, ι ′ ◦ f̄ = ι .

(iii) π0
GM : M 0(OC )→ Ph−1(C ) is surjective.

(iv) M∞,η →Mη → Ph−1
C gives Ph−1

C = M∞,η/GLh(Qp).

Part (i) follows from the de�nitions. Action of D× on Ph−1(C )
is via the (projective) regular representation. The element Π
acts (in appropriate coordinates) like

0 p
1 0

1 0
· · · · · ·

1 0

 .
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Period domains and admissibility

The �if� part in (ii) follows from the de�nitions. The �only if�
follows from Grothendieck-Messing.

Part (iii) is proved in [G-H] by a detailed analysis of πGM �in
coordinates�.

Part (iv) follows from (ii) and (iii).

In general, the image of πGM is restricted by the notion of
�weak admissibility�. Given an exact sequence

0→ Fil →M0,C →W → 0

with associated �ltration Fil0 = M0,C ⊃ Fil1 = Fil ⊃ Fil2 = 0,
N = (N,Fil) = (M0,C ,Fil) becomes a �ltered F -isocrystal.
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If N ′ is a sub-F -isocrystal let Fil ′ = Fil ∩ (N ′⊗W [1/p] C ),
N ′ = (N ′,Fil ′).

For any �ltered F -isocrystal N de�ne

tNewton(N) = vp(det(F ))

(independent of the matrix representing F , since this matrix is
unique up to σ -conjugation),

tHodge(N) = ∑ i dimgr iFil• = dimFil .

Call N = (N,Fil) weakly admissible if for any sub F -isocrystal
N ′ ⊂ N

tHodge(N ′)≤ tNewton(N ′)

with equality for N ′ = N.
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unique up to σ -conjugation),
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Given H0/k , the weakly admissible period domain is an open

subspace Fwa ⊂ Gr(d ,M0)adη such that Fwa(C ) consists of all
d-dimensional quotients

M0,C →W

for which N is weakly admissible.

Theorem

(i) The image of πGM : Dad
η → Gr(d ,M0)adη factors through Fwa.

(ii) The image contains all the classical points of Fwa (points whose

residue �eld is a �nite extension of K0 = W [1/p]).

Remarks: (i) is easy. (ii) (Colmez-Fontaine) �weakly admissible
�ltered isocrystals are admissible�. We shall later relate it to the
geometry of the Fargues-Fontaine curve. Hartl describes the
non-classical points in Fa = Im(πGM). In general Fa 6= Fwa.
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The Hodge-Tate decomposition

Recall the map αG : TpG (R)→ ωG∨/R . Let R = OC and let −(1)
denote Tate twist. The following theorem was the begining of
p-adic Hodge theory, 50 years ago.

Theorem (Tate)

(i) There is an exact sequence

0→ Lie(GC )(1)
α∨
G∨ (1)
→ TpG (OC )⊗Zp C

αG→ ωG∨/C → 0.

(ii) (Hodge-Tate decomposition) If G is de�ned over OK where

K ⊂ C is a complete discrete valuation �eld, then the sequence

splits canonically (respecting ΓK = Gal(K̄/K ) action)

TpG (OC )⊗Zp C ' ωG∨/C ⊕Lie(GC )(1).
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The map α∨G∨(1) sends Lie(GC )(1) = Hom(ωG/C ,Tpµp∞⊗C )
to

Hom(TpG
∨⊗C ,Tpµp∞⊗C )' TpG ⊗C .

To get (ii) from (i) invoke Tate's theorems that
H0(ΓK ,C (i)) = H1(ΓK ,C (i)) = 0 if i 6= 0 and both
cohomology groups are 1-dimensional if i = 0. In the absence
of Galois action, there is no canonical splitting of (i).

Let G = A [p∞]. Dualizing, (i) is equivalent to the existence of
a spectral sequence (Faltings: the Hodge-Tate spectral
sequence)

E 2
i ,j = H i (A ,Ωj

A /C )(−j)⇒ H i+j
et (A ,Qp)⊗Qp C .

Compare with the Hodge spectral sequence that starts with
E 1
i ,j = H j(A ,Ωi

A /C ). This applies to any proper smooth
variety over C .
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The Hodge-Tate period map

The fact that the Hodge-Tate decomposition is not valid in
families, only the HT �ltration, leads to the HT period map,
just as over C the fact that only the Hodge �ltration varies
holomorphically in families lies behind the classical period map
to classifying spaces of Hodge structures.

The Hodge-Tate period map. Consider (Lubin-Tate case)

(G , ι ,α∞) ∈M∞(OC ).

Use α∞ : Zh
p ' TpG (OC ) (αG ⊗1)◦ (α∞⊗1) : Ch→ ωG∨/C ,

whose kernel is a line. Mapping (G , ι ,α∞) to this line is

πHT : M∞(OC )→ Ph−1(C ).

Unlike πGM , πHT is de�ned only on M∞. It goes canonically to
Ph−1(C ) while πGM landed in P(M0)(C )' Ph−1(C ).
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Fact: πHT comes from an analytic map M∞,η → (Ph−1)adη . In
our �basic� case (but not always), it is also étale.

For δ ∈ D×, πHT ◦δ = πHT (obvious).

πHT intertwines the actions of GLh(Qp) on M∞,η and Ph−1

(obvious).

A global detour (h = 2): modular curves at the in�nite level. Let
Yn be the (open) modular curve of level pn over Qp and Y∞ the
scheme lim←Yn. A point of Y∞(C ) is an elliptic curve E/C

equipped with an isomorphism α∞ : Z2
p ' TpE . As above, we get

πHT : Y∞(C )→ P1(C ). Let X = P1(C )\P1(Qp) (the Drinfeld
p-adic upper half plane).

Theorem

The map πHT : Y∞(C )→ P1(C ) is surjective. We have

π
−1
HT (P1(Qp)) = Y∞(C )ord (the pairs (E ,α∞) where E has bad, or

good ordinary reduction) and π
−1
HT (X) = Y∞(C )ss (the pairs where

E has good supersingular reduction).
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Note the anomaly: at in�nite level the �fat� set Y∞(C )ord gets
mapped to the �meager� P1(Qp) and the meager Y∞(C )ss �lls
up its complement X.

If E is ordinary, G = E [p∞] TpG
0, the Tate module of the

�kernel of reduction�, a line in TpG , spans ker(αG ⊗1). This
proves πHT (E ,α∞) ∈ P1(Qp). Conversely, if E is de�ned over
a CDVF K and πHT (E ,α∞) ∈ P1(Qp) then ΓK y TpG is
potentially reducible, so E is ordinary. This proves the
theorem, except for the surjectivity. In general:

Theorem

(i) The image of πHT is the Drinfeld p-adic symmetric domain

X(C ) = Ph−1(C )\
⋃

a∈(Ph−1)∗(Qp)

Ha.

(ii) πHT induces M∞,η/D
× ' X(C ) (on the level of C -points, so

far).
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Rapoport-Zink spaces with PEL structure

Recall k alg. closed �eld, char. p, W = W (k), H0/k p-div gp,
dim d , ht h, M0 = MH0(W � k) the covariant Dieudonné
module.

Ignore Level (L) - treated in [R-Z] by �multi-chains of lattices�.

Endomorphisms (E) -
Semi-simple algebra B over Qp with a maximal order
OB ↪→ Endk(H0). Then B y V = M0,Q (linear action)
commuting with Frobenius, and OB stabilizes the lattice
Λ = M0.
Fix B-stable decomposition V = V0⊕V1, dimV0 = d ,
dimV1 = h−d , Λ∩V1 reducing modulo p to ωH∨0 /k

⊂MH0(k)

and Λ∩V0 mapping onto Lie(H0).

Polarization (P) - a quasi-isogeny λ0 : H0
∼
99K H∨0 inducing

a non-degenerate alternating (,) : V ×V →Qp.
a (�Rosati�) involution ∗ in B such that (bv ,w) = (v ,b∗w).

Remark: we have simpli�ed the set-up a little for the
exposition.
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PEL deformation functor: Let S ∈ NilpW .

D(S) = {(G , ι ,λ )}/' where:

(G , ι) as before, with a compatible action OB ↪→ EndS(G ).
MG (S) should be, locally on S , isomorphic as an OB -module
to Λ⊗W S .
Kottwitz' condition: ∀a ∈ OB detS(a;Lie(G )) = det(a;V0).
A polarization condition, dropped when the data (P) is missing.

Theorem (Rapoport-Zink)

The functor D is �representable� by a formal scheme over W whose

ideal of de�nition is locally �nitely generated. Every irreducible

component of its (reduced) special �ber is proper over k .

Goal: The Drinfeld p-adic symmetric domain as an example of
such a moduli space.

Let B = D, the division algebra of invariant 1/h over Qp.
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The Drinfeld moduli problem

De�nition. A special formal OD -module over S ∈ NilpW is a
formal group G over S , of height h2 and dimension h, equipped
with OD ↪→ EndS(G ), such that the induced representation of
Zph ⊂OD on Lie(G ) is the regular representation (note
Zph ⊂W → S).

Fix H0/k a special formal OD -module (all isogenous).
Explicitly:

H0 = H0×Hσ
0 ×·· ·×Hσh−1

0

where Hσ i

0/Fp
is �the H0� of the Lubin-Tate moduli problem of

dim 1 and ht h with the OD -action de�ned over Fph (see

Exercise) and twisted by σ i .

Besides the action of OD , note a (commuting) action of
GLh(Qp) on H0 by quasi-isogenies.

V ' D⊗Zp W , F = Πr ⊗σ ,... EL moduli problem DDrin.

GLh(Qp) y DDrin.



The Drinfeld moduli problem

De�nition. A special formal OD -module over S ∈ NilpW is a
formal group G over S , of height h2 and dimension h, equipped
with OD ↪→ EndS(G ), such that the induced representation of
Zph ⊂OD on Lie(G ) is the regular representation (note
Zph ⊂W → S).

Fix H0/k a special formal OD -module (all isogenous).
Explicitly:

H0 = H0×Hσ
0 ×·· ·×Hσh−1

0

where Hσ i

0/Fp
is �the H0� of the Lubin-Tate moduli problem of

dim 1 and ht h with the OD -action de�ned over Fph (see

Exercise) and twisted by σ i .

Besides the action of OD , note a (commuting) action of
GLh(Qp) on H0 by quasi-isogenies.

V ' D⊗Zp W , F = Πr ⊗σ ,... EL moduli problem DDrin.

GLh(Qp) y DDrin.



The Drinfeld moduli problem

De�nition. A special formal OD -module over S ∈ NilpW is a
formal group G over S , of height h2 and dimension h, equipped
with OD ↪→ EndS(G ), such that the induced representation of
Zph ⊂OD on Lie(G ) is the regular representation (note
Zph ⊂W → S).

Fix H0/k a special formal OD -module (all isogenous).
Explicitly:

H0 = H0×Hσ
0 ×·· ·×Hσh−1

0

where Hσ i

0/Fp
is �the H0� of the Lubin-Tate moduli problem of

dim 1 and ht h with the OD -action de�ned over Fph (see

Exercise) and twisted by σ i .

Besides the action of OD , note a (commuting) action of
GLh(Qp) on H0 by quasi-isogenies.

V ' D⊗Zp W , F = Πr ⊗σ ,... EL moduli problem DDrin.

GLh(Qp) y DDrin.



The moduli problem DDrin had been considered by Drinfeld. It is
the moduli problem of deformations of special formal OD -modules.

Theorem (Drinfeld )

The formal scheme X representing DDrin is such that X an ' X.

In fact, the formal scheme structure on X can be �read� from a
reduction map

r : X(C )→ |BT |

to the Bruhat-Tits building of PGLh(Qp).

When h = 2 the special �ber of X is a tree of P1's, each
intersecting transversally p+1 others at the Fp-rational
points. |BT | is the p+1-regular tree; r−1v (v), for a vertex v ,
is an a�noid isomorphic to the a�noid obtained from P1 upon
removal of the p+1 Qp-rational residue disks, and r−1(ε), for
an edge ε , is an open annulus.
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an edge ε , is an open annulus.
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A review of some of Fontaine's rings

F = C [, OF = lim←×p OC/p, complete alg. closed (in
particular perfect) non-arch. �eld, char .F = p.

GQp = Gal(Q̄p/Qp) acts on F .

Fix ε = (1,ζp,ζp2 , . . .), p
[ = (p,p1/p,p1/p

2
, . . .) ∈ OF .

If x = (x (0),x (1),x (2), . . .) ∈ OF then x ] = lim(x̃ (m))p
m ∈ OC

exists. But note that the de�nition of x ] is not intrinsic to F :

it presumes the knowledge of F as the tilt of C !

Ainf = W (OF )
Θ→ OC , Θ(∑

∞
n=0 p

n[xn]) = ∑
∞
n=0 p

nx ]n, a
homomorphism!

ker(Θ) = (ξ ), ξ = p− [p[] �primitive element of degree 1�.
GQp acts by functoriality, compatible with Θ.
Frobenius ϕ acts on Ainf , does not preserve ker(Θ).

Ehud de Shalit Moduli of p-divisible groups



A review of some of Fontaine's rings

F = C [, OF = lim←×p OC/p, complete alg. closed (in
particular perfect) non-arch. �eld, char .F = p.

GQp = Gal(Q̄p/Qp) acts on F .

Fix ε = (1,ζp,ζp2 , . . .), p
[ = (p,p1/p,p1/p

2
, . . .) ∈ OF .

If x = (x (0),x (1),x (2), . . .) ∈ OF then x ] = lim(x̃ (m))p
m ∈ OC

exists. But note that the de�nition of x ] is not intrinsic to F :

it presumes the knowledge of F as the tilt of C !

Ainf = W (OF )
Θ→ OC , Θ(∑

∞
n=0 p

n[xn]) = ∑
∞
n=0 p

nx ]n, a
homomorphism!

ker(Θ) = (ξ ), ξ = p− [p[] �primitive element of degree 1�.
GQp acts by functoriality, compatible with Θ.
Frobenius ϕ acts on Ainf , does not preserve ker(Θ).

Ehud de Shalit Moduli of p-divisible groups



A review of some of Fontaine's rings

F = C [, OF = lim←×p OC/p, complete alg. closed (in
particular perfect) non-arch. �eld, char .F = p.

GQp = Gal(Q̄p/Qp) acts on F .

Fix ε = (1,ζp,ζp2 , . . .), p
[ = (p,p1/p,p1/p

2
, . . .) ∈ OF .

If x = (x (0),x (1),x (2), . . .) ∈ OF then x ] = lim(x̃ (m))p
m ∈ OC

exists. But note that the de�nition of x ] is not intrinsic to F :

it presumes the knowledge of F as the tilt of C !

Ainf = W (OF )
Θ→ OC , Θ(∑

∞
n=0 p

n[xn]) = ∑
∞
n=0 p

nx ]n, a
homomorphism!

ker(Θ) = (ξ ), ξ = p− [p[] �primitive element of degree 1�.
GQp acts by functoriality, compatible with Θ.
Frobenius ϕ acts on Ainf , does not preserve ker(Θ).

Ehud de Shalit Moduli of p-divisible groups



Acris = p -adic completion ofAinf [ξ n/n!]⊂ Ainf [1/p] (initial
object in the category of p-adic pd-thickenings of OC ).

GQp and ϕ actions extend to Acris .

t = log[ε] ∈ Acris , σ(t) = χcyc(σ)t, ϕ(t) = pt, t unique up to
Z×p , Θ(t) = 0.

B+
cris = Acris [1/p]

Θ→ C , Bcris = B+
cris [1/t].

Lemma

The ring Be = B
ϕ=1
cris =

⋃
∞
n=0 t

−nB
+,ϕ=pn

cris (increasing union) is a

PID and Be ∩B+
cris = Qp. Moreover, B×e = Q×p .

Remark. This came as a big surprise and was the discovery that

lead to the Fargues-Fontaine curve. See Colmez' introduction to

Astérsique 406. �A tale of a train ride�.
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B+
dR = lim←Ainf [1/p]/(ξ n)⊃ B+

cris , but much cruder.

a CDVR, t a uniformizer, BdR = B+
dR [1/t] a CDVF, νdR the

corresponding normalized valuation.
Θ : B+

dR/tB
+
dR ' C (residue �eld).

GQp action (but not ϕ) extends to BdR .

Theorem (Fundamental exact sequence of p-adic Hodge theory)

The following sequence is exact:

(FES) 0→Qp→ B
ϕ=1
cris → BdR/B

+
dR → 0.

Remarks. (i) It is instructive to view (FES) as the analogue of

0→ C→ C[z ]→ C((1/z))/C[[1/z ]]→ 0,

B+
cris! C[x ,y ], B

+,ϕ=pn

cris ! C[x ,y ]hom.deg.n, z = x/y , t! y .
(ii) Works for any perfectoid pair (R,R+) replacing (C ,OC ).
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The Fargues-Fontaine curve

De�nition

X = X FF = Proj(P), where P =⊕∞
n=0B

+,ϕ=pn

cris .

Theorem

(a) X is an integral, noetherian, regular, 1-dim scheme (a �curve�).

(b) Θ a closed point ∞ ∈ X with residue �eld C .

(c) H0(X −{∞},OX )' Be .

(d) ÔX ,∞ ' B+
dR .

(e) (FES)⇒ H0(X ,OX ) = Qp.

Although X is not of �nite type over P0 = Qp (e) is an indication
that X is �complete�. We shall see that it has a theory of divisors

and behaves as if it had genus 0 (taken with a grain of salt...).
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Remark. The closed points |X | are in bijection with �Frobenius
orbits of untilts of F �. More precisely:

An untilt of F is a pair (C ′, ι ′) where C ′ is a complete
algebraically closed non-archimedean �eld containing Qp and
ι ′ : (C ′)[ ' F . Let |Y | be the set of untilts, up to equivalence.
(Kedlaya and Temkin have shown that untilts need not be
isomorphic to C even as abstract topological �elds, ignoring ι).

Frobenius acts: ϕ(C ′, ι ′) = (C ′,ϕ ◦ ι ′), and |X | ' |Y |/ϕZ.

|Y | is the set of closed points of an analytic (adic) space Y
and Y→ X = X an is étale.

If (C ′, ι ′) = y ∈ |Y |, ∃Θy : OY,y � C ′ just like Θ = Θ∞.

If y 7→ x ∈ |X | then (*) ÔX ,x ' ÔX,x ' ÔY,y .

The choice of C as a distinguished untilt dictates ∞ ∈Y,
above ∞ ∈ X. The element t is a uniformizer at ∞ ∈Y, but by
(*) becomes a uniformizer at ∞ ∈ X .
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Line bundles and divisors on X

If f ∈ Frac(Be), de�ne the divisor div(f ) = ∑x∈|X | ordx(f ) · [x ] as
usual. Such a divisor is called principal.

Theorem

A divisor is principal if and on if it is of degree 0.

For d ∈ Z let O(d) be the line bundle on X associated with the

graded module P(d) =⊕n∈ZB
+,ϕ=pn+d

cris . An equivalent formulation
is:

Theorem

Every line bundle on X is isomorphic to a unique O(d). Thus
deg : Pic(X )' Z.
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Vector bundles on X

Vector bundles: On P1
C every vector bundle is a direct sum of line

bundles (Grothendieck). Here the analogy between X and P1
C

breaks down for the �rst time. Let λ = d/h ∈Q (reduced, h > 0)
and let O(λ ) be the vector bundle associated with the graded
module

P(λ ) =⊕n∈Z(N−λ ⊗W [1/p] B
+
cris)ϕ=pn .

(N−λ is the standard isocrystal of slope −λ ). Recall that the degree
of a vector bundle V is the degree of the line bundle det(V ).

Theorem

(i) O(λ ) is a vector bundle of rank h, degree d and Harder -

Narasimhan slope λ .
(ii) Every vector bundle on X is ⊕λ O(λ )mλ for unique mλ ∈ N.
(iii) End(O(λ ))' Dλ , the division algebra over Qp of invariant λ .
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Theorem says that the functor E : FIsocrysk  VecBunX ,

E (N,ϕ) = (⊕n∈Z(N⊗W [1/p] B
+
cris)ϕ=pn)∼,

is essentially surjective. But it is far from being an equivalence!

Corollary

πet
1 (X )' Gal(Q̄p/Qp).

Key step: Theorem ⇒ if f : X ′→ X is �nite étale, f∗OX ′ 'O
deg(f )
X .

Alternative description of vector bundles over P1
C (Beauville -

Laszlo gluing): a rk r vector bundle V ! a �nite free
C[z ]-module V , a �nite free C[[1/z ]]-module V∞, and

ρ : V ⊗C[z] C((1/z))' V∞⊗C[[1/z]] C((1/z)).

If {ei} is a basis of V , e ′i a basis of V∞ and ei = ∑aije
′
j ,

deg(V ) = ν∞(det(aij)).
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(B ,ν)-pairs and vector bundles

De�nition (Berger)

A (B,ν)-pair is M = (Me ,M
+
dR ,ρ) where Me is a �nite free

Be-module, M+
dR a �nite free B+

dR -module and

ρ : Me ⊗Be BdR 'M+
dR ⊗B+

dR
BdR =: MdR .

The degree deg(M) is de�ned by the same procedure as above,
replacing ν∞ by νdR .

Proposition

The category VecBunX of vector bundles over X is equivalent to

the category of (B,ν)-pairs. The map is

V 7→ (H0(X −{∞},V ), V ⊗OX
ÔX ,∞),

and in the opposite direction by �Beauville-Laszlo gluing�. The

correspondence respects ranks and degrees, hence slopes.
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Remark. Let N ∈ FIsocrystk . The vector bundle E (N,ϕ)
corresponds to the pair

((N⊗Bcris)ϕ=1,N⊗B+
dR).

However, the Harder-Narasimhan slope of E (N,ϕ) is the negative

of the Frobenius slope of N.

Corollary

Canonically, H0(X ,E (N,ϕ))' (N⊗B+
cris)ϕ=1.

Proof.

H0(X ,E (N,ϕ)) = (N⊗Bcris)ϕ=1∩N⊗B+
dR = (N⊗B+

cris)ϕ=1 (the
last equality needs justi�cation, even if N is trivial).
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p-div gps over OC/p up to isogeny

Recall: The category �p-div gps over k up to isogeny� is equivalent
to the full subcategory of F -isocrystals whose slopes lie in [0,1]
(Dieudonné-Manin). We examine the same category, but over
OC/p. Its �objects up to isomorphism� are in bijection with those
of the same category over k (a consequence of the isotriviality

theorem) but the category is much richer, and far from semi-simple!

If G is a p-div gp over OC/p let

Mcris(G ) = MG (Acris � OC/p)

(�crystalline Dieudonné module�). Then Mcris(G )[1/p] is a
�nite projective B+

cris -module. Let E (G ) be the vector-bundle
associated to the graded P-module

⊕∞
n=0(Mcris(G )[1/p])ϕ=pn+1

.

Ehud de Shalit Moduli of p-divisible groups



p-div gps over OC/p up to isogeny

Recall: The category �p-div gps over k up to isogeny� is equivalent
to the full subcategory of F -isocrystals whose slopes lie in [0,1]
(Dieudonné-Manin). We examine the same category, but over
OC/p. Its �objects up to isomorphism� are in bijection with those
of the same category over k (a consequence of the isotriviality

theorem) but the category is much richer, and far from semi-simple!

If G is a p-div gp over OC/p let

Mcris(G ) = MG (Acris � OC/p)

(�crystalline Dieudonné module�). Then Mcris(G )[1/p] is a
�nite projective B+

cris -module. Let E (G ) be the vector-bundle
associated to the graded P-module

⊕∞
n=0(Mcris(G )[1/p])ϕ=pn+1

.

Ehud de Shalit Moduli of p-divisible groups



Let H0 be a p-div gp over k such that G
q.i .
99K H0×k OC/p. The

given quasi-isogeny determines an isomorphism
Mcris(G )' Acris ⊗W M0, hence

E (G )' E (M0(1),ϕ).

However, the functorial dependence of E (G ) on G can not be

read from H0 alone!

Example: Lubin-Tate case: H0 unique formal p-div gp of ht h,
dim 1: Then M0 ' N(h−1)/h, M0(1)' N−1/h so
E (G )'O(1/h) (the isom. depending on the q.i. above).

Theorem (Full-faithfullness, Scholze-Weinstein)

(i) The functor Mcris(−) is fully faithful, i.e.

HomOC /p(G ,G ′)' HomAcris ,ϕ (Mcris(G ),Mcris(G ′)).

(ii) The functor E (−) is an equivalence between the category of

�p-div gps over OC/p up to isogeny� and the full subcategory of

vector bundles over X all of whose slopes lie in the interval [0,1].



Let H0 be a p-div gp over k such that G
q.i .
99K H0×k OC/p. The

given quasi-isogeny determines an isomorphism
Mcris(G )' Acris ⊗W M0, hence

E (G )' E (M0(1),ϕ).

However, the functorial dependence of E (G ) on G can not be

read from H0 alone!

Example: Lubin-Tate case: H0 unique formal p-div gp of ht h,
dim 1: Then M0 ' N(h−1)/h, M0(1)' N−1/h so
E (G )'O(1/h) (the isom. depending on the q.i. above).

Theorem (Full-faithfullness, Scholze-Weinstein)

(i) The functor Mcris(−) is fully faithful, i.e.

HomOC /p(G ,G ′)' HomAcris ,ϕ (Mcris(G ),Mcris(G ′)).

(ii) The functor E (−) is an equivalence between the category of

�p-div gps over OC/p up to isogeny� and the full subcategory of

vector bundles over X all of whose slopes lie in the interval [0,1].



Let H0 be a p-div gp over k such that G
q.i .
99K H0×k OC/p. The

given quasi-isogeny determines an isomorphism
Mcris(G )' Acris ⊗W M0, hence

E (G )' E (M0(1),ϕ).

However, the functorial dependence of E (G ) on G can not be

read from H0 alone!

Example: Lubin-Tate case: H0 unique formal p-div gp of ht h,
dim 1: Then M0 ' N(h−1)/h, M0(1)' N−1/h so
E (G )'O(1/h) (the isom. depending on the q.i. above).

Theorem (Full-faithfullness, Scholze-Weinstein)

(i) The functor Mcris(−) is fully faithful, i.e.

HomOC /p(G ,G ′)' HomAcris ,ϕ (Mcris(G ),Mcris(G ′)).

(ii) The functor E (−) is an equivalence between the category of

�p-div gps over OC/p up to isogeny� and the full subcategory of

vector bundles over X all of whose slopes lie in the interval [0,1].



Corollary (Universal covering as global sections)

Canonically,

G̃ (OC/p)' H0(X ,E (G )), MG (OC � OC/p)[1/p]' i∗∞E (G )(−1).

Proof.

We have G̃ (OC/p)' HomOC /p(Qp/Zp,G )[1/p]. By
�full-faithfulness� (in the isogeny category is enough!) this is

HomB+
cris ,ϕ

(Mcris(Qp/Zp)[1/p],Mcris(G )[1/p]).

But M(Qp/Zp)[1/p] = D(µp∞)[1/p]' N1 so we get

G̃ (OC/p)' HomB+
cris ,ϕ

(B+
cris ⊗N1,Mcris(G )[1/p])

= Mcris(G )[1/p]ϕ=p = H0(X ,E (G )).



Corollary (Universal covering as global sections)

Canonically,

G̃ (OC/p)' H0(X ,E (G )), MG (OC � OC/p)[1/p]' i∗∞E (G )(−1).

Proof.

We have G̃ (OC/p)' HomOC /p(Qp/Zp,G )[1/p]. By
�full-faithfulness� (in the isogeny category is enough!) this is

HomB+
cris ,ϕ

(Mcris(Qp/Zp)[1/p],Mcris(G )[1/p]).

But M(Qp/Zp)[1/p] = D(µp∞)[1/p]' N1 so we get

G̃ (OC/p)' HomB+
cris ,ϕ

(B+
cris ⊗N1,Mcris(G )[1/p])

= Mcris(G )[1/p]ϕ=p = H0(X ,E (G )).



Cohomology of vector bundles

Lemma

Let V be a vector bundle on X . Then H i (X ,V ) = 0 for i ≥ 2, and
if (Me ,M

+
dR ,ρ) is the associated (B,ν)-pair there is a

�Mayer-Vietoris� exact sequence

0→ H0(X ,V )→Me ⊕M+
dR →MdR → H1(X ,V )→ 0.

This enables one to calculate the cohomology. We have already
seen (i) of the following theorem.

Theorem

(i) Let λ = d/h (reduced, h > 0). Then H0(X ,O(λ )) = 0 if λ < 0

and is equal to (B+
cris)ϕh=pd otherwise.

(ii) H1(X ,O(λ )) = 0 i� λ ≥ 0.
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Remarks. (i) Once again, H1(X ,OX ) = 0 may be counted as an
indication of �genus 0�, but note the second time the analogy with
P1
C breaks down: H1(P1

C,OP(−1)) = 0.
(ii) The spaces H0(X ,O(λ )) are Qp-vector spaces, but for λ > 0
they are never �nite dimensional. In fact they belong to a very
interesting category of �Banach-Colmez vector spaces�. More to
come soon, when we relate them to the (LOG) exact sequence.

Extensions. The vector bundles O(λ ) are indecomposable,
but not irreducible. In general, if

0→ E ′→ E → E ′′→ 0

is a short exact sequence of vector bundles, both rk and deg
are �Euler-Poincaré characteristics� so the slope µ = deg/rk
satis�es the usual Harder-Narasimhan formalism

µ(E ) =
rk(E ′)

rk(E )
µ(E ′) +

rk(E ′′)

rk(E )
µ(E ′′).
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Recall that E is called semistable if whenever E ′ ⊂ E is a
sub-bundle we have µ(E ′)≤ µ(E ).

Proposition

A vector bundle on the Fargues-Fontaine curve is semistable if and

only if it is isoclinic (has only one slope).

Example. For n≤ 0, Ext1(O(1−n),O(n))'H1(X ,O(2n−1)) 6= 0,
so there is a non-split extension

(∗) 0→ O(n)→ O(1/2)→ O(1−n)→ 0.

Take n = 0, �x E (Qp/Zp)'O, E (G )'O(1/2), E (µp∞)' O(1).
By the equivalence of categories, (∗)! a unique

Qp/Zp
α
99K G

β

99K µp∞ .

Note that α and β are only quasi-homomorphisms and that modulo
mC we have α ≡ β ≡ 0.
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Filtered F -isocrystals

Goal: Upgrade �p-div gps over OC/p up to isogeny� to the same
category over OC . Insight (Grothendieck): should add a �Hodge
�ltration�. We have already seen the following de�nition when we
discussed the weakly admissible period domain Fwa. Let
K0 = W (k)[1/p]⊂ K be a �nite ext'n.

De�nition

A K -�ltered F -isocrystal (over k) is D = (D,ϕ,Fil•) where (D,ϕ)
is an F -isocrystal and Fil• is a separated exhaustive descending
�ltration on DK . De�ne the slope µ by

tNewton(D) = vp(det(ϕ)), tHodge(D) = ∑ i dimgr iFil•DK ,

deg(D) = tHodge(D)− tNewton(D), µ(D) = deg(D)/rk(D).

Call D semistable if for any strict sub-object D ′ (strict means that
the �ltration on D ′K is induced by that of D) µ(D ′)≤ µ(D), and
weakly admissible ⇔ s.st. of slope 0.
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Modi�cations of vector bundles

D a K -�ltered F -isocrystal, E (D) = E (D,ϕ,Fil•) v.b. associated
with the (B,ν)-pair ((D⊗K0

Bcris)ϕ=1, Fil0(DK ⊗K BdR)).

The degree (slope) of E (D) are the same as those of D.

Fil1D = 0⇒ Fil0(DK ⊗K BdR)⊂ D⊗K0
B+
dR  exact sequence

0→ E (D,ϕ,Fil•)→ E (D,ϕ)→ i∞,∗(D⊗K0
B+
dR/Fil

0)→ 0,

last term a �nite length �skyscraper sheaf� supported at ∞.

Gives a modi�cation of vector bundles at ∞. Similarly de�ne
modi�cations with �legs� at several points. Relax �Fil1D = 0�
by allowing the �rst arrow to go backwards. Notion (similar to
Drinfeld's �shtukas�) is key to the geometrization of LLC
(Scholze and Fargues).
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Lecture V: Applications: Classi�cation over OC , Galois
representations and duality

1 p-divisible groups over OC up to isogeny
1 The big diagram revisited
2 A classi�cation

2 Applications to Galois representations of GK

1 Crystalline Galois representations
2 Weakly admissible is admissible

3 Duality between the Lubin-Tate and Drinfeld towers
1 The Drinfeld tower
2 A simple proof of a theorem of Faltings



p-div gps over OC up to isogeny

G - p-div gp over OC , G0 = G ×OC
OC/p, and as in RZ

ι : G0

q.i .
99K H0×k OC/p, h = ht, d = dim .

M0 = D(H∨0 ) covariant Dieudonné module of H0. Then

E (G0)
ι∗' E (M0(1)Q,ϕ) := E .

De�ne the trivial vector bundle

F = VpG (OC )⊗Qp OX .

Theorem (Scholze-Weinstein)

(i) There is a natural modi�cation of vector bundles associated with

(G , ι)

0→F → E → i∞,∗(Lie GC )→ 0.

Furtheremore, if G is de�ned over OK for a �nite K/K0,
F ' E (D,ϕ,Fil•) where D = M0(1)Q, Fil

−1 = DK , Fil
0 is of rank

h−d , Fil1 = 0, and (D,ϕ,Fil•) is weakly admissible.
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The big diagram revisited

Theorem (continued)

(ii) The global sections of the exact sequence in (i) are identi�ed

canonically with the exact seqence

(LOG) 0→ VpG (OC )→ G̃ (OC )
θ→ Lie GC → 0.

(iii) The �ber at ∞ of the exact sequence in (i) (i.e. taking

−⊗OX ,∞
C ) is

VpG (OC )⊗Qp C →MG (OC )[1/p]→ Lie GC → 0.

The �rst arrow factors through the Hodge-Tate map

VpG (OC )⊗Qp C
αG
� ωG∨/C ↪→MG (OC )[1/p].

(iv) The map �global sections to �ber at ∞� is �q log�.



A classi�cation

Example. Back to Lubin-Tate, (G , ι) ∈M (OC ). As already seen,

G̃ (OC ) = G̃0(OC/p)' H0(X ,E ) = B
+,ϕh=p
cris ,

and 1-dim'l Lie GC may be identi�ed with C (choice of a
parameter). The map θ is then identi�ed with

Θ : B
+,ϕh=p
cris → C .

The relation between �p-divisible groups� and �modi�cations�

allows to give a complete classi�cation of p-div gps over OC

up to isogeny .

Let C be the category of modi�cations

(∗) 0→F → E → i∞,∗(W )→ 0

where (i) F and E are vector bundles over X (ii) F 'Oh
X for

some h ∈ N (iii) W is a f. dim'l C -vector space (B+
dR -module

killed by t, modi�cation is minuscule).
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Let C ′ be the category of pairs (V ,W ) where V is a Qp-v.sp.
and W ⊂ VC a sub C -v.sp. (no extra structure!).

Theorem (Scholze-Weinstein, Fargues-Fontaine)

The categories of p-divisible groups over OC up to isogeny, C and

C ′ are all naturally equivalent.

sketch.

To pass from C to C ′ let V = H0(X ,F ). To go backwards let
F = V ⊗OX . In both directions, we relate the extension (∗) to
W ↪→ VC as follows. A basic computation shows that
Ext(i∞,∗C ,OX )' C , hence Ext(i∞,∗(W ),F )' HomC (W ,VC ).
Here, the extension (∗) associated to a homomorphism
u : W → VC is the pull-back of

0→ V ⊗OX → V ⊗OX (1)→ V ⊗ i∞,∗(C )→ 0

under i∞,∗u. Note E is locally free ⇔ u is injective.



cont'd.

The above construction also shows that in any extension like (∗) we
have

Oh
X ⊂ E ⊂OX (1)h

so all the slopes of E lie in [0,1], by semistability of isoclinic vector
bundles. Thus E = E (G0) for a p-div gp G0 over OC/p, unique up
to isogeny. We wish to upgrade the equivalence G0 E (G0) to an
equivalence between p-div gps (up to isogeny) over OC and the
category of modi�cations C .
We have already seen how to associate with a p-div gp G over OC

a modi�cation in C with V = VpG (OC ), W = Lie(GC ),
F = V ⊗OX , E = E (G0). This is functorial, and the key steps are
to prove (i) that it is fully faithful (ii) that it is essentially
surjective. For the details, see [S-W], �5.2.
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cont'd.

We only remark that one works �rst at the generic �ber of the adic
spaces, building G ad

η out of the multiplicative group
G ′ = TpG (−1)⊗Zp µp∞ mimicking the construction of the

modi�cation (∗) out of W ↪→ VC . Namely, one de�nes G ad
η as the

�ber product
G ad

η → W ⊗Ga

↓ ↓
(G ′)adη → VC ⊗Ga

.

The special features of C are involved in the reconstruction of the
formal group G from its generic �ber G ad

η , which is pretty
delicate.

Remark. A remarkable feature of the classi�cation over OC is that
it is in terms of linear algebra alone, and not semi-linear algebra as
Dieudonné theory over k .



Given G , the pair W ↪→ VC is identi�ed with the Hodge-Tate
map α∨G∨ : Lie(GC ) ↪→ VpG (OC )⊗Qp C (we've ignored Tate
twists).

Example: Assume h = 2, d = 1. The only possibilities for
O2

X ⊂ E ⊂ OX (1)2 are E 'O⊕O(1) or E ' O(1/2). As we
have seen before, the �rst occurs if W = LC for a Qp-rat'l line
L⊂ V and the second otherwise.

Exercise: Write all the possibilities when h = 5, d = 2 (there
are 7 such) and the corresponding Newton polygons.
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Crystalline Galois representations

k = F̄p, K0 = W (k)[1/p], K0 ⊂ K ⊂ C a �nite extension.

V - h-dim'l continuous Qp-rep'n of GK = Gal(K̄/K ).

De�ne

Dcris(V ) = (V ⊗Bcris)GK , DdR(V ) = (V ⊗BdR)GK .

The �rst is a K0-v.sp. and inherits an action of ϕ, the second
is a K -v.sp. and inherits a �ltration Fil•.

dimK0
Dcris(V )≤ h, dimK DdR(V )≤ h and V is called

crystalline (resp. de-Rham) if equalities hold. We have
Dcris(V )K ⊂DdR(V ) (with equality if V is crystalline), so with
the induced �ltration D(V ) = (Dcris(V ),ϕ,Fil•) becomes a
K -�ltered ϕ-module.

If V is crystalline, D = Dcris(V ), one recovers (Fontaine)

V = (D⊗K0
Bcris)ϕ=1∩Fil0(DK ⊗BdR).



Interpretation via the Fargues-Fontaine curve: Assume V
is crystalline.

V  E (V ) := E (Dcris(V ),ϕ,Fil•), V = H0(X ,E (V )).

Lemma

V crystalline ⇒ D(V ) weakly admissible.

Proof.

Write D = D(V ) and E (V )'⊕O(λi ). dimQp H
0(X ,E (V )) < ∞

implies all λi ≤ 0. Since this dimension is exactly h = rkE (V ), all
λi = 0 and E (V ) is trivial. This implies µ(D) = 0.
Suppose D ′ ⊂ D is a strict sub-object. Then E (D ′)⊂ E (D)'Oh

X

is a sub-bundle. But E (D) isoclinic ⇒ semi-stable, so
µ(D ′) = µ(E (D ′))≤ 0, showing that D is semi-stable.

The converse is the celebrated �weakly admissible =
admissible� theorem.
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Weakly admissible is admissible

Theorem (Colmez-Fontaine)

Every weakly admissible K -�ltered ϕ-module is D(V ) for a

crystalline representation V .

Proof.

Suppose D is weakly admissible. Then E (D) is semistable of slope
0, so by the classi�cation of vector bundles on X must be trivial.
i.e. isomorphic to Oh

X . This means (using the language of
(B,νdR)-pairs) that

V = H0(X ,E (D))' (D⊗K0
Bcris)ϕ=1∩Fil0(DK ⊗K BdR)

is h-dimensional. But it is known that this equality of dimensions
forces D = Dcris(V ), hence V is crystalline.



The Drinfeld tower

Change notation: MLT
n = Mn,η = M ad

n,η the generic �ber of the

Lubin-Tate tower, similarly MLT
∞ = M ad

∞,η , a perfectoid space
over Spa(W [1/p],W ).

MDrin
0 = (DDrin)adη the generic �ber of the formal scheme

representing the Drinfeld moduli problem, over
Spa(W [1/p],W ).

As in the Lubin-Tate case, there is a �nite étale cover

MDrin
n →MDrin

0 (in the category of adic spaces) representing
triples (H, ι ,αn) where (H, ι) ∈MDrin

0 and αn : OD/p
n→H[pn]

is an �analytic OD level pn structure� (meaning that at any
geometric point it induces an isomorphism onto the pn-torsion,
compatible with the action of OD).
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The role of the groups D× and GLh is interchanged: GLh(Qp)
acts on each MDrin

n . The Galois group of MDrin
n →MDrin

0 is
(OD/p

n)×.

Fact: ∃MDrin
∞ , adic space over Spa(W [1/p],W ), representing

the functor on complete a�noid (W [1/p],W ) algebras
(R,R+)

MDrin
∞ (R,R+) = {(H, ι ,α)|(H, ι) ∈MDrin

0 (R,R+), α...}/'

where α : OD → TpH
ad
η ∼ lim←H[pn] is OD -compatible and

induces an isomorphism on any geometric point of Spa(R,R+).

Fact: MDrin
∞ is (pre)perfectoid, MDrin

∞ ∼ lim←MDrin
n .

There are analytic maps de�ned as in LT case

π
Drin
GM : MDrin

∞ →MDrin
0 =

⊔
i∈Z

X→ X'MDrin
∞ /D×

π
Drin
HT : MDrin

∞ → (Ph−1
W )adη 'MDrin

∞ /GLh−1(Qp).



The duality theorem

Theorem (Faltings, Fargues, Scholze-Weinstein)

There is a canonical isomorphism of adic spaces MLT
∞ 'MDrin

∞ ,
compatible with the action of GLh(Qp)×D×, under which the

period maps are interchanged:

π
Drin
GM = π

LT
HT , π

LT
GM = π

Drin
HT .

The original proof was di�cult, partly because of missing language.
[S-W], Theorem 7.2.3 and [F-F] 8.3.5 gave a conceptual proof
using the equivalence of the moduli problems represented by the
towers with categories of modi�cations of vector bundles on the FF
curve. We shall outline the main construction at the level of
(C ,OC )-points, as usual.
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Let (G , ι ,α∞) ∈MLT
∞ (C ,OC ). This gives a trivialized

modi�cation
0→ Oh

X → E → i∞,∗W → 0

where W = Lie(GC ), E = E (H0) = O(1/h) and E (G0) is
identi�ed with E using ι . The trivialization is the identi�cation
of the kernel of the map to the Lie algebra, canonically given
as VpG (OC )⊗OX , with Oh

X . It uses α∞.

The group GLh(Qp)' Aut(Oh
X ) acts on such a trivialized

modi�cation by push-out of the �rst factor. It does not change
the modi�cation class, but only its trivialization. The group
D× acts by changing the identi�cation of E with E (G0). This
action yields a new modi�cation.

Apply the sheaf-hom functor RH om(−,O(1/h)). Get an
exact sequence

0→ E nd(O(1/h))→ O(1/h)h→ E xt1(i∞,∗W ,O(1/h))→ 0.



We used E xt1(O(1/h),O(1/h)) = 0 (easy).

The �rst factor is canonically D⊗OX , D acting naturally.

D acts on the second factor via D ' End(O(1/h)).

The last factor is a skyscraper sheaf at ∞. Since W is
1-dimensional it is i∞,∗W

′ where

W ′ ' Ext1
B+
dR

(C ,(B+
dR)h)' Ch

and Qph ⊂ D acts with h distinct characters, each with
multiplicity 1.

 a �special trivialized modi�cation of vector bundles with
D-action�, which (by an analogue of the main theorem with
PEL structure) corresponds to a triple
(G ′, ι ′,α ′∞) ∈MDrin

∞ (C ,OC ).
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The D action described above was obtained from the action of
D on O(1/h) when we took RH om(−,O(1/h)) and
therefore did not change the new trivialized modi�cation, but
enhanced it to correspond to a �moduli problem with
endomorphisms in D�. It was an algebra action.

We still have the D××GLh(Qp) group action on the set of all
�special trivialized modi�cations with D-action� and one
checks that the functor RH om(−,O(1/h)) between the two
categories of modi�cations preserves these actions.

Finally, one constructs in a similar way a quasi-inverse,
establishing the duality between MDrin

∞ (C ,OC ) and
MLT

∞ (C ,OC ).


