

Small-worlds, complex networks and random graphs

Advances in Applied Probability ICTS, Bengaluru, August 5–17, 2019

Remco van der Hofstad

Joint work with:

- > S. Bhamidi (North Carolina)

- → H. van den Esker (Delft)
- ⊳ S. Dommers (TU/e)

Plan lectures

Lecture 1:

Real-world networks and random graphs

Lecture 2:

Small-world phenomena in random graphs

Lecture 3:

Information diffusion in random graphs

Material

Random Graphs and Complex Networks Volume 1

http://www.win.tue.nl/~rhofstad/NotesRGCN.html

Volume 2: in preparation on same site

Treat selected parts of Chapters I.1, I.6–I.8 and II.2–II.7.

Argument are probabilistic, using

- > branching process approximations.

Lecture 1:

Real-world networks and random graphs

Complex networks

Yeast protein interaction network^a

Internet 2010^b

Attention focussing on unexpected commonality.

^aBarabási & Óltvai 2004

^bOpte project http://www.opte.org/the-internet

Scale-free paradigm

Loglog plot degree sequences WWW in-degree and Internet

- \triangleright Straight line: proportion p_k of vertices of degree k satisfies $p_k = ck^{-\tau}$.
- \triangleright Empirical evidence: Often $\tau \in (2,3)$ reported.

Small-world paradigm

Distances in Strongly Connected Component WWW and IMDb.

Network science

> Complex networks modeled using

random graphs.

> Network functionality modeled by stochastic processes on them.

> A plethora of examples:

Disease spread Synchronization

Information diffusion Robustness to failures

Consensus reaching Information retrieval

Percolation Random walks...

- ▷ Also algorithms on networks important: PageRank, assortativity, community detection,...
- > Prominent part of applied math for decades to come.

Models complex networks

> Inhomogeneous Random Graphs:

Static random graph, independent edges with inhomogeneous edge occupation probabilities, yielding scale-free graphs.

(Chapters I.6, II.2 and II.5)

[Extensions of Erdős-Rényi random graphs Chapters I.4 and I.5.]

Static random graph with prescribed degree sequence.

(Chapters I.7, II.3 and II.6)

> Preferential Attachment Model:

Dynamic model, attachment proportional to degree plus constant.

(Chapters I.8, II.4 and II.7)

Universality??

Erdős-Rényi

Erdős-Rényi random graph is random subgraph of complete graph on $[n] := \{1, 2, \dots, n\}$ where each of $\binom{n}{2}$ edges is occupied independently with prob. p.

Simplest imaginable model of a random graph.

Probabilistic method (Spencer, Erdős et al.).

- ightharpoonup Average degree equals $(n-1)p \approx np$, so choose $p = \lambda/n$ to have sparse graph.
- ► Egalitarian: Every vertex has equal connection probabilities.
 Misses hub-like structure of real networks.

Inhomogeneous random graphs

- > Extensions of Erdős-Rényi random graph with different vertices.
- > Chung-Lu: random graphs with prescribed expected degrees:
- ⋆ Connected component structure (2002)
- * Distance results (2002), PNAS
- * Book (2006)
- > Most general:
- * Bollobas, Janson and Riordan (2007)
- ⋆ Söderberg (2007): Phys. Rev. E

We focus on

generalized random graph.

Generalized random graph

 \triangleright Attach edge with probability p_{ij} between vertices i and j, where

$$p_{ij} = rac{w_i w_j}{\ell_n + w_i w_j}, \qquad ext{with} \qquad \ell_n = \sum_{i \in [n]} w_i,$$

different edges being independent [Britton-Deijfen-Martin-Löf 05]

 \triangleright Resulting graph is denoted by $GRG_n(\boldsymbol{w})$.

Interpretation: w_i is close to expected degree vertex i.

- * Retrieve Erdős-Rényi RG with $p = \lambda/n$ when $w_i = n\lambda/(n-\lambda)$.
- > Related models:
- * Chung-Lu model: $p_{ij} = w_i w_j / \ell_n \wedge 1$;
- * Norros-Reittu model: $p_{ij} = 1 e^{-w_i w_j/\ell_n}$.
- * Janson (2010): General conditions for asymptotic equivalence.

Regularity vertex weights

Condition I.6.3. Denote empirical distribution function weight by

$$F_n(x) = \frac{1}{n} \sum_{i \in [n]} \mathbb{1}_{\{w_i \le x\}}, \qquad x \ge 0.$$

(a) Weak convergence of vertex weight. There exists F s.t.

$$W_n \stackrel{d}{\longrightarrow} W$$
,

where W_n and W have distribution functions F_n and F.

(b) Convergence of average vertex weight.

$$\lim_{n\to\infty} \mathbb{E}[W_n] = \mathbb{E}[W] > 0.$$

(c) Convergence of second moment vertex weight.

$$\lim_{n \to \infty} \mathbb{E}[W_n^2] = \mathbb{E}[W^2].$$

Canonical choice weights

Aim: Proportion of vertices i with $d_i = k$ is close to

$$p_k = \mathbb{P}(D = k),$$

for some random variable D.

- (A) Take $\mathbf{w} = (w_1, \dots, w_n)$ as i.i.d. random variables with distribution function F.
- (B) Take $w = (w_1, ..., w_n)$ as

$$w_i = [1 - F]^{-1}(i/n).$$

Interpretation: Proportion of vertices i with $w_i \leq x$ is close to F(x).

 \triangleright Power-law example: $F(x) = [1 - (a/x)^{\tau-1}] \mathbb{1}_{\{x \geq a\}}$, for which

$$[1-F]^{-1}(u) = a(1/u)^{-1/(\tau-1)},$$
 so that $w_j = a(n/j)^{1/(\tau-1)}.$

Degree structure GRG

Denote proportion of vertices with degree k by

$$P_k^{(n)} = \frac{1}{n} \sum_{i \in [n]} \mathbb{1}_{\{D_i = k\}},$$

where D_i is degree of $i \in [n]$. Then [Bollobás-Janson-Riordan (07)]

$$P_k^{(n)} \xrightarrow{\mathbb{P}} p_k = \mathbb{E}\left[e^{-W}\frac{W^k}{k!}\right],$$

where W is a random variable having distribution function F. †

Recognize limit $(p_k)_{k\geq 0}$ as probability mass function of Poisson random variable with random parameter $W\sim F$. In particular,

$$\sum_{l>k} p_l \sim ck^{-(\tau-1)} \quad \text{iff} \quad \mathbb{P}(W \ge k) \sim ck^{-(\tau-1)}.$$

Configuration model

⊳ Invented by Bollobás (80) EJC to study number of graphs with given degree sequence. Inspired by Bender+Canfield (78) JCT(A)

Giant component: Molloy, Reed (95)

Popularized by Newman-Strogatz-Watts (01)

 \triangleright In configuration model $CM_n(\mathbf{d})$ degree sequence is prescribed:

ightharpoonup n number of vertices; $ightharpoonup d = (d_1, d_2, \dots, d_n)$ sequence of degrees is given.

Often $(d_i)_{i \in [n]}$ taken to be i.i.d.

 \triangleright Special attention to power-law degrees, i.e., for $\tau > 1$ and c_{τ}

$$\mathbb{P}(d_1 \ge k) = c_{\tau} k^{-\tau + 1} (1 + o(1)).$$

Power laws CM

Loglog plot of degree sequence CM with i.i.d. degrees n=1,000,000 and $\tau=2.5$ and $\tau=3.5$, respectively.

Graph construction CM

 \triangleright Assign d_j half-edges to vertex j. Assume total degree

$$\ell_n = \sum_{i \in [n]} d_i$$

is even.

> Pair half-edges to create edges as follows:

Number half-edges from 1 to ℓ_n in any order.

First connect first half-edge at random with one of other ℓ_n-1 half-edges.

- > Continue with second half-edge (when not connected to first) and so on, until all half-edges are connected.
- \triangleright Resulting graph is denoted by $CM_n(\mathbf{d})$.

Conclusion networks

Many real-world networks share important features:

scale-free and small-world paradigms.

Often, suggestion of infinite-variance degrees.

Models invented to describe properties:

Configuration model and generalized random graph.

Models are flexible in their degree structure.

Lecture 2:

Small-world phenomenon on random graphs

Graph construction CM

 \triangleright Assign d_j half-edges to vertex j. Assume total degree

$$\ell_n = \sum_{i \in [n]} d_i$$

is even.

> Pair half-edges to create edges as follows:

Number half-edges from 1 to ℓ_n in any order.

First connect first half-edge at random with one of other ℓ_n-1 half-edges.

- Continue with second half-edge (when not connected to first) and so on, until all half-edges are connected.
- \triangleright Resulting graph is denoted by $CM_n(\mathbf{d})$.

Regularity vertex degrees

Condition I.7.5. Denote empirical distribution function degrees by

$$F_n(x) = \frac{1}{n} \sum_{i \in [n]} \mathbb{1}_{\{d_i \le x\}}, \qquad x \ge 0.$$

(a) Weak convergence of vertex degrees. There exists F s.t.

$$D_n \stackrel{d}{\longrightarrow} D$$
,

where D_n and D have distribution functions F_n and F.

(b) Convergence of average vertex weight.

$$\lim_{n\to\infty} \mathbb{E}[D_n] = \mathbb{E}[D] > 0.$$

(c) Convergence of second moment vertex degrees.

$$\lim_{n\to\infty} \mathbb{E}[D_n^2] = \mathbb{E}[D^2] < \infty.$$

Canonical choice degrees

Aim: Proportion of vertices i with $d_i = k$ is close to

$$F(k) - F(k-1) = p_k = \mathbb{P}(D = k),$$

where D has distribution function F.

- * Power-law degrees: precise structure of large degrees crucial.
- (A) Take $d = (d_1, \dots, d_n)$ as i.i.d. rvs with distribution function F.

 Double randomness!
- (B) Take $d = (d_1, \dots, d_n)$ such that $d_i = [1 F]^{-1}(i/n)$, with F distribution function on \mathbb{N} .

Power-law degrees:

$$[1 - F](k) \approx ck^{-(\tau - 1)}$$
, so that $d_j \approx a(n/j)^{1/(\tau - 1)}$.

Simple CMs

Proposition I.7.7. Let $G = (x_{ij})_{i,j \in [n]}$ be multigraph on [n] s.t.

$$d_i = x_{ii} + \sum_{j \in [n]} x_{ij}.$$

Then, with
$$\ell_n = \sum_{v \in [n]} d_v$$
,
$$\mathbb{P}(\mathrm{CM}_n(\boldsymbol{d}) = G) = \frac{1}{(\ell_n - 1)!!} \frac{\prod_{i \in [n]} d_i!}{\prod_{i \in [n]} 2^{x_{ii}} \prod_{1 \le i \le j \le n} x_{ij}!}.$$

Consequently, number of simple graphs with degrees d equals

$$N_n(\boldsymbol{d}) = \frac{(\ell_n - 1)!!}{\prod_{i \in [n]} d_i!} \mathbb{P}(\mathrm{CM}_n(\boldsymbol{d}) \text{ simple}),$$

and, conditionally on $CM_n(d)$ simple,

 $CM_n(d)$ is uniform random graph with degrees d.

Relation GRG and CM

Theorem I.6.15. The $\mathrm{GRG}_n(\boldsymbol{w})$ with edge probabilities $(p_{ij})_{1 \leq i < j \leq n}$ given by

$$p_{ij} = \frac{w_i w_j}{\ell_n + w_i w_j},$$

conditioned on its degrees $\{d_i(X)=d_i \forall i \in [n]\}$ is uniform over all graphs with degree sequence $(d_i)_{i \in [n]}$.

Consequently, conditionally on degrees, $GRG_n(w)$ has the same distribution as $CM_n(d)$ conditioned on simplicity.

Allows properties of $GRG_n(\boldsymbol{w})$ to be proved through $CM_n(\boldsymbol{d})$ by showing that degrees $GRG_n(\boldsymbol{w})$ satisfy right asymptotics.

Inspires Degree Regularity Condition.†

Self-loops + multi-edges

- ▷ CM can have cycles and multiple edges, but these are relatively scarce compared to the number of edges. [Theorem I.7.6]
- ▶ Let D_n denote degree of uniformly chosen vertex. Condition 7.5(a): D_n converges in distribution to limiting random variable D.
- ightharpoonupWhen $\mathbb{E}[D^2] \to \mathbb{E}[D^2] < \infty$, then numbers of self-loops and multiple edges converge in distribution to two independent Poisson variables with parameters $\nu/2$ and $\nu^2/4$, respectively, where

$$\nu = \frac{\mathbb{E}[D(D-1)]}{\mathbb{E}[D]}.$$

[Theorem I.7.8, Prop. I.7.9]

Preferential attachment model

⊳ Albert-Barabási (1999):

Emergence of scaling in random networks (Science).

34013 cit. (12-08-2019).

⊳ Bollobás, Riordan, Spencer, Tusnády (2001):

The degree sequence of a scale-free random graph process (RSA) 852 cit. (12-08-2019).

[Yule (1925) and Simon (1955) already introduced similar models.]

In preferential attachment models, network is growing in time, in such a way that new vertices are more likely to be connected to vertices that already have high degree.

Rich-get-richer model.

Preferential attachment model

⊳ Albert-Barabási (1999):

Emergence of scaling in random networks (Science).

34013 cit. (12-08-2019).

⊳ Bollobás, Riordan, Spencer, Tusnády (2001):

The degree sequence of a scale-free random graph process (RSA) 852 cit. (12-08-2019).

[Yule (1925) and Simon (1955) already introduced similar models.]

In preferential attachment models, network is growing in time, in such a way that new vertices are more likely to be connected to vertices that already have high degree.

Old-get-richer model.

Preferential attachment

At time n, single vertex is added with m edges emanating from it. Probability that edge connects to ith vertex is proportional to

$$D_i(n-1)+\delta$$
,

where $D_i(n)$ is degree vertex i at time n, $\delta > -m$ is parameter.

Yields power-law degree sequence with exponent $\tau = 3 + \delta/m > 2.$

Bol-Rio-Spe-Tus 01 $\delta = 0$, DvdEvdHH09,...

$$m = 2, \delta = 0, \tau = 3, n = 10^6$$

Albert-László Barabási

"...the scale-free topology is evidence of organizing principles acting at each stage of the network formation. (...) No matter how large and complex a network becomes, as long as preferential attachment and growth are present it will maintain its hub-dominated scale-free topology."

Degrees in PAM

Bollobás-Riordan-Spencer-Tusnády 01: First to give proof for $\delta=0$. Tons of subsequent proofs, many of which follow same key steps:

> A clever Doob martingale:

$$M_n = \mathbb{E}[N_k(t) \mid PA_n],$$

where $N_k(t)$ is number of vertices of degree k at time t, combined with Azuma-Hoeffding to prove concentration.

 \triangleright Analysis of means: Identify asymptotics $\mathbb{E}[N_k(t)]$ and prove that

$$\frac{\mathbb{E}[N_k(t)]}{t} \to p_k.$$

Many different ways to do this. See Section I.8.4 for details.

[Alternatively, for m=1, CTBP embeddings can be used, see work of e.g. K. Athreya.]

Network models I

> Configuration model with clustering:

Input per vertex i is number of simple edges, number of triangles, number of squares, etc. Then connect uniformly at random.

Result: Random graph with (roughly) specified degree, triangle, square, etc distribution over graph.

Application: Social networks?

> Small-world model:

Start with d-dimensional torus (=circle d=1, donut d=2, etc). Put in nearest-neighbor edges. Add few edges between uniform vertices, either by rewiring or by simply adding.

Result: Spatial random graph with high clustering, but degree distribution with thin tails.

Application: None? Often used by neuroscientists.

Network models II

> Random intersection graph:

Specify collection of groups. Vertices choose group memberships. Put edge between any pairs of vertices in same group.

Result: Flexible collection of random graphs, with high clustering, communities by groups, tunable degree distribution.

Application: Collaboration graphs?

> Spatial preferential attachment model:

First give vertex uniform location. Let it connect to close by vertices with probability proportionally to degree.

Result: Spatial random graph with scale-free degrees and high clustering.

Application: Social networks, WWW?

Hierarchical CM

Vertex i is blown up to represent small community graph. Connect inter-community half-edges uniformly at random.

Result: Random graph with (roughly) specified communities.

Application: Many real-world networks on mesoscopic scale. Stegehuis+vdH+vL16 Scientific Reports, Phys. Rev. E.

Percolation on HCM

Phase transition CM

Let C_{max} denote largest connected component in $CM_n(\boldsymbol{d})$.

Theorem 1. [Mol-Ree 95, Jan-Luc 07, Theorem II.3.4]. When Conditions I.7.5(a-b) hold,

$$\frac{1}{n}|\mathcal{C}_{\max}| \stackrel{\mathbb{P}}{\longrightarrow} \zeta,$$

where $\zeta > 0$ precisely when $\nu > 1$ with $\nu = \mathbb{E}[D(D-1)]/\mathbb{E}[D]$.

ightharpoonup Note: $\zeta > 0$ always true when $\nu = \infty$: **Robustness!**

 $\gt d_{\min} = \min_{i \in [n]} d_i \ge 3 : \mathrm{CM}_n(\mathbf{d})$ with high probability connected. Wormald (81), Luczak (92).

 $ho d_{\min} = \min_{i \in [n]} d_i \ge 2 : n - |\mathcal{C}_{\max}| \stackrel{d}{\longrightarrow} X$ for non-trivial X. Luczak (92), Federico-vdH (17).

Phase transition for GRG

Let C_{max} denote largest connected component in $GRG_n(\boldsymbol{w})$.

Theorem 2. [Chu-Lu 03, Bol-Jan-Rio 07]. When Conditions I.6.3(a-b) hold, there exists $\zeta < 1$ such that

$$\frac{1}{n}|\mathcal{C}_{\max}| \stackrel{\mathbb{P}}{\longrightarrow} \zeta,$$

where $\zeta > 0$ precisely when $\nu > 1$, where

$$\nu = \frac{\mathbb{E}[W^2]}{\mathbb{E}[W]}.$$

- ightharpoonup Note: $\zeta > 0$ always true when $\nu = \infty$.
- ⊳ Bol-Jan-Rio 07 much more general.

Graph distances CM

 H_n is graph distance between uniform pair of vertices in graph.

Theorem 3. [vdHHVM05, Theorem II.6.1]. When Conditions I.7.5(a-c) hold and $\nu = \mathbb{E}[D(D-1)]/\mathbb{E}[D] > 1$, conditionally on $H_n < \infty$,

$$\frac{H_n}{\log_{\cdot \cdot} n} \stackrel{\mathbb{P}}{\longrightarrow} 1.$$

> For i.i.d. degrees having at most power-law tails, fluctuations are bounded.

Theorem 4. [vdHHZ07, Norros-Reittu 04, Theorem II.6.2]. Let Conditions I.7.5(a-b) hold. When $\tau \in (2,3)$, conditionally on $H_n < \infty$,

$$\frac{H_n}{\log\log n} \xrightarrow{\mathbb{P}} \frac{2}{|\log(\tau - 2)|}.$$

> vdH-Komjáthy16: For power-law tails, fluctuations are bounded and do not converge in distribution.

Six degrees of separation revisited

Plot of $x \mapsto \log x$ and $x \mapsto \log \log x$.

Diameter CM

Theorem 5. [Fernholz-Ramachandran 07, Theorem II.6.20]. Under Conditions I.7.5(a-b), there exists b s.t.

$$\frac{\operatorname{diam}(\operatorname{CM}_n(\boldsymbol{d}))}{\log n} \xrightarrow{\mathbb{P}} \frac{1}{\log(\nu)} + 2b.$$

Here b > 0 precisely when $\mathbb{P}(D \leq 2) > 0$.

Theorem 6. [Caravenna-Garavaglia-vdH 17, Theorem II.6.21]. Under Conditions I.7.5(a-b), when $\tau \in (2,3)$ and $\mathbb{P}(D \geq 3) = 1$,

$$\frac{\operatorname{diam}(\operatorname{CM}_n(\boldsymbol{d}))}{\log\log n} \xrightarrow{\mathbb{P}} \frac{2}{|\log(\tau-2)|} + \frac{2}{\log(d_{\min}-1)}.$$

Conclusion small-worlds

Many real-world networks share important features:

scale-free and small-world paradigms.

Often, suggestion of infinite-variance degrees.

Models invented to model/explain properties:

Configuration model, generalized random graph and preferential attachment.

Distances are remarkably similar across models.

Lecture 3:

Small worlds and Information diffusion on random graphs

Graph distances GRG

Theorem 7. [Chung-Lu 03, Bol-Jan-Rio 07, vdEvdHH08, Thm. II.5.2] When Conditions I.6.3(a-c) hold and $\nu = \mathbb{E}[W^2]/\mathbb{E}[W] > 1$, conditionally on $H_n < \infty$,

$$\frac{H_n}{\log_{\nu} n} \stackrel{\mathbb{P}}{\longrightarrow} 1.$$

Under somewhat stronger conditions, fluctuations are bounded.

Theorem 8. [Chung-Lu 03, Norros-Reittu 06, Theorem II.5.3]. When $\tau \in (2,3)$, and Conditions I.6.3(a-b) hold, under certain further conditions on F_n , and conditionally on $H_n < \infty$,

$$\frac{H_n}{\log\log n} \xrightarrow{\mathbb{P}} \frac{2}{|\log(\tau - 2)|}.$$

Similar extensions for diameter as for CM (always logarithmic.) Again Bol-Jan-Rio 07 prove Theorem 7 in highly general setting.

Distances PA models

Note that results CM and GRG are very alike, with CM having more general behavior (e.g., connectivity). Sign of the wished for universality.

Non-rigorous physics literature predicts that scaling distances in preferential attachment models similar to the one in configuration model with equal

power-law exponent degrees.

- ▷ In general, this question is still wide open, but certain indications are obtained.
- > PAM tends to be much harder to analyze, due to time dependence.

Distances PA models

Theorem 9 [Bol-Rio 04]. For all $m \ge 2$ and $\tau = 3$,

$$\operatorname{diam}(\operatorname{PA}_{m,0}(n)) = \frac{\log n}{\log \log n} (1 + o_{\mathbb{P}}(1)), \qquad H_n = \frac{\log n}{\log \log n} (1 + o_{\mathbb{P}}(1)).$$

Theorem 10 [Dommers-vdH-Hoo 10]. For all $m \geq 2$ and $\tau \in (3, \infty)$,

$$\operatorname{diam}(\operatorname{PA}_{m,\delta}(n)) = \Theta(\log n), \qquad H_n = \Theta(\log n).$$

Theorem 11 [Dommers-vdH-Hoo 10, Der-Mon-Mor 12, Car-Gar-vdH17]. For all $m \ge 2$ and $\tau \in (2,3)$,

$$\frac{H_n}{\log\log n} \xrightarrow{\mathbb{P}} \frac{4}{|\log(\tau - 2)|}, \qquad \frac{\operatorname{diam}(\operatorname{PA}_{m,\delta}(n))}{\log\log n} \xrightarrow{\mathbb{P}} \frac{4}{|\log(\tau - 2)|} + \frac{2}{\log m}.$$

Conclusion small-worlds

Many real-world networks share important features:

scale-free and small-world paradigms.

Often, suggestion of infinite-variance degrees.

Models invented to model/explain properties:

Configuration model, generalized random graph and preferential attachment.

Distances are remarkably similar across models.

Graph distances CM

 H_n is graph distance between uniform pair of vertices in graph.

Theorem 3. [vdHHVM05, Theorem II.6.1]. When Conditions I.7.5(a-c) hold and $\nu = \mathbb{E}[D(D-1)]/\mathbb{E}[D] > 1$, conditionally on $H_n < \infty$,

$$\frac{H_n}{\log_{\cdot \cdot} n} \stackrel{\mathbb{P}}{\longrightarrow} 1.$$

> For i.i.d. degrees having at most power-law tails, fluctuations are bounded.

Theorem 4. [vdHHZ07, Norros-Reittu 04, Theorem II.6.2]. Let Conditions I.7.5(a-b) hold. When $\tau \in (2,3)$, conditionally on $H_n < \infty$,

$$\frac{H_n}{\log\log n} \xrightarrow{\mathbb{P}} \frac{2}{|\log(\tau - 2)|}.$$

> vdH-Komjáthy16: For power-law tails, fluctuations are bounded and do not converge in distribution.

Proof CM: Neighborhoods

 \triangleright Important ingredient in proof is description local neighborhood of uniform vertex $U_1 \in [n]$. Its degree has distribution $D_{U_1} \stackrel{d}{=} D$.

 \triangleright Take any of D_{U_1} neighbors a of U_1 . Law of number of forward neighbors of a, i.e., $B_a = D_a - 1$, is approximately

$$\mathbb{P}(B_a = k) \approx \frac{(k+1)}{\sum_{i \in [n]} d_i} \sum_{i \in [n]} \mathbb{1}_{\{d_i = k+1\}} \xrightarrow{\mathbb{P}} \frac{(k+1)}{\mathbb{E}[D]} \mathbb{P}(D = k+1).$$

Equals size-biased version of D minus 1. Denote this by $D^* - 1$.

Local tree-structure CM

- \triangleright Forward neighbors of neighbors of U_1 are close to i.i.d. Also forward neighbors of forward neighbors have asymptotically same distribution...
- \triangleright Conclusion: Neighborhood looks like branching process with off-spring distribution $D^{\star}-1$ (except for root, which has offspring D.)

- Tool to make this precise is local weak convergence.

Structure local limit CM

ho $\mathbb{E}[D^2] < \infty$: Finite-mean BP, which has exponential growth of generation sizes:

$$\nu^{-k} Z_k \xrightarrow{a.s.} M \in (0, \infty),$$

on event of survival.

* Explains why distances random graph grow logarithmically.

ho $au \in (2,3)$: Infinite-mean BP, which has double exponential growth of generation sizes:

$$(\tau - 2)^k \log(Z_k \vee 1) \xrightarrow{a.s.} Y \in (0, \infty),$$

on event of survival.

* Explains why distances grow doubly logarithmically.

Discussion small worlds

> Small worlds:

Results quantify small-world behavior random graphs. Random graphs are small worlds in general, ultra-small worlds when degrees have infinite variance.

Universality!

Random graphs studied here are locally tree-like. Much harder in general to move away from this.

Smallest-weight problems

 ▷ Time delay experienced by vertices in network is given by hopcount, which is number of edges on smallest-weight path.

How does weight structure influence structure of smallest-weight paths?

> Assume that

edge weights are i.i.d. (continuous) random variables.

□ Graph distances: weights = 1.

Choice of edge weights

2000: CISCO recommended to use link weights that are proportional to inverse link capacity in Open Shortest Path First (OSPF). OSPF is interior routing protocol operating within a single autonomous system (AS).

CISCO recommendation: proportion $P_{\rm Link}[0,B]$ of link weights with value at most B is equal to proportion $P_{\rm Cap}[1/B,\infty)$ of links with capacity at least 1/B.

> Problem: No reliable data on empirical properties link capacities.

Solution: Use general continuous distribution link capacities.
 Thus, also edge weights have general continuous distribution.

Distances in IP graph

Poisson distribution??

Smallest-weight routing

- > Smallest-weight routing problems fundamental for many related math and applied problems.
- Epidemic models;
- Rumor spread;
- Various randomized algorithms for communication (sensors);
- Competition processes,...
- * See also course of Ayalvadi Ganesh.

Setting

Graph denoted by G = (V(G), E(G)) with |V(G)| = n.

This talk: G configuration model. Complete graph A. Ganesh.

 \triangleright Central objects of study: C_n is weight of smallest-weight path two uniform connected vertices:

$$C_n = \min_{\pi \colon V_1 \to V_2} \sum_{e \in \pi} Y_e,$$

where π is path in G, while $(Y_e)_{e \in E(G)}$ are i.i.d. collection of weights with continuous law.

 \triangleright Continuous weights: Optimal path π_n^* is a.s. unique. Then

$$H_n = |\pi_n^*|$$

denotes hopcount, i.e., number of edges in optimal path.

Complete graph investigated in combinatorics (e.g., Janson 99) and theoretical physics (Havlin, Braunstein, Stanley, et al.).

Routing on sparse RGs

Theorem 12. [Bhamidi-vdH-Hooghiemstra AoP 17]. Let $CM_n(d)$ satisfy Condition 7.5 (a-b), and

$$\lim_{n\to\infty} \mathbb{E}[D_n^2 \log(D_n \vee 1)] = \mathbb{E}[D^2 \log(D \vee 1)].$$

Let weights be i.i.d. with general continuous distribution. Then, there exist $\alpha_n, \alpha, \beta, \gamma_n, \gamma > 0$ with $\alpha_n \to \alpha, \gamma_n \to \gamma$ s.t.

$$\frac{H_n - \alpha_n \log n}{\sqrt{\beta \log n}} \stackrel{d}{\longrightarrow} Z, \qquad C_n - \gamma_n \log n \stackrel{d}{\longrightarrow} C_{\infty},$$

where Z is standard normal, \mathcal{C}_{∞} is some limiting random variable.

Universality!

Role hubs

Theorem 13. [Bhamidi-vdH-Hooghiemstra AoAP10]. Let degrees in $CM_n(d)$ be i.i.d. with $\mathbb{P}(D \ge 2) = 1$ and power-law distribution with $\tau \in (2,3)$. Let weights be i.i.d. exponential r.v.'s. Then

$$\frac{H_n - \alpha \log n}{\sqrt{\alpha \log n}} \stackrel{d}{\longrightarrow} Z, \qquad C_n \stackrel{d}{\longrightarrow} C_{\infty},$$

for some limiting random variable C_{∞} , where Z is standard normal and $\alpha = 2(\tau - 2)/(\tau - 1) \in (0, 1)$.

ightharpoonup Hopcount not order $\log n$: Weights $(1+E_e)_{e\in\mathcal{E}_n}$, where E_e i.i.d. exponential, and $\tau\in(2,3)$ [Baroni, vdH, Komjáthy (19)]

$$W_n, H_n = 2 \log \log n / |\log(\tau - 2)|$$
 plus tight.

Weights $(1 + X_e)_{e \in \mathcal{E}_n}$: know exactly when above tightness holds \triangleright Baroni, vdH, Komjáthy (17): $\mathcal{C}_n \stackrel{d}{\longrightarrow} \mathcal{C}_{\infty}$ in explosive CTBP case. Check work of Komjáthy for various extensions.

Discussion

> Random weights have marked effect on optimal flow problem.

Surprisingly universal behavior for FPP on CM. Even limiting random variables display large amount of universality.

□ Universality is leading paradigm in statistical physics.
 Few examples where universality can be made rigorous.

> Proofs rely on coupling to continuous-time branching processes. arising as FPP on the local weak limit.

Proofs

Adding weights to branching process gives rise to age-dependent branching process.

Is particular type of continuous-time branching process.

 \triangleright Let Z_t be number of alive individuals.

 $\triangleright \mathbb{E}[D^2] < \infty : \mathsf{CTBP}$ is Malthusian: $e^{-\alpha t} Z_t \xrightarrow{a.s.} W$ for some W > 0;

$$C_n \approx \log n/\alpha...$$

 $\triangleright \tau \in (2,3)$: CTBP can be explosive: $Z_t = \infty$ for some t > 0. True for most weights...

$$\mathcal{C}_{\infty} = T_1 + T_2$$

the sum of two i.i.d. explosion times.

Winner takes it all!

FPP serves as a tool in many models:

Theorem 14. [Deijfen-vdH AoAP (2016)]

Consider competition model, where species compete for territory at unequal rates. For $\tau \in (2,3)$, under conditions Theorem 13, each of species wins majority vertices with positive probability. Number of vertices for losing species converges in distribution.

- > Antunovic, Dekel, Mossel, and Peres (2011): First passage percolation as competition model on random regular graphs.
- > Baroni, vdH, Komjáthy (2015): Extension to deterministic unequal weights
- \triangleright Alberg, Deijfen, Janson (2017): Extension to $\mathbb{E}[D^2] < \in$ and exponential edge weights.

Conclusion routing on CM

Results show high amount of universality when degrees finite-variance. Unclear what universality classes are for infinite-variance degrees.

▷ Difficulty:

hubs $CM_n(\mathbf{d})$ highly dominant when $\tau \in (2,3)$.

> What are fluctuations diameter FPP?

Extension Theorem 6 Amini, Draief, Lelarge (2011)

- > Infinite variance degrees?

Literature CM

- [1] Bollobás. A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. *Eur. J. Combin.* **1**(4): 311–316, (1980).
- [2] van der Hofstad, Hooghiemstra and Van Mieghem. Distances in random graphs with finite variance degrees. *RSA* **27**(1): 1042–9832, (2005).
- [3] Fernholz and Ramachandran. The diameter of sparse random graphs. *RSA* **31**(4): 482–516, (2007).
- [4] van der Hofstad, Hooghiemstra and Znamenskyi. Distances in random graphs with finite mean and infinite variance degrees. *Elec. J. Prob.* **12**(25): 703–766, (2007).
- [5] Molloy and Reed. A critical point for random graphs with a given degree sequence. *RSA* **6**: 161–179, (1995).
- [6] Newman, Strogatz and Watts. Random graphs with arbitrary degree distribution and their application. *Phys. Rev. E* **64**: 026118, (2000).

Literature IRG

- [1] Bollobás, Janson and Riordan. The phase transition in inhomogeneous random graphs. *RSA* **31**(1): 3–122, (2007).
- [2] Britton, Deijfen and Martin-Löf. Generating simple random graphs with prescribed degree distribution. *JSP* **124**(6): 1377–1397, (2006).
- [3] Chung and Lu. The average distance in a random graph with given expected degrees. *Internet Math.* **1**(1): 91–113, (2003).
- [4] Chung and Lu. Complex graphs and networks. CBMS Regional Conference Series in Mathematics. (2006).
- [5] van den Esker, van der Hofstad and Hooghiemstra. Universality for the distance in finite variance random graphs. *J. Stat. Phys.* **133**(1): 169–202, (2006).
- [6] Norros and Reittu. On a conditionally Poissonian graph process. *Adv. Appl. Probab.* **38**(1): 59–75, (2006).

Literature PAM

- [1] Barabási and Albert. Emergence of scaling in random networks. *Science* **286**(2): 509–512, (1999).
- [2] Bollobás and Riordan. The diameter of a scale-free random graph. *Combinatorica* **1**(2): 215–225, (2004).
- [3] Bollobás, Riordan, Spencer and Tusnády. The degree sequence of a scale-free random graph process. *RSA* **18**(3): 279–290, (2001).
- [4] Deijfen, van den Esker, van der Hofstad and Hooghiemstra. A preferential attachment model with random initial degrees. *Ark. Mat.* **47**(1): 41–72, (2009).
- [5] Dereich, Mönch and Mörters. Typical distances in ultrasmall random networks. *Journ. Stat. Phys.* **139**(1): 72–107, (2010).
- [6] Dommers, van der Hofstad and Hooghiemstra. Diameters in preferential attachment graphs. *Adv. Appl. Probab.* **44**(2): 583–601, (2012).

Literature FPP on graphs

- [1] Bhamidi, Hooghiemstra and van der Hofstad. First passage percolation on random graphs with finite mean degrees. *AAP* **20**(5): 1907–1965, (2010).
- [2] Bhamidi, Hooghiemstra and van der Hofstad. First passage percolation on sparse random graphs. *AoP* **45**(4): 2568–2630, (2017).
- [3] Baroni, van der Hofstad and Komjáthy. Nonuniversality of weighted random graphs with infinite variance degree. *Journal of Applied Probability*, **54**(1): 146–164, (2017).
- [4] Deijfen and van der Hofstad. The winner takes it all. *AAP*, **26**(4): 2419–2453, (2016).
- [5] Janson. One, two and three times $\log n/n$ for paths in a complete graph with random weights. *CPC* **8**(04):347–361, (1999).