Lecture 1
Gsal: Formula-free "inevidable" def. of W. We will actudly use seme formelas, but ouly in a superficial way - they are casily removed.

1. p-divivations $+\delta$-rimes

$$
\begin{aligned}
& P=\text { prive }\left(f_{\text {ixed }}\right) \\
& R=\text { inge }
\end{aligned}
$$

DE: A ring eud $\varphi: R \rightarrow R$ is a Frobaics litt is $\forall x \in R, \varphi(x)=x^{P}$ wad R
E.g: $\mathbb{Z}[x], \varphi: x-x^{2}+p$-anything globel dass fied thery crystalime coloondoy
Adoms operations ψ^{T}
Goal: Lead mesidally to Witt vechos

- \{Rings with Frot. |ift\} ndurally Sorms a categary
.... but nut a gad ove!
Protkm: "lift" has a hidden \exists :

$$
\forall x \exists x^{\prime} \text { s... } \varphi(x)=x^{p}+p x^{\prime} \text {. }
$$

x^{\prime} is unique up to p-torsion - us control over it fo $R 3$ ut p.ts. Aree
Ex: - Category dosont have pill bades, intersectious of ssb-objects?
Solvtion: Prouide x^{\prime} itsiff as part of the struature, rather than the property of its were exsituce.
i.e. want an operator $\delta: R \rightarrow R$ uncilled on $\delta(x)=\frac{\varphi(x)-x^{\prime}}{P}$

Axioms? Write the ring-endo axions for φ in terms of δ.

- $\varphi(x+y)=\varphi(x)+\varphi(y)$
$(x+y)^{p}+p \delta(x+y) \quad x^{p}+p \delta(x)+y^{p}+p \delta(y)$

$$
\therefore p \delta(x+y)=p \delta(x)+p^{\delta}(y)+x^{p}+y^{p}-(x+y)^{p}
$$

an equiv to the
adativily o φ
(i) $\delta(x+y)=\delta(x)+\delta(y)-\sum_{i=1} \frac{1}{p}\left(P_{i}\right) x^{i} y^{p-2}$
sum equiv. ouly veraptor

- $\varphi(x y)=\varphi(x) \varphi(y)$

$$
(x y)^{p}+p \delta(x y)=\left(x^{n}+p \delta(x)\right)\left(y^{p}+p \delta(y)\right)
$$

(iii) $\delta(x y)=x^{p} \delta(y)+\delta(x) y^{p}+p \delta(x) \delta(y)$
(iii) $\delta(0)=0$
(iv) $\delta(1)=0$
"Leibuiz rules" for δ under $+, x, 0,1$. Bioum: $\delta=$ " d / α_{p}
De.: A furation $\delta=R \rightarrow R$ is a p-derivation if it sataties in-(i).
A δ-ring is a ring equiped with a p-derivation.

- \{p-der on R\} $\rightarrow\{$ Frob. 1 ith on $R\}$

$$
\delta \longmapsto \varphi \text {, wher } \varphi(x)=x^{p}+p \delta(x)
$$

This is a bijection of R is p-bor free (bat not in geveral!)
E.g: - Any p-tor-free ring with Frob. 1 ift: $\mathbb{Z}[x], \delta(x)=$ auything

Ruk: There is a formula-free dd. of a δ-strocture.
Ex: $0 R=\mathbb{F}_{7}-$ dg: R admits a p-der. $\Leftrightarrow R=\{0\}$, whreas all sech R have Fros. AAh!
(3) Save Lor $\pi / p R$-alghas.
2. Witt vectors

Gad: δ-rive
Cl) c

Ring
Compare: \{8fferchid ing\} ~

- Warm op with differential rimes

$$
W^{\text {din }}(A)=\text { "divided power series" }=\left\{\left.\sum_{t^{\prime}=0} a_{n} \frac{T_{n}}{t_{n}^{\prime}} \right\rvert\, a_{n} \in A\right\}
$$

obvious ring str: $\frac{t^{\prime \prime}}{w} \cdot \frac{t^{\prime}}{u!}=\binom{m u}{m}=$

$$
\tilde{g}(r)=" g(\text { Tapbr sense } \alpha r)^{\prime \prime}=\sum_{u=0} g\left(d^{\prime \prime \prime}(r)\right) \frac{t^{n}}{u^{\prime}}
$$

Cluck: \tilde{g} is dill ring map tithing g, and is uigur.
Alternative point of view:

$$
\begin{aligned}
W^{\alpha N(t i d}(A)^{\prime} & =A \times A \times \ldots \\
\sum a_{n} \frac{t^{\prime}}{w} & =\left(a_{0}, a_{1}, a_{2}, \ldots\right) \\
\frac{d}{d t} & =\text { skit t lett }
\end{aligned}
$$

The $\tilde{g}: r \longmapsto\left(g(r), g(d(r)), g\left(d^{2}(r), \ldots\right)\right.$

We can see that \tilde{g} is actually the viriqu set mas lifting g + equineriant.
So from this pout So from this point of view, the ring str. on

$$
W^{\text {dill }}(A)=A \times A \times \ldots
$$

is forced to wacke \tilde{g} a ring map.
In food, the ring shr. is a "purely syntactic" re-expression of the Leibniz rules for $d^{\circ 4}$.

$$
\begin{aligned}
& \sum a_{i} \frac{t^{n}}{i!} \sum b_{j} \frac{t_{j}^{j}}{j!}=\sum\binom{i+j}{i} a_{i} b_{j} \frac{t^{i+j}}{(i+j)!} \\
& \left(a_{0}, a_{1}, \ldots\right) \cdot\left(b_{0}, b_{1}, \ldots\right)=\left(\ldots, \sum_{i=1}\binom{n}{i} a_{i} b_{j}, \ldots\right) \\
& d^{o n}(x y)=\underbrace{\sum_{i=j=u}\binom{u}{i} d^{o i}(x) d^{0 j}(y)}_{\text {save }} \underbrace{q}
\end{aligned}
$$

- back to W
$W(A)=A \times A \times \cdots$ an ring str. of the $u^{\text {th }}$ component given by the Leibniz roles for δ^{n} w.r.t. both \pm and x

$$
\begin{aligned}
\left(a_{0}, a_{1}, \ldots\right)+\left(b_{0}, b_{1}, \ldots\right) & =\left(a_{0}+b_{0}, a_{1}+b_{1}-\sum_{i=1}^{-1} \frac{1}{p}\left(p_{i}\right) a_{0}^{i} b_{0}^{p-i}, \ldots\right) \\
\left(a_{0}, a_{1}, \ldots\right) \times\left(b_{0}, b_{1}, \ldots\right) & =\left(a_{0} b_{0}, a_{0}^{p} b_{1}+a_{1} b_{0}^{p}+p a_{1} b_{1}, \ldots\right) \\
0 & =(0,0,0, \ldots) \\
1 & =(1,0,0, \ldots) \\
\delta:\left(a_{0}, a_{1}, a_{1}, \ldots\right) & \longmapsto\left(a_{1}, a_{2}, \ldots\right)
\end{aligned}
$$

$$
\hat{g}(r)=\left(g(r), g(\delta(r)), g\left(\delta^{0^{2}}(r)\right), \ldots\right)
$$

\tilde{g} is the unique set map lIfting g (and compar. with δ)
It is also a ring map by construction.
$\therefore W$ is the right adjoint!
Next time: Our W is canonically isom. to the usual Witt vector construction: But not by the identity mag!

Ex: (4) Prove the poly $P_{n}^{+}\left(x_{0}, y_{n}, \ldots, x_{n}, y_{n}\right)$ st. $\delta^{o u}(x+y)=P_{n}^{+}\left(x, y, \ldots, \delta_{(x,}^{+}, \delta^{\prime \prime}(y)\right)$ is unique. Similarly for multiplication.

Ledene 2
Reterences

- Capulager dlass 2016
- \$1 of reecut pep with Gormey, arxiv: 1905.10495
- Joadis oriyinal paor
- Nots from ther ledues

Lost time: altervative def. of $W(A)$

- change of emplosis: universal way ot intativg A st. it has a Frob lift
- eqoally intersting for A ptor-free - even troddionally, W is born in dor 0
- no formulas, no lemmas weded (Bhatt: derined Frokuins lift)
- it has a few drawbachs (later)
- A perfat $/ \mathbb{I}_{i}$: other def using deformation theary, wore releneut to Foabaine theory meps out viversol property
- Wére muse intersted in the case where $A \neq$ parseet $\mathbb{F}_{?}$-ahg.
- Why? de Rlom-Witt, foundations, prismatic chomonogy, modili...

3. Moduli interpretotion

$$
\begin{array}{ccc}
R=\delta_{\text {-ruy }} & X(A)=\operatorname{Hom}(R, A) \\
X=S_{\text {pu }}(R) & \vdots & \dot{g} \\
I & X(\omega(A)) \hookleftarrow \operatorname{Hom}_{\delta}(R, W(A)) & \tilde{g}
\end{array}
$$

- If a modli spaee hos a δ-struecure, then the oljects it clessities have a theory of canouical lito. It works over an arbitray bose.
E.g: Canowical litts for arbitrary families of ordivary eliptic curves (Gormey)

4. p-dffermulial

- $C=$ free C-vordule on ove geverator "1"
$=\{$ natural 1 -ary operations on C-madles $\}$
$=$ represulting doj. Sor $\mathrm{Hom}_{\text {R }}(C,-)$
$C_{R} M=$ gueretors C om, relations....
- $D=$ free diff. ring on ove gen $e=\mathbb{Z}\left[e, d, d^{\prime 2}, \ldots.\right], d^{0 \prime \prime}=d^{0 \prime \prime}(e)$
= "alg. diff. operators", e =iducity
$\xi \in D$ defines $\xi: R \rightarrow R$
and $D \stackrel{\sim}{\rightarrow}$ \{natural I-ary operatious on dAft. rings\} (exercie)
D also represunts $W^{\text {defs }}$:
$\operatorname{Hom}(\mathbb{K}[e, d, \ldots], A)=\pi A=\omega^{d R 8}(A)$
$D \circ A=\mathbb{R}\left[d^{\circ \prime \prime}(a): a \in A\right] /\left(d^{\prime \prime}(a b)=\cdots, d^{d " \prime}(1)=\delta_{n o}, d^{\prime \prime}(a+1)=\cdots, d^{\prime \prime \prime}(0)=0\right) \quad=\left\{\begin{array}{l}1 \\ 0\end{array}\right.$
- $\Delta=$ free δ-ring on ove gen e
$=\Sigma\left[e, \delta, \delta^{o^{2}}, \cdots\right], \delta^{0 n}=\delta^{0 n}(e), \quad \varphi: \delta^{0 n} \longmapsto\left(\delta^{0 n}\right)^{p}+p \delta^{0(n n 1)}$
$=" p$-dfferential operetors"
$=\left\{\begin{array}{l}\text { natural l-ary operations on } \delta\end{array}\right.$
\triangle regresents ω :

$$
\begin{aligned}
& \operatorname{Hom}\left(\mathbb{R}\left[\ldots, \delta^{a n}, \ldots\right], A\right) \longrightarrow W(A) \\
& \alpha\left.\longmapsto(\alpha(e), \alpha \mid \delta), \alpha\left(\delta^{02}\right), \ldots\right) \\
& \Delta \circ A=\mathbb{Z}\left[\delta^{0 n}(a): a e A\right] /\left(\delta^{0 n}(a b)=\ldots, \delta^{\prime n}(1)=\delta_{\ldots, 0}, \delta^{0 n}(a+1)=\ldots, \delta^{0 n}(0)=0\right)
\end{aligned}
$$

Pom: Suppose $\xi_{0}, \xi_{1}, \xi_{2}, \ldots \in \Delta$ is austher free gen. set.
Thun

\[

\]

Bt the ring str. on $W(A)$ when expressed in terms of the RIIS will involve the Leibniz rules for the operators ξ_{n}, which in general will have nothing to do with those for the obvious generators $\delta^{3 n}$.

- Traditional description of W is the ove above for a certain list of free generating operators $\theta_{0}, \theta_{1}, \ldots \in \Delta$.
$\theta_{n}=$ the witt operator
$\delta^{\circ u}=$ the Boinm-Soyal operators

$$
\theta_{0}=\delta^{00}=e, \theta_{1}=\delta^{01}, \theta_{2}=\delta^{02}+\underbrace{\sum_{i=1}^{p} p^{i-2}\binom{p}{i} e^{p\left(p^{-i}\right)}\left(\delta^{01}\right)^{i}}_{\text {order 1 }}
$$

- Alternatively $W=\operatorname{Sece}(\Delta)$.

Two difterut coordinate system e $W \leadsto \AA^{\infty}$:
Witt coordinates, Boium-Joyal coordinates.
Buinm-Joyal are usually beater Dor conceptual purposes, but Witt are sometimes used for computations.

So what are the witt erectors?
5. Witt components

De:: $\theta_{n} \in \Delta\left[\frac{1}{p}\right]$ recursively by

"Witt polquemials"

$$
\begin{gathered}
\varphi^{\cdot 0}=\theta_{0}=e, \quad \varphi^{01}=\theta_{0}^{p}+p \theta_{1} \quad \therefore \theta_{1}=\delta \\
\underline{u=2}: \quad e^{p^{2}}+p \delta^{p}+p^{2} \theta_{2}=\varphi^{\prime 2}=\left(e^{p}+p \delta\right)^{p}+p \delta^{p}+p^{2} \delta^{02} \\
\therefore \quad p^{2} \theta_{2}=p^{2} \delta^{-2}+\sum_{i=1}^{1}(p) e^{p(p-i)}(p \delta)^{i} \\
\theta_{2}=\delta^{02}+\sum_{i=1}^{p} \underbrace{\left(p_{i}\right) p^{i-2} e^{p(p-1)} \delta^{i}}_{\text {order opera }}
\end{gathered}
$$

Earp: the θ_{n} freely gen. $\Delta[1 / p]$ as a $\pi[1 / p]$-alg. Pf: $\varphi^{\text {on }}=p^{u} \theta_{n}+$ lower-order terms

Thu: (Jopal/Cartier-Dieudomie-Dusk)
i) $\theta_{n} \in \Delta$
(ii) The θ_{n} gun Δ freely as a \mathbb{R}-alg.

The proof requires an argument using nontrivial congruences. First time we've needed a uou-formal argument.

Lecture 3
Themarts

- prismatic colowodlogy - δ-rings (Blott-Schotee) or $\omega(A)$ Sor A guearl (Driudeld) (Arvab Sohais lectures)
- $W(A)=\operatorname{How}(\Delta, A)$ an (vearly) coord. indep. def of W.
- Ex: δ-rings have all limits + adminits,
and the forgiffil functor to rings preserves them.
- $\{\triangle O A \rightarrow C\}=\{A \rightarrow \omega(C)\}$
$X=S_{\mu} A, I(x)=S_{\mu} \Delta \odot A \quad m>J(x)(c)=X(\omega(c))$
"arittumetic jet space" Buirm p-drfferatial alg. goom.

5. Witt components

Def: $\theta_{n} \in \Delta\left[\frac{1}{p}\right]$ recursively by
"Witt polyumumals"

Thu: (opal $^{\text {/ Cartier-Dheudonne-Dusk }}$)
i) $\theta_{n} \in \Delta$
(ii) The θ_{n} gun Δ freely as a \mathbb{R}-alg.

Key feet: $\mathbb{Z}\left[\theta_{0}, \ldots, \theta_{n}\right]=\mathbb{Z}\left[e_{,}, \ldots, \delta^{n}\right] \Rightarrow \delta\left(\theta_{n}\right)=\theta_{n+1}+\left(\right.$ terms in $\mathbb{Z}\left[\theta_{0}, \ldots, \theta_{n} T\right)$
Thun $\delta^{(n+1)} \equiv \theta_{n+1}+$ (lower order terms) and can conclude by induction
Pf of hey foes:
Expand $\varphi^{0(4 n+1)}$ in two ways
(1) $\varphi^{0(n+1)}=\sum_{i=0}^{m u} p^{i} \theta_{i}^{p m-i}$

$$
\begin{aligned}
& \text { (2) } \varphi\left(\varphi^{0 n}\right)=\varphi\left(\sum_{i=0}^{n} p^{i} \theta_{i}^{p-i}\right) \\
& =p^{n} \varphi\left(\theta_{n}\right)+\sum_{i=0}^{n-1} p^{i} \varphi\left(\theta_{i}\right)^{n-i} \\
& =-"-+\sum_{i=0}^{n=0} p^{i}\left(\theta_{i}^{p}+p \delta\left(\theta_{i}\right)\right)^{n-i} \\
& \text { induction } m \text {) }=-\cdots-+\sum_{i=1}^{n-i=0} p^{i}\left(\theta_{i}^{p}+p f_{i}\left(\theta_{0}, \ldots, \theta_{i n}\right)\right)^{n-i} \\
& \equiv p^{u} \varphi\left(\theta_{n}\right)+\sum_{i=1}^{n+i} p^{i} \theta_{i}^{\theta^{n+1}} \bmod p^{n+1} \mathbb{Z}\left[\theta_{0}, \ldots, \theta_{n}\right] \\
& \therefore p^{n} \varphi\left(\theta_{n}\right) \equiv p^{n} \theta_{n}^{p}+p^{n+1} \theta_{n+1} \quad \text { end } p^{n+1} \mathbb{T}\left[\theta_{0}, \ldots, \theta_{n}\right] \\
& \varphi\left(\theta_{n}\right)=\theta_{u}^{p}+p \theta_{n+1} \quad \text { un } p \mathbb{T}\left[\theta_{0}, \ldots, \theta_{n}\right] \\
& \theta_{n}+p \delta\left(\theta_{n}\right) \\
& \therefore \quad \delta\left(\theta_{n}\right) \equiv \theta_{n+1} \operatorname{ard} \mathbb{Z}\left[\theta_{0}, ., \theta_{n}\right]
\end{aligned}
$$

6. Ghost components

Consider the operators $\varphi^{\text {on }} \in \Delta$

$$
\begin{aligned}
& \varphi^{00}=e \\
& \varphi^{01}=e^{p}+p \delta \\
& \varphi^{0^{2}}=\left(e^{p}+p \delta\right)^{p}+p \delta^{p}+p^{2} \delta^{02}
\end{aligned}
$$

They do not gen. Δ, even $\bmod p: \quad \varphi^{0 n} \equiv e^{p^{n}} \operatorname{med} p \Delta$
\therefore thy gen. $\mathbb{F}_{p}[e] \subset \mathbb{F}_{p}\left[e, \delta, \delta^{02}, \ldots\right]$
But we can ignore that and proceed as I they did:
 because $\varphi^{\text {on }}$ is additive +mut. so Leibniz roles are the earyoves
"Ghost mop", RHS = "ghost components"
N.B: the gust mop is not usually au isomorphism!

In δ-coordinates: $\omega\left(x_{0}, x_{1}, \ldots\right)=\left\langle z_{0}, z_{1}, \ldots\right\rangle$, where Z_{n} is the poly $Z_{n}\left(x_{0}, x_{1}, \ldots\right)^{p}$ s.). $\varphi^{0 n}=Z_{n}\left(e, \delta, \ldots, \delta^{n}\right)$.
So $\omega\left(x_{0}, x_{1}, x_{2}\right)_{\delta}=\left\langle x_{0}, x_{0}^{p}+p x_{1},\left(x_{0}^{p}+p x_{1}\right)^{p}+p x_{1}^{p}+p^{p} x_{2}, \ldots\right\rangle$
Similarly in Witt cords, but we have nice closed forms for the corresponding polys, by def. of the θ_{n} !

$$
w\left(x_{0}, x_{1}, \ldots\right)_{\text {att }}=\left\langle\ldots, \sum_{i=0}^{\sum} p^{1} x_{i}^{p^{-t}}, \ldots\right\rangle
$$

But they do Sroaly geverate $\Delta[1 / p]$ as a $\mathbb{T}[1 / p]$-dg.
Pf: $\delta^{\text {on }}=\left(\frac{\varphi-e^{p}}{p}\right) \cdot\left(\frac{\varphi-e^{p}}{p}\right) \cdot \cdots \cdot\left(\frac{\varphi-e^{?}}{p}\right)=\frac{1}{p} \cdot \varphi^{n}+($ lower order kerms)
So $1_{p \in A} \Rightarrow W(A)=\operatorname{Hom}(\Delta, A)=\operatorname{Hom}\left(\Delta\left[\left[_{p}\right], A\right)\right.$, so w is a bijection
Ex:0 A p-borfree \Rightarrow ghost wop is ijective.
$\therefore W(A)$ is vaturally a sobring of the prodect rivg $\prod_{\mathrm{N}} A$
(2) $W(\mathbb{X})=\left\{\left\langle a_{0}, a_{1}, \ldots\right\rangle \in \prod_{N}^{A} \mid a_{m n} \equiv a_{n} \bmod _{p^{n \prime}}\right\}$
(3) $W\left(\mathbb{F}_{\mathrm{P}}\right) \stackrel{\mathbb{R}_{p}}{ }$ and $W(\mathbb{X}) \rightarrow W\left(\mathbb{F}_{\mathrm{P}}\right)$ is $\left\langle a_{a}, a_{1}, \ldots\right\rangle$ ص $\lim _{n} a_{n}$

Spectrom:

- How to do a compration in $W(A)$, A queral:
(1) Cleose ptro. Free $\tilde{A} \rightarrow A$, and litt the problem to $\omega(\tilde{A})$
(2) Peform the comptation in W (AA) using ghost componentis (easy!)
(3) Convert the answer boak to the original componimbs of $w(\tilde{x})$
(4) Reduce boak to $W(A)$.
\underline{E}_{x} : If $x_{0}, y_{0}, x_{1}, y_{1}, \ldots$ are square-zero dements in an \mathbb{F}_{p}-algebra, compute $\left(x_{0}, x_{1}, \ldots\right)+\left(y_{0}, y_{1}, \ldots\right)$, and x.

7. Teichmiller lifts

A ring, $\mathbb{R}[A]=$ movoid alg. on mutt. moore of A

$$
\begin{aligned}
\varphi: \mathbb{Z}[A] & \mapsto \mathbb{Z}[A] \\
{[a] } & \longmapsto\left[a^{*}\right]
\end{aligned}
$$

Fob. Ifs $+\mathbb{L}[A]$ dor. free $\Rightarrow \delta$-str. $\delta([a])=0$.
$\therefore \quad \mathbb{R}[A] \ldots \exists \square W(A)$

In δ-cords: $[a] \longmapsto(a, 0,0, \ldots)$
Also true in Witt coordinate!
8. Condusion

Other Lopics

- plethystic formalism
- multiple primes, ramitied, function ficld
- perfect Witt vectovs: $W^{\text {pr}}(A)=\lim _{\varphi} W(A), F o n t a i n i s \theta, \ldots$
- truncations
- de Rham-Witt interprettion

