# When Monte Carlo and Optimization met in a Markovian dance

Gersende Fort

CNRS

Institut de Mathématiques de Toulouse, France



Intertwined, why?

## To improve Monte Carlo methods targetting: $d\pi = \pi d\mu$

- •The "naive" MC sampler depends on design parameters  $\theta$ , in  $\mathbb{R}^p$  or in infinite dimension
- ullet Theoretical studies caracterize an optimal choice of theses parameters  $heta_{\star}$  by

$$\theta_{\star} \in \Theta \text{ s.t. } \int H(\theta, x) \ \mathrm{d}\pi(x) = 0$$

or

$$\theta_{\star} \in \operatorname{argmin}_{\theta \in \Theta} \int C(\theta, x) \, d\pi(x) = 0.$$

- Strategies:
- Strategy 1: a preliminary "machinery" for the approximation of  $\theta_{\star}$ ; **then** run the MC sampler with  $\theta \leftarrow \theta_{\star}$
- Strategy 2: learn  $\theta$  and sample **concomitantly**

#### To make optimization methods tractable

• Intractable objective function

$$\theta$$
 s.t.  $h(\theta) = 0$  when  $h$  is not explicit  $h(\theta) = \int_X H(\theta, x) d\pi_{\theta}(x)$ 

or

$$\operatorname{argmin}_{\theta \in \Theta} f(\theta)$$
  $f(\theta) := \int_{X} C(\theta, x) d\pi_{\theta}(x)$ 

Intractable auxiliary quantities

Ex-1 Gradient-based methods

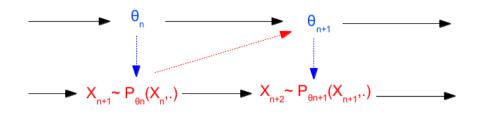
$$\nabla f(\theta) = \int_{X} H(\theta, x) \, d\pi_{\theta}(x)$$

Ex-2 Majorize-Minimization methods

at iteration 
$$t$$
,  $f(\theta) \leq F_t(\theta) = \int_X H_t(\theta, x) d\pi_{t,\theta}(x)$ 

Strategies: Use Monte Carlo to approximate the unknown quantities.

#### In this talk, Markov!



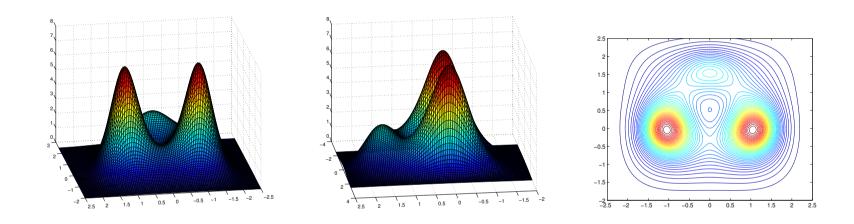
- from the Monte Carlo point of view:
   which conditions on the updating scheme for convergence of the sampler?
   Case: Markov chain Monte Carlo sampler
- from the optimization point of view:
   which conditions on the Monte Carlo approximation for convergence of the
   stochastic optimization ?
   Case: Stochastic Approximation methods with Markovian inputs
- (Talk) Application to a Computational Machine Learning pbm: penalized Maximum Likelihood through Stochastic Proximal-Gradient based methods

Part I: Motivating examples

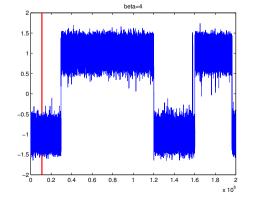
#### 1st Ex. Adaptive Importance sampling by Wang-Landau approaches (1/6)

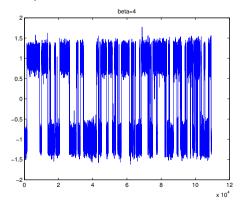
#### The problem

• A highly multimodal target density  $d\pi$  on  $X \subseteq \mathbb{R}^d$ .



• Two samplers with different behaviors (plot: the x-path of a chain in  $\mathbb{R}^2$ )





1st Ex. (2/6)

#### The strategy for choosing the proposal mecanism

- A family of proposal mecanisms obtained by biasing locally the target:
- given a partition  $X_1, \dots, X_I$  of X,
- for any weight vector  $\theta = (\theta(1), \dots, \theta(I))$

$$d\pi_{\theta}(x) = \frac{1}{\sum_{i=1}^{I} \frac{\theta_{\star}(i)}{\theta(i)}} \sum_{i=1}^{I} 1_{X_i}(x) \frac{d\pi(x)}{\theta(i)}, \quad \text{with } \theta_{\star}(i) := \int_{X_i} d\pi(u).$$

- Optimal proposal:  $d\pi_{\theta_{\star}}$
- Unfortunately,  $\theta_{\star}$  unavailable.

## 1st Ex. (3/6)

## If $\pi_{\theta_{\star}}$ were available

- The algorithm would be:
- Sample  $X_1, \dots, X_t, \dots$  i.i.d. with distribution  $d\pi_{\theta_{\star}}$  (or a MCMC with target  $d\pi_{\theta_{\star}}$ )
- Compute the importance ratio

$$\frac{\mathrm{d}\pi}{\mathrm{d}\pi_{\theta_{\star}}}(X_t) = I \sum_{i=1}^{I} \mathbf{1}_{\mathsf{X}_i}(X_t) \; \theta_{\star}(i)$$

• When approximating an expectation, set

$$\int \phi \, d\pi \approx \frac{I}{T} \sum_{t=1}^{T} \left( \sum_{i=1}^{I} \mathbf{1}_{X_i}(X_t) \, \theta_{\star}(i) \right) \, \phi(X_t).$$

## 1st Ex. (4/6)

 $\theta_{\star}$  and therefore  $\mathrm{d}\pi_{\theta_{\star}}$  are unknown, so ?

- ullet  $heta_\star \in \mathbb{R}^I$  collects  $\int_{\mathsf{X}_i} \mathsf{d}\pi$  for all  $i \in \{1, \cdots, I\}$ ,
- $\theta_{\star}$  the unique root of  $\theta \mapsto \int_{\mathsf{X}} H(\theta,x) \ \mathrm{d}\pi_{\theta}(x) \in \mathbb{R}^{I}$  where for all  $i \in \{1,\cdots,I\}$

$$H_i(\theta, x) := \theta(i) \mathbf{1}_{X(i)}(x) - \theta(i) \sum_{j=1}^{I} \mathbf{1}_{X_j}(x) \theta(j).$$

thus suggesting the use of a Stochastic Approximation procedure:  $heta_\star pprox \lim_t heta_t$ 

$$\theta_{t+1} = \theta_t + \gamma_{t+1} H(\theta_t, X_{t+1})$$
  $X_{t+1} \sim d \pi_{\theta_t}$  or  $X_{t+1} \sim \text{one-step MCMC}$ 

## 1st Ex. (5/6)

## The algorithm: Wang-Landau based procedures

- Initialisation: a weight vector  $\theta_0$
- Repeat for  $t = 1, \dots, T$
- sample a point  $X_{t+1} \sim P_{\theta_t}(X_t, \cdot)$  and  $P_{\theta}$  inv. wrt  $d\pi_{\theta}$ .
- update the estimate of  $\theta_{\star}$

$$\theta_{t+1} = \theta_t + \gamma_{t+1} H(\theta_t, X_{t+1}).$$

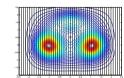
- Expected:
- the convergence of  $\theta_t$  to  $\theta_\star$ : SA scheme, fed with adaptive (controlled) MCMC sampler,
- the convergence of the distribution of  $X_t$  to d  $\pi_{\theta_{\bullet}}$

#### thus allowing

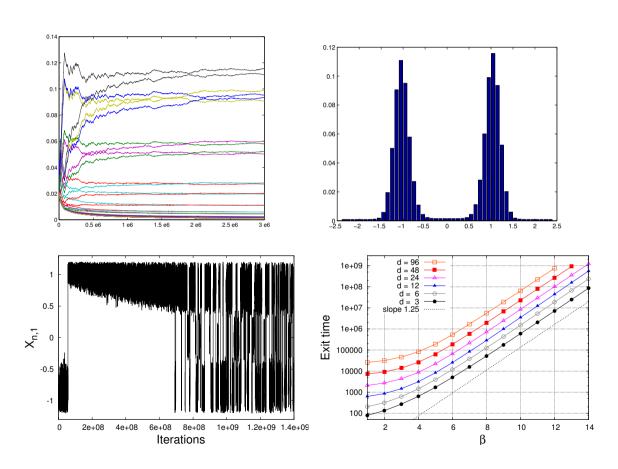
$$\int \phi \, d\pi \approx \frac{I}{T} \sum_{t=1}^{T} \left( \sum_{i=1}^{I} \mathbf{1}_{X_i}(X_t) \, \theta_t(i) \right) \, \phi(X_t).$$

## 1st Ex. (6/6)

**Does it work ?** Plot: convergence of  $\theta_t$  and first exit times from one mode



see F.-Kuhn-Jourdain-Lelièvre-Stoltz (2014); F.-Jourdain-Lelièvre-Stoltz (2015, 2017, 2018) for studies of these Wang-Landau bases algorithms; including self-tuned SA update rules ( $\gamma_t$  is random).



#### Conclusion of the 1st example

- Iterative sampler
- •Each iteration combines : (i) a sampling step  $X_{t+1} \sim P_{\theta_t}(X_t, \cdot)$ ; and (ii) an optimization step to update the knowledge of some optimal parameter.
- ullet The points  $\{X_1,\cdots,X_t,\cdots\}$  can be seen as the output of a controlled Markov chain

$$\mathbb{E}\left[f(X_{t+1})|\mathcal{F}_t\right] = P_{\theta_t}(X_t, \cdot) \qquad \mathcal{F}_t := \sigma(X_{0:t}, \theta_0)$$

where  $P_{\theta}$  has  $d\pi_{\theta}$  as its unique invariant distribution.

ullet The convergence of the parameter  $heta_t$  is the convergence of a SA scheme with "controlled Markovian" dynamics

$$\theta_{t+1} = \theta_t + \gamma_{t+1} H(\theta_t, X_{t+1})$$

## 2nd Example: penalized ML in latent variable models (1/6)

- An example from Pharmacokinetic:
- N patients.
- At time 0: dose D of a drug.
- For patient #i, observations  $Y_{i1}, \cdots, Y_{iJ_i}$  giving the evolution of the concentration at times  $t_{i1}, \cdots, t_{iJ_i}$ .
- The model:

$$Y_{ij} = \mathcal{F}(t_{ij}, X_i) + \epsilon_{ij} \qquad \epsilon_{ij} \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$$

where  $X_i \in \mathbb{R}^L$  is modeled as

$$X_i = Z_i \beta + d_i \in \mathbb{R}^L$$
  $d_i \stackrel{i.i.d.}{\sim} \mathcal{N}_L(0,\Omega)$  and independent of  $\epsilon_{ullet}$ 

and  $Z_i$  known matrix s.t. each row of  $X_i$  has in intercept (fixed effect) and covariates.

• Statistical analysis: (i) estimation of  $\theta = (\beta, \sigma^2, \Omega)$ , under sparsity constraints on  $\beta$ ; (ii) selection of the covariates based on  $\hat{\beta}$ .

2nd Ex. (2/6)

#### **Penalized Maximum Likelihood**

- The likelihood of  $Y := \{Y_{ij}, 1 \le i \le N, 1 \le j \le J_i\}$  is not explicit:
- The distribution of  $Y_{i,j}$  given  $X_i$  is simple; the distribution of  $X_i$  is simple.
- The joint distribution has an explicit expression It is an example of latent variable model:

$$\log L(Y;\theta) = \log \int p(Y,x_{1:N};\theta) \, d\nu(x_{1:N})$$

- Sparsity constraints on the parameter  $\theta$ : through a penalty term  $g(\theta)$
- The penalized ML is of the form

$$\operatorname{argmin}_{\Theta} \left( -\log L(Y;\theta) + g(\theta) \right)$$

with an intractable objective function.

2nd Ex. (3/6)

#### What about first-order methods for solving the optimization?

- On the likelihood term:
- Usually regular enough so that the Gradient exists and of>

$$\nabla_{\theta} \log L(Y; \theta) = \int \frac{\partial_{\theta} \ p(Y, x; \theta)}{p(Y, x; \theta)} \, \frac{p(Y, x; \theta) \, \mathrm{d}\mu(x)}{\int p(Y, z; \theta) \, \mathrm{d}\mu(z)}$$

$$= \int \partial_{\theta} \left( \log p(Y, x; \theta) \right) \qquad \underbrace{\mathrm{d}\pi_{\theta}(x)}_{\text{the a posteriori distribution of } x \text{ given } Y$$

$$\text{the dep upon } Y \text{ is omitted}$$

- the a posteriori distribution is known up to a normalizing constant.
- On the penalty term
- May be non smooth, but: convex and lower semi-continuous
- Hence a Proximal operator (implicit gradient) is associated <See the talk>.

## 2nd Ex. (4/6)

#### What about EM-like methods for solving the optimization?

• Expectation-Maximization Dempster-Laird-Rubin, 1977 introduced to solve

$$\operatorname{argmin}_{\theta \in \Theta} \left( -\log \int_{X} p(x;\theta) d\mu(x) + g(\theta) \right)$$

where the first part is intractable; by iterating two steps

- Expectation step

$$Q(\theta, \theta_t) := \int \log p(x; \theta) \, \frac{p(x; \theta_t) \, \mathrm{d}\mu(x)}{\int p(z; \theta_t) \, \mathrm{d}\mu(z)} = \int \log p(x; \theta) \, \, \mathrm{d}\pi_{\theta_t}(x)$$

- Minimization step

$$\theta_{t+1} := \operatorname{argmin}_{\theta} \left( -Q(\theta, \theta_t) + g(\theta) \right).$$

•  $\theta \mapsto Q(\theta, \theta_t)$  is an integral which is intractable;  $d\pi_{\theta}$  is known up to a normalizing constant.

## 2nd Ex. (5/6)

- Both in EM-like approaches and in gradient-based approaches,
- faced with intractable auxiliary quantities of the form

$$\int_{\mathsf{X}} H(\theta, x) \, \, \mathsf{d}\pi_{\theta_t}(x) \tag{1}$$

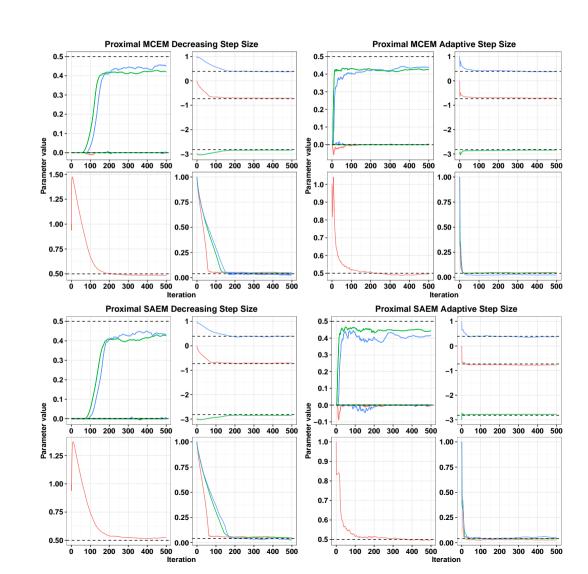
at itreration t of the optimization algorithm.

- intractable integral;  $d\pi_{\theta}$  is often known up to a normalizing constant.
- •What kind of approximation of the integral (1) at iteration t?
- Quadrature techniques: poor behavior w.r.t. the dimension of X
- I.i.d. samples from  $\pi_{\theta_t}$  to define a Monte Carlo approximation: not possible, in general.
- use m samples from a MCMC sampler  $\{X_{j,t+1}, j \leq m\}$  with unique inv. dist.  $\mathrm{d}\pi_{\theta_t}.$

## 2nd Ex. (6/6)

#### Does it work?

see F-Moulines (2003) for EM-like approaches; see Atchadé-F.-Moulines (2017) and F.-Ollier-Samson (2018) for gradient-based approaches; see F.-Ollier-Samson (2018) for the parallel between EM-like and Gradient-based techniques



#### Conclusion of the 2nd example

- Iterative optimization technique
- •Each iteration combines : (i) an update of the parameter; (ii) a sampling step  $X_{j+1,t+1} \sim P_{\theta_t}(X_{j,t+1},\cdot)$  to approximate auxiliary quantities.
- The convergence of  $\{\theta_t\}_t$  is the convergence of a stochastically perturbed iterative optimization algorithm. At each iteration: an exact quantity  $\int H(\theta,x) d\pi_{\theta_t}(x)$  is approximated by a Monte Carlo sum

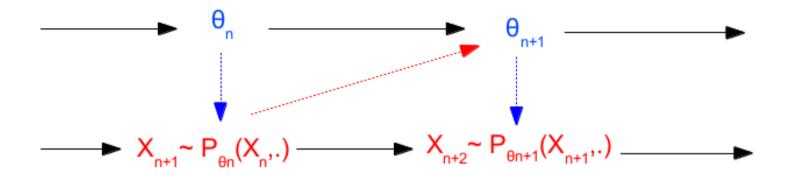
$$\int H(\theta, x) d\pi_{\theta_t}(x) \approx \frac{1}{m_{t+1}} \sum_{j=1}^{m_{t+1}} H(\theta, X_{j,t+1})$$

• The points  $\{X_{j,t+1}\}_j$  satisfy

$$\mathbb{E}\left[f(X_{j,t+1})|\mathcal{F}_t\right] = P_{\theta_t}^j(X_{0,t+1},\cdot) \qquad \mathcal{F}_t := \sigma(X_{:,0:t},\theta_0), \quad X_{0,t+1} = X_{m_t,t}$$

where  $P_{\theta}$  has  $d\pi_{\theta}$  as its unique invariant distribution.

## Conclusion of this first part (1/3): is a theory required?



# Conclusion of this first part (2/3): is a theory required when sampling?

YES! convergence can be lost by the adaption mecanism

Even in a simple case when

$$\forall \theta \in \Theta$$
,  $P_{\theta}$  invariant wrt  $d\pi$ ,

one can define a simple adaption mecanism

$$X_{t+1}|\mathsf{past}_{1:t} \sim P_{\theta_t}(X_t,\cdot) \qquad \theta_t \in \sigma(X_{1:t})$$

such that

$$\lim_{t} \mathbb{E}\left[f(X_{t})\right] \neq \int f \, d\pi.$$

Then  $P_0$  and  $P_1$  are invariant w.r.t [1/2, 1/2] but  $\{X_t\}$  is a Markov chain invariant w.r.t.  $[t_1, t_0]$ 

Conclusion of this first part (3/3): is a theory required when optimizing?

YES! Unfortunately,

a biased approximation <proof>

$$\mathbb{E}\left[\frac{1}{m_{t+1}}\sum_{j=1}^{m_{t+1}}H(\theta,X_{j,t+1})\Big|\mathcal{F}_t\right] = ? \neq \int_{X}H(\theta,x)\,\mathrm{d}\pi_{\theta_t}(x)$$

• For a reduced computational cost: a bias which we would like NOT vanishing i.e.  $m_t = m (= 1)$ .

Ex. Stochastic Approximation with controlled Markovian dynamics

$$\theta_{t+1} = \theta_t + \gamma_{t+1} H(\theta_t, X_{t+1}) \qquad X_{t+1} \sim P_{\theta_t}(X_t, \cdot)$$

$$= \theta_t + \gamma_{t+1} \underbrace{\int H(\theta_t, x) d\pi_{\theta_t}(x) + \gamma_{t+1} \underbrace{\left(H(\theta_t, X_{t+1}) - h(\theta_t)\right)}_{\text{non centered}}$$