Continued fractions, the Chen-Stein method and extreme value theory

Anish Ghosh*,†, TIFR Mumbai Maxim Sølund Kirsebom, University of Hamburg Parthanil Roy*, Indian Statistical Institute

to appear in Ergodic Theory and Dynamical Systems

* supported by MATRICS Grant and SwarnaJayanti Fellowship † supported by IFCPAR Grant

A Crash Course

 $\frac{7}{24}$

$$\frac{7}{24} = \frac{1}{24/7}$$

3 / 44

$$\frac{7}{24} = \frac{1}{24/7} = \frac{1}{3 + \frac{3}{7}}$$

$$\frac{7}{24} = \frac{1}{24/7} = \frac{1}{3 + \frac{3}{7}} = \frac{1}{3 + \frac{1}{7/3}}$$

$$\frac{7}{24} = \frac{1}{24/7} = \frac{1}{3 + \frac{3}{7}} = \frac{1}{3 + \frac{1}{7/3}} = \frac{1}{3 + \frac{1}{2 + \frac{1}{3}}}$$

3 / 44

$$\frac{7}{24} = \frac{1}{24/7} = \frac{1}{3 + \frac{3}{7}} = \frac{1}{3 + \frac{1}{7/3}} = \frac{1}{3 + \frac{1}{2 + \frac{1}{2}}} := [3, 2, 3]$$

$$\frac{7}{24} = \frac{1}{24/7} = \frac{1}{3 + \frac{3}{7}} = \frac{1}{3 + \frac{1}{7/3}} = \frac{1}{3 + \frac{1}{2 + \frac{1}{3}}} := [3, 2, 3]$$

Note that 7 > 3 > 1.

$$\frac{\frac{7}{24}}{\frac{1}{24}} = \frac{1}{\frac{1}{3+\frac{3}{7}}} = \frac{1}{3+\frac{1}{\frac{1}{7/3}}} = \frac{1}{3+\frac{1}{2+\frac{1}{3}}} := [3,2,3]$$

Note that 7 > 3 > 1.

Therefore by Euclidean Algorithm (of computing gcd), any rational number

$$\omega = p/q \in (0,1)$$

(with gcd(p, q) = 1) will have a terminating (regular) continued fraction expansion.

- 4 ロ ト 4 昼 ト 4 夏 ト 4 夏 ト 9 Q CP

Conversely . . .

Whenever $A_1, A_2, A_3, A_4 \in \mathbb{N}$,

$$[A_1,A_2,A_3,A_4]:=\frac{1}{A_1+\frac{1}{A_2+\frac{1}{A_3+\frac{1}{A_4}}}}\in(0,1)$$

is a rational number.

4 / 44

Conversely

Whenever $A_1, A_2, A_3, A_4 \in \mathbb{N}$,

$$[A_1, A_2, A_3, A_4] := \frac{1}{A_1 + \frac{1}{A_2 + \frac{1}{A_3 + \frac{1}{A_1}}}} \in (0, 1)$$

is a rational number.

More generally, by induction on n,

$$\omega = [A_1, A_2, \dots A_n]$$

(with $A_1, A_2, \dots A_n \in \mathbb{N}$) is a rational number in (0, 1).

(ロ) (個) (目) (目) (目) (の)

4 / 44

Theorem

A number $\omega \in (0,1)$ has a unique non-terminating continued fraction expansion

$$\omega = \frac{1}{A_1 + \frac{1}{A_2 + \frac{1}{A_2 + \dots}}} =: [A_1, A_2, A_3, \dots]$$

(with each $A_i \in \mathbb{N}$) if and only if $\omega \notin \mathbb{Q}$.

Theorem

A number $\omega \in (0,1)$ has a unique non-terminating continued fraction expansion

$$\omega = \frac{1}{A_1 + \frac{1}{A_2 + \frac{1}{A_3 + \dots}}} =: [A_1, A_2, A_3, \dots]$$

(with each $A_i \in \mathbb{N}$) if and only if $\omega \notin \mathbb{Q}$. Furthermore in this case, the n^{th} truncate $[A_1, A_2, \dots A_n] \to \omega$ as $n \to \infty$.

Theorem

A number $\omega \in (0,1)$ has a unique non-terminating continued fraction expansion

$$\omega = \frac{1}{A_1 + \frac{1}{A_2 + \frac{1}{A_3 + \dots}}} =: [A_1, A_2, A_3, \dots]$$

(with each $A_i \in \mathbb{N}$) if and only if $\omega \notin \mathbb{Q}$. Furthermore in this case, the n^{th} truncate $[A_1, A_2, \dots A_n] \to \omega$ as $n \to \infty$.

Canonical rational approximation: $\omega \approx [A_1, A_2, \dots A_n]$.

Theorem

A number $\omega \in (0,1)$ has a unique non-terminating continued fraction expansion

$$\omega = \frac{1}{A_1 + \frac{1}{A_2 + \frac{1}{A_3 + \dots}}} =: [A_1, A_2, A_3, \dots]$$

(with each $A_i \in \mathbb{N}$) if and only if $\omega \notin \mathbb{Q}$. Furthermore in this case, the n^{th} truncate $[A_1, A_2, \dots A_n] \to \omega$ as $n \to \infty$.

Canonical rational approximation: $\omega \approx [A_1, A_2, \dots A_n]$.

Examples: $\pi \approx \frac{22}{7}$

◆ロト ◆昼 ト ◆ 重 ト ◆ 重 ・ 夕 Q ②

Theorem

A number $\omega \in (0,1)$ has a unique non-terminating continued fraction expansion

$$\omega = \frac{1}{A_1 + \frac{1}{A_2 + \frac{1}{A_3 + \dots}}} =: [A_1, A_2, A_3, \dots]$$

(with each $A_i \in \mathbb{N}$) if and only if $\omega \notin \mathbb{Q}$. Furthermore in this case, the n^{th} truncate $[A_1, A_2, \dots A_n] \to \omega$ as $n \to \infty$.

Canonical rational approximation: $\omega \approx [A_1, A_2, \dots A_n]$.

Examples: $\pi \approx \frac{22}{7}$ and $\pi \approx \frac{355}{113}$.

←□▶ ←□▶ ←□▶ ←□▶ →□ ♥ 900

Aryabhata (0499) (Aryabhatiya or Aryabhatiyam): Solution of indeterminate equations using continued fractions.

Aryabhata (0499) (Aryabhatiya or Aryabhatiyam): Solution of indeterminate equations using continued fractions.

Continued fractions have canonical connections to algebra, analysis, combinatorics, ergodic theory, hyperbolic geometry, number theory, probability, etc.

6 / 44

Aryabhata (0499) (Aryabhatiya or Aryabhatiyam): Solution of indeterminate equations using continued fractions.

Continued fractions have canonical connections to algebra, analysis, combinatorics, ergodic theory, hyperbolic geometry, number theory, probability, etc.

See, for example, Khintchine (1964).

Gauss Dynamical System

 ω

8 / 44

$$\omega = rac{1}{1/\omega}$$

$$\omega = \frac{1}{1/\omega} = \frac{1}{[1/\omega] + \{1/\omega\}}$$

$$\omega = \frac{1}{1/\omega} = \frac{1}{[1/\omega] + \{1/\omega\}} =: \frac{1}{A_1(\omega) + T(\omega)}$$

$$\omega = \frac{1}{1/\omega} = \frac{1}{[1/\omega] + \{1/\omega\}} =: \frac{1}{A_1(\omega) + T(\omega)}$$
$$= \frac{1}{A_1(\omega) + \frac{1}{A_1(T(\omega)) + T^2(\omega)}}$$

$$\omega = \frac{1}{1/\omega} = \frac{1}{[1/\omega] + \{1/\omega\}} =: \frac{1}{A_1(\omega) + T(\omega)}$$

$$= \frac{1}{A_1(\omega) + \frac{1}{A_1(T(\omega)) + T^2(\omega)}}$$

$$=: \frac{1}{A_1(\omega) + \frac{1}{A_2(\omega) + T^2(\omega)}}$$

$$\omega = \frac{1}{1/\omega} = \frac{1}{[1/\omega] + \{1/\omega\}} =: \frac{1}{A_1(\omega) + T(\omega)}$$

$$= \frac{1}{A_1(\omega) + \frac{1}{A_1(T(\omega)) + T^2(\omega)}}$$

$$=: \frac{1}{A_1(\omega) + \frac{1}{A_2(\omega) + T^2(\omega)}}$$

$$= \cdots$$

Take
$$\Omega=(0,1)$$
, $\mathcal{A}=\mathcal{B}_{(0,1)}$.

Parthanil Roy

Take
$$\Omega=(0,1)$$
, $\mathcal{A}=\mathcal{B}_{(0,1)}.$ Define $\mathcal{T}:\Omega o \Omega$ and $\mathcal{A}_1:\Omega o \mathbb{N}$ by

$$T(\omega) = \{1/\omega\}$$
 (Gauss map) and $A_1(\omega) = [1/\omega]$

for irrational $\omega \in \Omega$

Take
$$\Omega=(0,1)$$
, $\mathcal{A}=\mathcal{B}_{(0,1)}.$ Define $\mathcal{T}:\Omega \to \Omega$ and $\mathcal{A}_1:\Omega \to \mathbb{N}$ by

$$T(\omega) = \{1/\omega\}$$
 (Gauss map) and $A_1(\omega) = [1/\omega]$

for irrational $\omega \in \Omega$ (and any way you like for rational $\omega \in \Omega$).

Parthanil Roy

Take
$$\Omega=(0,1)$$
, $\mathcal{A}=\mathcal{B}_{(0,1)}.$ Define $\mathcal{T}:\Omega o \Omega$ and $\mathcal{A}_1:\Omega o \mathbb{N}$ by

$$T(\omega) = \{1/\omega\}$$
 (Gauss map) and $A_1(\omega) = [1/\omega]$

for irrational $\omega \in \Omega$ (and any way you like for rational $\omega \in \Omega$).

For all
$$j \in \mathbb{N}$$
, set $A_{j+1}(\omega) := A_1(T^j(\omega)), \ \omega \in \Omega$.

9 / 44

Take $\Omega=(0,1)$, $\mathcal{A}=\mathcal{B}_{(0,1)}$. Define $\mathcal{T}:\Omega \to \Omega$ and $A_1:\Omega \to \mathbb{N}$ by

$$T(\omega) = \{1/\omega\}$$
 (Gauss map) and $A_1(\omega) = [1/\omega]$

for irrational $\omega \in \Omega$ (and any way you like for rational $\omega \in \Omega$).

For all $j \in \mathbb{N}$, set $A_{j+1}(\omega) := A_1(T^j(\omega)), \ \omega \in \Omega$. Then for almost all $\omega \in \Omega$ (namely, for all $\omega \in \Omega \setminus \mathbb{Q}$),

$$\omega = [A_1(\omega), A_2(\omega), A_3(\omega), \ldots].$$

9 / 44

Take $\Omega=(0,1)$, $\mathcal{A}=\mathcal{B}_{(0,1)}.$ Define $\mathcal{T}:\Omega o \Omega$ and $A_1:\Omega o \mathbb{N}$ by

$$T(\omega) = \{1/\omega\}$$
 (Gauss map) and $A_1(\omega) = [1/\omega]$

for irrational $\omega \in \Omega$ (and any way you like for rational $\omega \in \Omega$).

For all $j \in \mathbb{N}$, set $A_{j+1}(\omega) := A_1(T^j(\omega)), \ \omega \in \Omega$. Then for almost all $\omega \in \Omega$ (namely, for all $\omega \in \Omega \setminus \mathbb{Q}$),

$$\omega = [A_1(\omega), A_2(\omega), A_3(\omega), \ldots].$$

Quick Observation: T, A_1 measurable \Rightarrow each A_n measurable.

4 D > 4 B > 4 E > 4 E > E 9 Q C

Gauss dynamical system

Take
$$\Omega=(0,1)$$
, $\mathcal{A}=\mathcal{B}_{(0,1)}$. Define $T:\Omega\to\Omega$ and $A_1:\Omega\to\mathbb{N}$ by $T(\omega)=\{1/\omega\}$ (Gauss map) and $A_1(\omega)=[1/\omega]$.

10 / 44

Take
$$\Omega=(0,1)$$
, $\mathcal{A}=\mathcal{B}_{(0,1)}$. Define $T:\Omega\to\Omega$ and $A_1:\Omega\to\mathbb{N}$ by $T(\omega)=\{1/\omega\}$ (Gauss map) and $A_1(\omega)=[1/\omega]$.

Bad News: T does not preserve the Lebesgue measure on (0,1).

Parthanil Roy

Take $\Omega=(0,1)$, $\mathcal{A}=\mathcal{B}_{(0,1)}$. Define $T:\Omega\to\Omega$ and $A_1:\Omega\to\mathbb{N}$ by $T(\omega)=\{1/\omega\}$ (Gauss map) and $A_1(\omega)=[1/\omega]$.

Bad News: T does not preserve the Lebesgue measure on (0,1).

Define a probability measure P (Gauss measure) on (Ω, A) by

$$P(A) = \int_A \frac{1}{(1+x)\log 2} dx.$$

Take $\Omega=(0,1)$, $\mathcal{A}=\mathcal{B}_{(0,1)}$. Define $T:\Omega\to\Omega$ and $A_1:\Omega\to\mathbb{N}$ by $T(\omega)=\{1/\omega\}$ (Gauss map) and $A_1(\omega)=[1/\omega]$.

Bad News: T does not preserve the Lebesgue measure on (0,1).

Define a probability measure P (Gauss measure) on (Ω, \mathcal{A}) by

$$P(A) = \int_A \frac{1}{(1+x)\log 2} dx.$$

Theorem (Gauss)

T preserves P,

4□▶ 4□▶ 4 □ ▶ 4 □ ▶ 9 Q ○

10 / 44

Take $\Omega=(0,1)$, $\mathcal{A}=\mathcal{B}_{(0,1)}$. Define $T:\Omega\to\Omega$ and $A_1:\Omega\to\mathbb{N}$ by $T(\omega)=\{1/\omega\}$ (Gauss map) and $A_1(\omega)=[1/\omega]$.

Bad News: T does not preserve the Lebesgue measure on (0,1).

Define a probability measure P (Gauss measure) on (Ω, \mathcal{A}) by

$$P(A) = \int_A \frac{1}{(1+x)\log 2} dx.$$

Theorem (Gauss)

T preserves P, i.e., for all $A \in \mathcal{A}$, $P(A) = P(T^{-1}(A))$.

←ロト ←団ト ← 豆ト ← 豆 ・ りへ(*)

10 / 44

Take
$$\Omega=(0,1)$$
, $\mathcal{A}=\mathcal{B}_{(0,1)}$. Define $T:\Omega\to\Omega$ and $A_1:\Omega\to\mathbb{N}$ by
$$T(\omega)=\{1/\omega\}\ (\textit{Gauss map})\quad \text{and}\quad A_1(\omega)=[1/\omega].$$

Bad News: \mathcal{T} does not preserve the Lebesgue measure on (0,1).

Define a probability measure P (Gauss measure) on (Ω, \mathcal{A}) by

$$P(A) = \int_A \frac{1}{(1+x)\log 2} dx.$$

Theorem (Gauss)

T preserves P, i.e., for all $A \in \mathcal{A}$, $P(A) = P(T^{-1}(A))$.

 $(\Omega,\mathcal{A},P,T)=$ the Gauss dynamical system.

Extremes of Continued Fractions and the

Melancholic Life of Wolfgang Doeblin

• Doeblin (1940): Poissonian asymptotics for the exceedances of digits in the continued fraction expansion of a number chosen randomly from (0,1) according to the Gauss measure.

- Doeblin (1940): Poissonian asymptotics for the exceedances of digits in the continued fraction expansion of a number chosen randomly from (0,1) according to the Gauss measure.
- However, the proof (completed at the backdrop of *World War II*) had a subtle error that was corrected by losifescu (1977).

- Doeblin (1940): Poissonian asymptotics for the exceedances of digits in the continued fraction expansion of a number chosen randomly from (0,1) according to the Gauss measure.
- However, the proof (completed at the backdrop of World War II)
 had a subtle error that was corrected by losifescu (1977).
- Unaware of Doeblin (1940)'s work, Galambos (1972) investigated the asymptotics of maximal digit

- Doeblin (1940): Poissonian asymptotics for the exceedances of digits in the continued fraction expansion of a number chosen randomly from (0,1) according to the Gauss measure.
- However, the proof (completed at the backdrop of World War II)
 had a subtle error that was corrected by losifescu (1977).
- Unaware of Doeblin (1940)'s work, Galambos (1972)
 investigated the asymptotics of maximal digit (first correctly
 proven result on extremes of continued fractions).

- Doeblin (1940): Poissonian asymptotics for the exceedances of digits in the continued fraction expansion of a number chosen randomly from (0,1) according to the Gauss measure.
- However, the proof (completed at the backdrop of *World War II*) had a subtle error that was corrected by losifescu (1977).
- Unaware of Doeblin (1940)'s work, Galambos (1972)
 investigated the asymptotics of maximal digit (first correctly
 proven result on extremes of continued fractions).
- Since then: Philipp (1976), Samur (1989), Nakada and Natsui (2003), Pollicott (2009), Tyran-Kamińska (2010), Bazarova, Berkes and Horváth (2016), Chang and Ma (2017).

A French-German mathematician caught up in the middle of World War II.

- A French-German mathematician caught up in the middle of World War II.
- In February 1940, he had sent a sealed envelope from the war front to the Academy of Sciences in Paris.

- A French-German mathematician caught up in the middle of World War II.
- In February 1940, he had sent a sealed envelope from the war front to the Academy of Sciences in Paris.
- Surrounded by German soldiers, he committed suicide in June 1940.

- A French-German mathematician caught up in the middle of World War II.
- In February 1940, he had sent a sealed envelope from the war front to the Academy of Sciences in Paris.
- Surrounded by German soldiers, he committed suicide in June 1940.
- For legal reasons, the envelope could only be opened in May 2000.

- A French-German mathematician caught up in the middle of World War II.
- In February 1940, he had sent a sealed envelope from the war front to the Academy of Sciences in Paris.
- Surrounded by German soldiers, he committed suicide in June 1940.
- For legal reasons, the envelope could only be opened in May 2000.
- It had an extremely advanced representation of the standard one-dimensional diffusions among many other things.

- A French-German mathematician caught up in the middle of World War II.
- In February 1940, he had sent a sealed envelope from the war front to the Academy of Sciences in Paris.
- Surrounded by German soldiers, he committed suicide in June 1940.
- For legal reasons, the envelope could only be opened in May 2000.
- It had an extremely advanced representation of the standard one-dimensional diffusions among many other things.
- Itô's lemma is now called *Itô-Doeblin theorem* by many mathematicians.

- A French-German mathematician caught up in the middle of World War II.
- In February 1940, he had sent a sealed envelope from the war front to the Academy of Sciences in Paris.
- Surrounded by German soldiers, he committed suicide in June 1940.
- For legal reasons, the envelope could only be opened in May 2000.
- It had an extremely advanced representation of the standard one-dimensional diffusions among many other things.
- Itô's lemma is now called *Itô-Doeblin theorem* by many mathematicians.

See also Wolfgang Doeblin: A mathematician rediscovered.

Doeblin-losifescu Asymptotics

Take
$$\Omega=(0,1)$$
, $\mathcal{A}=\mathcal{B}_{(0,1)}$. Define $T:\Omega\to\Omega$ and $A_1:\Omega\to\mathbb{N}$ by
$$T(\omega)=\{1/\omega\}\ (\textit{Gauss map})\quad \text{and}\quad A_1(\omega)=[1/\omega].$$

Bad News: T does not preserve the Lebesgue measure on (0,1).

Define a probability measure P (Gauss measure) on (Ω, \mathcal{A}) by

$$P(A) = \int_A \frac{1}{(1+x)\log 2} dx.$$

Theorem (Gauss)

T preserves P, i.e., for all $A \in \mathcal{A}$, $P(A) = P(T^{-1}(A))$.

 $(\Omega,\mathcal{A},P,T)=$ the Gauss dynamical system.

A reformulation of Gauss's theorem

Exercise (in *Probability Theory II*): Suppose X is a random variable having probability density function

$$f_X(x) = \frac{1}{(1+x)\log 2}, \ x \in (0,1).$$

Then show that $\{1/X\} \stackrel{\mathcal{L}}{=} X$.

Take
$$\Omega = (0,1)$$
, $\mathcal{A} = \mathcal{B}_{(0,1)}$, $P(dx) = ((1+x)\log 2)^{-1} dx$.

Take
$$\Omega=(0,1)$$
, $\mathcal{A}=\mathcal{B}_{(0,1)}$, $P(dx)=((1+x)\log 2)^{-1}\,dx$. Define $T:\Omega\to\Omega$ by $T(\omega)=\{1/\omega\}$ and $A_1:\Omega\to\mathbb{N}$ by $A_1(\omega)=[1/\omega]$.

17 / 44

Take
$$\Omega=(0,1)$$
, $\mathcal{A}=\mathcal{B}_{(0,1)}$, $P(dx)=((1+x)\log 2)^{-1}\,dx$. Define $T:\Omega\to\Omega$ by $T(\omega)=\{1/\omega\}$ and $A_1:\Omega\to\mathbb{N}$ by $A_1(\omega)=[1/\omega]$.

For all $j \in \mathbb{N}$, set $A_{j+1}(\omega) := A_1(T^j(\omega)), \ \omega \in \Omega$.

Take
$$\Omega=(0,1)$$
, $\mathcal{A}=\mathcal{B}_{(0,1)}$, $P(dx)=((1+x)\log 2)^{-1}\,dx$. Define $T:\Omega\to\Omega$ by $T(\omega)=\{1/\omega\}$ and $A_1:\Omega\to\mathbb{N}$ by $A_1(\omega)=[1/\omega]$.

For all $j \in \mathbb{N}$, set $A_{j+1}(\omega) := A_1(T^j(\omega)), \ \omega \in \Omega$.

This defines a sequence $\{A_n : \Omega \to \mathbb{N}\}_{n\geq 1}$ of positive integer-valued random variables on the probability space (Ω, \mathcal{A}, P) .

17 / 44

Take
$$\Omega=(0,1)$$
, $\mathcal{A}=\mathcal{B}_{(0,1)}$, $P(dx)=((1+x)\log 2)^{-1}\,dx$. Define $T:\Omega\to\Omega$ by $T(\omega)=\{1/\omega\}$ and $A_1:\Omega\to\mathbb{N}$ by $A_1(\omega)=[1/\omega]$.

For all $j \in \mathbb{N}$, set $A_{j+1}(\omega) := A_1(T^j(\omega)), \ \omega \in \Omega$.

This defines a sequence $\{A_n : \Omega \to \mathbb{N}\}_{n\geq 1}$ of positive integer-valued random variables on the probability space (Ω, \mathcal{A}, P) .

 $A_n = n^{th}$ digit in the regular continued fraction expansion of a random number $\omega \in (0,1)$ chosen according to the law P.

4ロト 4回ト 4 豆ト 4 豆ト 豆 りへで

17 / 44

Take
$$\Omega=(0,1)$$
, $\mathcal{A}=\mathcal{B}_{(0,1)}$, $P(dx)=((1+x)\log 2)^{-1}\,dx$. Define $T:\Omega\to\Omega$ by $T(\omega)=\{1/\omega\}$ and $A_1:\Omega\to\mathbb{N}$ by $A_1(\omega)=[1/\omega]$.

For all $j \in \mathbb{N}$, set $A_{j+1}(\omega) := A_1(T^j(\omega)), \ \omega \in \Omega$.

This defines a sequence $\{A_n : \Omega \to \mathbb{N}\}_{n \geq 1}$ of positive integer-valued random variables on the probability space (Ω, \mathcal{A}, P) .

 $A_n = n^{th}$ digit in the regular continued fraction expansion of a random number $\omega \in (0,1)$ chosen according to the law P.

T preserves $P \Rightarrow \{A_n\}$ is a strictly stationary process.

(ロ) (型) (重) (重) 重 の(○)

17 / 44

Take
$$\Omega=(0,1)$$
, $\mathcal{A}=\mathcal{B}_{(0,1)}$, $P(dx)=((1+x)\log 2)^{-1}\,dx$. Define $T:\Omega\to\Omega$ by $T(\omega)=\{1/\omega\}$ and $A_1:\Omega\to\mathbb{N}$ by $A_1(\omega)=[1/\omega]$.

For all
$$j \in \mathbb{N}$$
, set $A_{j+1}(\omega) := A_1(T^j(\omega)), \ \omega \in \Omega$.

This defines a sequence $\{A_n : \Omega \to \mathbb{N}\}_{n\geq 1}$ of positive integer-valued random variables on the probability space (Ω, \mathcal{A}, P) .

 $A_n = n^{th}$ digit in the regular continued fraction expansion of a random number $\omega \in (0,1)$ chosen according to the law P.

T preserves $P \Rightarrow \{A_n\}$ is a strictly stationary process. In particular, A_1, A_2, A_3, \ldots are identically distributed.

Parthanil Roy CF and EVT 17 / 44

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 る の へ ○ < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回

• **Direct Computation**: For all $m \in \mathbb{N}$,

$$P(A_1 \ge m) = \frac{1}{\log 2} \log \left(1 + \frac{1}{m}\right)$$

• **Direct Computation**: For all $m \in \mathbb{N}$,

$$P(A_1 \ge m) = \frac{1}{\log 2} \log \left(1 + \frac{1}{m}\right) \sim \frac{1}{m \log 2} \quad (\text{as } m \to \infty).$$

• **Direct Computation**: For all $m \in \mathbb{N}$,

$$P(A_1 \ge m) = \frac{1}{\log 2} \log \left(1 + \frac{1}{m}\right) \sim \frac{1}{m \log 2} \quad (\text{as } m \to \infty).$$

• For all u > 0,

$$P\left(\frac{A_1 \log 2}{n} > u\right) = P\left(A_1 \ge \left\lceil \frac{un}{\log 2} \right\rceil\right) \sim \frac{1}{un}$$

as $n \to \infty$.

18 / 44

Direct Computation: For all $m \in \mathbb{N}$,

$$P(A_1 \ge m) = \frac{1}{\log 2} \log \left(1 + \frac{1}{m}\right) \sim \frac{1}{m \log 2} \quad (\text{as } m \to \infty).$$

• For all u > 0.

$$P\left(\frac{A_1 \log 2}{n} > u\right) = P\left(A_1 \ge \left\lceil \frac{un}{\log 2} \right\rceil\right) \sim \frac{1}{un}$$

as $n \to \infty$. In particular,

$$nP\left(\frac{A_1\log 2}{n}>u\right)\to u^{-1}$$

 $(A_1 \text{ is regularly varying with index } 1).$

If A_1, A_2, A_3, \ldots were independent

then

$$\mathbb{1}_{(A_1 \log 2 > un)}, \ \mathbb{1}_{(A_2 \log 2 > un)}, \ \mathbb{1}_{(A_3 \log 2 > un)}, \ \dots \stackrel{\text{iid}}{\sim} Ber(p_n),$$

where
$$p_n = P(A_1 \log 2 > un)$$

If A_1, A_2, A_3, \ldots were independent

then

$$\mathbb{1}_{(A_1 \log 2 > un)}, \ \mathbb{1}_{(A_2 \log 2 > un)}, \ \mathbb{1}_{(A_3 \log 2 > un)}, \ \dots \stackrel{iid}{\sim} Ber(p_n),$$

where
$$p_n = P(A_1 \log 2 > un) \sim \frac{1}{un} \Rightarrow np_n \rightarrow u^{-1}$$
.

then

$$\mathbb{1}_{(A_1 \log 2 > un)}, \ \mathbb{1}_{(A_2 \log 2 > un)}, \ \mathbb{1}_{(A_3 \log 2 > un)}, \ \dots \overset{iid}{\sim} Ber(p_n),$$
 where $p_n = P(A_1 \log 2 > un) \sim \frac{1}{un} \ \Rightarrow \ np_n \to u^{-1}.$

Therefore for all u > 0,

$$\mathcal{E}_n^u := \#\{1 \leq j \leq n : A_j \log 2 > un\}$$

19 / 44

Parthanil Roy CF and EVT

then

$$\mathbb{1}_{(A_1 \log 2 > un)}, \ \mathbb{1}_{(A_2 \log 2 > un)}, \ \mathbb{1}_{(A_3 \log 2 > un)}, \ \dots \stackrel{iid}{\sim} Ber(p_n),$$

where $p_n = P(A_1 \log 2 > un) \sim \frac{1}{un} \Rightarrow np_n \rightarrow u^{-1}$.

Therefore for all u > 0,

$$\mathcal{E}_n^u := \#\{1 \le j \le n : A_j \log 2 > un\} = \sum_{j=1}^n \mathbb{1}_{(A_j \log 2 > un)}$$

Parthanii Roy CF and EVT 19 / 44

then

$$\mathbb{1}_{(A_1 \log 2 > un)}, \ \mathbb{1}_{(A_2 \log 2 > un)}, \ \mathbb{1}_{(A_3 \log 2 > un)}, \ \dots \stackrel{iid}{\sim} Ber(p_n),$$

where
$$p_n = P(A_1 \log 2 > un) \sim \frac{1}{un} \Rightarrow np_n \rightarrow u^{-1}$$
.

Therefore for all u > 0,

$$\mathcal{E}_n^u := \#\{1 \le j \le n : A_j \log 2 > un\} = \sum_{j=1}^n \mathbb{1}_{(A_j \log 2 > un)} \sim Bin(n, p_n)$$

◆ロト ◆昼 ト ◆ 差 ト → 差 ・ り へ で

Parthanil Roy CF and EVT 19 / 44

then

$$\mathbb{1}_{(A_1 \log 2 > un)}, \ \mathbb{1}_{(A_2 \log 2 > un)}, \ \mathbb{1}_{(A_3 \log 2 > un)}, \ \dots \stackrel{iid}{\sim} Ber(p_n),$$

where
$$p_n = P(A_1 \log 2 > un) \sim \frac{1}{un} \Rightarrow np_n \rightarrow u^{-1}$$
.

Therefore for all u > 0,

$$\mathcal{E}_n^u := \#\{1 \le j \le n : A_j \log 2 > un\} = \sum_{j=1}^n \mathbb{1}_{(A_j \log 2 > un)} \sim Bin(n, p_n)$$

$$\stackrel{\mathcal{L}}{\longrightarrow} \mathcal{E}^u_{\infty} \sim Poi(u^{-1})$$

as $n \to \infty$.

- 4 ロト 4 昼 ト 4 差 ト - 差 - 夕 Q C

Parthanii Roy CF and EVT 19 / 44

Doeblin-losifescu asymptotics

Theorem (Doeblin (1940), losifescu (1977))

For all u > 0,

$$\mathcal{E}_n^u := \#\{1 \leq j \leq n : A_j \log 2 > un\} \stackrel{\mathcal{L}}{\longrightarrow} \mathcal{E}_{\infty}^u \sim Poi(u^{-1})$$

as $n \to \infty$.

Parthanii Roy CF and EVT 20 / 44

Doeblin-losifescu asymptotics

For all u > 0,

$$\mathcal{E}_n^u := \#\{1 \leq j \leq n : A_j \log 2 > un\} \xrightarrow{\mathcal{L}} \mathcal{E}_\infty^u \sim Poi(u^{-1})$$

as $n \to \infty$.

Corollary (Main result of Galambos (1972))

Let $M_n^{(1)}:=\max\{A_i\log 2:1\leq 1\leq n\},\;n\in\mathbb{N}.$ Then for all u>0,

$$P\left(\frac{M_n^{(1)}}{n} \le u\right) \to e^{-u^{-1}}$$

as $n \to \infty$.

Doeblin-losifescu asymptotics

Theorem (Doeblin (1940), losifescu (1977))

For all u > 0,

$$\mathcal{E}_n^u := \#\{1 \leq j \leq n : A_j \log 2 > un\} \xrightarrow{\mathcal{L}} \mathcal{E}_\infty^u \sim \textit{Poi}(u^{-1})$$

as $n \to \infty$.

Let $M_n^{(1)}:=\max\{A_i\log 2:1\leq 1\leq n\},\ n\in\mathbb{N}.$ Then for all u>0,

$$P\left(\frac{M_n^{(1)}}{n} \le u\right) \to e^{-u^{-1}}$$

as $n \to \infty$. (Restatement of $P(\mathcal{E}_n^u = 0) \to P(\mathcal{E}_\infty^u = 0)$.)

Parthanil Roy

CF and EVT

Our Contribution

Parthanil Roy CF and EVT 21 / 44

The main question

Theorem (Doeblin (1940), losifescu (1977))

For all u > 0,

(DI)
$$\mathcal{E}_n^u := \#\{1 \le j \le n : A_j \log 2 > un\} \xrightarrow{\mathcal{L}} \mathcal{E}_{\infty}^u \sim Poi(u^{-1})$$

as $n \to \infty$.

Question

What is the rate of convergence in (DI)?

Parthanil Roy CF and EVT 22 / 44

Parthanil Roy CF and EVT 23 / 44

• Can estimate the rate of convergence of scaled maxima sequence $M_n^{(1)}/n$ (as in Galambos (1972)):

Parthanil Roy CF and EVT 23 / 44

• Can estimate the rate of convergence of scaled maxima sequence $M_n^{(1)}/n$ (as in Galambos (1972)): significantly improves a result of Philipp (1976) bettering an error term in his proof of a conjecture of Paul Erdös.

Parthanii Roy CF and EVT 23 / 44

- Can estimate the rate of convergence of scaled maxima sequence $M_n^{(1)}/n$ (as in Galambos (1972)): significantly improves a result of Philipp (1976) bettering an error term in his proof of a conjecture of Paul Erdös.
- ullet Rate of convergence for the scaled k^{th} maxima for any $k\in\mathbb{N}$

Parthanil Roy CF and EVT 23 / 44

- Can estimate the rate of convergence of scaled maxima sequence $M_n^{(1)}/n$ (as in Galambos (1972)): significantly improves a result of Philipp (1976) bettering an error term in his proof of a conjecture of Paul Erdös.
- Rate of convergence for the scaled k^{th} maxima for any $k \in \mathbb{N}$ (uniform over k).

Parthanil Roy CF and EVT 23 / 44

- Can estimate the rate of convergence of scaled maxima sequence $M_n^{(1)}/n$ (as in Galambos (1972)): significantly improves a result of Philipp (1976) bettering an error term in his proof of a conjecture of Paul Erdös.
- Rate of convergence for the scaled k^{th} maxima for any $k \in \mathbb{N}$ (uniform over k).
- A tiny detour recovers a result of Tyran-Kamińska (2010) on the weak convergence of the corresponding extremal point process

Parthanii Roy CF and EVT 23 / 44

- Can estimate the rate of convergence of scaled maxima sequence $M_n^{(1)}/n$ (as in Galambos (1972)): significantly improves a result of Philipp (1976) bettering an error term in his proof of a conjecture of Paul Erdös.
- Rate of convergence for the scaled k^{th} maxima for any $k \in \mathbb{N}$ (uniform over k).
- A tiny detour recovers a result of Tyran-Kamińska (2010) on the weak convergence of the corresponding extremal point process (inspired by Chiarini, Cipriani and Hazra (2015)): has number theoretic consequences.

Parthanil Roy CF and EVT 23 / 44

- Can estimate the rate of convergence of scaled maxima sequence $M_n^{(1)}/n$ (as in Galambos (1972)): significantly improves a result of Philipp (1976) bettering an error term in his proof of a conjecture of Paul Erdös.
- Rate of convergence for the scaled k^{th} maxima for any $k \in \mathbb{N}$ (uniform over k).
- A tiny detour recovers a result of Tyran-Kamińska (2010) on the weak convergence of the corresponding extremal point process (inspired by Chiarini, Cipriani and Hazra (2015)): has number theoretic consequences.
- Rate of convergence of the scaled maxima for the geodesic flow on the modular surface.

Parthanil Roy CF and EVT 23 / 44

The main result

Theorem (Ghosh, Kirsebom, R. (2019))

There exists $\kappa > 0$ and a sequence $1 \ll \ell_n \ll \log n$ such that for all u > 0 and for all $n \in \mathbb{N}$,

$$d_{TV}(\mathcal{E}_n^u, \mathcal{E}_\infty^u) := \sup_{A \subseteq \mathbb{N} \cup \{0\}} \left| P(\mathcal{E}_n^u \in A) - P(\mathcal{E}_\infty^u \in A) \right| \leq \frac{\kappa}{\min\{u, u^2\}} \frac{\ell_n}{n}.$$

Parthanii Roy CF and EVT 24 / 44

The main result

Theorem (Ghosh, Kirsebom, R. (2019))

There exists $\kappa > 0$ and a sequence $1 \ll \ell_n \ll \log n$ such that for all u > 0 and for all $n \in \mathbb{N}$,

$$d_{TV}(\mathcal{E}_n^u, \mathcal{E}_\infty^u) := \sup_{A \subseteq \mathbb{N} \cup \{0\}} \left| P(\mathcal{E}_n^u \in A) - P(\mathcal{E}_\infty^u \in A) \right| \leq \frac{\kappa}{\min\{u, u^2\}} \frac{\ell_n}{n}.$$

Corollary

Suppose $M_n^{(k)} := k^{th}$ maximum of $\{A_i \log 2 : 1 \le i \le n\}$. For all u > 0 and for all $n \in \mathbb{N}$,

$$\sup_{k\in\mathbb{N}}\left|P\left(\frac{M_n^{(k)}}{n}\leq u\right)-e^{-u^{-1}}\sum_{i=0}^{k-1}\frac{u^{-i}}{i!}\right|\leq \frac{\kappa}{\min\left\{u,u^2\right\}}\,\frac{\ell_n}{n}.$$

Parthanil Roy CF and EVT 24 / 44

• Resnick and de Haan (1989): If A_1, A_2, \ldots were independent, then

$$\left| P\left(M_n^{(1)}/n \le u \right) - e^{-u^{-1}} \right| \le O(1/n).$$

Parthanil Roy CF and EVT 25 / 44

• Resnick and de Haan (1989): If A_1, A_2, \ldots were independent, then

$$\left|P\left(M_n^{(1)}/n \le u\right) - e^{-u^{-1}}\right| \le \frac{O(1/n)}{n}.$$

Our upper bound = $O(\ell_n/n) = o(\log n/n) = o(n^{-1+\epsilon})$ for all $\epsilon > 0$.

Parthanil Roy CF and EVT 25 / 44

• Resnick and de Haan (1989): If A_1, A_2, \ldots were independent, then

$$\left|P\left(M_n^{(1)}/n \le u\right) - e^{-u^{-1}}\right| \le \frac{O(1/n)}{n}.$$

Our upper bound = $O(\ell_n/n) = o(\log n/n) = o(n^{-1+\epsilon})$ for all $\epsilon > 0$.

Philipp (1976): For Gauss dynamical system

$$\left| P\left(M_n^{(1)}/n \le u \right) - e^{-u^{-1}} \right| \le O\left(\exp\left\{ -(\log n)^{\delta} \right\} \right)$$

for all $\delta \in (0,1)$.

→ □ ト → □ ト → 豆 ト → 豆 → ○○○

Parthanii Roy CF and EVT 25 / 44

• Resnick and de Haan (1989): If A_1, A_2, \ldots were independent, then

$$\left| P\left(M_n^{(1)}/n \le u \right) - e^{-u^{-1}} \right| \le O(1/n).$$

Our upper bound = $O(\ell_n/n) = o(\log n/n) = o(n^{-1+\epsilon})$ for all $\epsilon > 0$.

Philipp (1976): For Gauss dynamical system

$$\left| P\left(M_n^{(1)}/n \le u \right) - e^{-u^{-1}} \right| \le \frac{O(\ell_n/n)}{\ll} O\left(\exp\left\{ -(\log n)^{\delta} \right\} \right)$$

for all $\delta \in (0,1)$.

4ロト 4回ト 4 差ト 4 差ト 差 り900

Parthanil Roy CF and EVT 26 / 44

• Resnick and de Haan (1989): If A_1, A_2, \ldots were independent, then

$$\left| P\left(M_n^{(1)}/n \le u \right) - e^{-u^{-1}} \right| \le O(1/n).$$

Our upper bound = $O(\ell_n/n) = o(\log n/n) = o(n^{-1+\epsilon})$ for all $\epsilon > 0$.

Philipp (1976): For Gauss dynamical system

$$\left| P\left(M_n^{(1)}/n \le u \right) - e^{-u^{-1}} \right| \le O(\ell_n/n) \ll O\left(\exp\left\{ -(\log n)^{\delta} \right\} \right)$$

for all $\delta \in (0,1)$. (Betters an error term used by Philipp (1976) in his proof of a conjecture of Paul Erdös.)

4□ > 4□ > 4□ > 4□ > 4□ > 1□ 26 / 44

Parthanil Roy CF and EVT

Sketch of Proof of the Main Result:

Ergodic Theory + Hard Analysis + Applied Probability

Parthanii Roy CF and EVT 27 / 44

Recall
$$\mathcal{E}_n^u = \sum_{j=1}^n \mathbbm{1}_{(A_j \log 2 > un)} \overset{approx}{\sim} Bin(n, p_n = P(A_1 \log 2 > un)).$$

On the other hand, $\mathcal{E}_{\infty}^{u} \sim Poi(u^{-1})$.

Parthanil Roy CF and EVT 28 / 44

Recall
$$\mathcal{E}_n^u = \sum_{j=1}^n \mathbbm{1}_{(A_j \log 2 > un)} \overset{approx}{\sim} Bin(n, p_n = P(A_1 \log 2 > un)).$$

Define an intermediate random variable $\tilde{\mathcal{E}}_n^u \sim Poi(np_n)$.

On the other hand, $\mathcal{E}_{\infty}^{u} \sim Poi(u^{-1})$.

Parthanil Roy CF and EVT 29 / 44

Recall
$$\mathcal{E}_n^u = \sum_{j=1}^n \mathbb{1}_{(A_j \log 2 > un)} \overset{approx}{\sim} Bin(n, p_n = P(A_1 \log 2 > un)).$$

Define an intermediate random variable $\tilde{\mathcal{E}}_n^u \sim Poi(np_n)$.

On the other hand, $\mathcal{E}_{\infty}^{u} \sim Poi(u^{-1})$.

Use triangle inequality

$$d_{TV}(\mathcal{E}_n^u, \mathcal{E}_\infty^u) \leq d_{TV}(\mathcal{E}_n^u, \tilde{\mathcal{E}}_n^u) + d_{TV}(\tilde{\mathcal{E}}_n^u, \mathcal{E}_\infty^u).$$

Parthanil Roy CF and EVT 30 / 44

Recall
$$\mathcal{E}_n^u = \sum_{j=1}^n \mathbb{1}_{(A_j \log 2 > un)} \overset{approx}{\sim} Bin(n, p_n = P(A_1 \log 2 > un)).$$

Define an intermediate random variable $\tilde{\mathcal{E}}_n^u \sim Poi(np_n)$.

On the other hand, $\mathcal{E}_{\infty}^{u} \sim Poi(u^{-1})$.

Use triangle inequality

$$d_{TV}(\mathcal{E}_n^u, \mathcal{E}_\infty^u) \leq d_{TV}(\mathcal{E}_n^u, \tilde{\mathcal{E}}_n^u) + d_{TV}(\tilde{\mathcal{E}}_n^u, \mathcal{E}_\infty^u).$$

• Bound $d_{TV}(\mathcal{E}_n^u, \tilde{\mathcal{E}}_n^u)$ using Chen-Stein method (Arratia, Goldstein and Gordon (1989)) + exponential mixing (Philipp (1970)).

4 U > 4 🗗 > 4 E > 4 E > E 9990

Parthanii Roy CF and EVT 31/44

Recall
$$\mathcal{E}_n^u = \sum_{j=1}^n \mathbb{1}_{(A_j \log 2 > un)} \overset{approx}{\sim} Bin(n, p_n = P(A_1 \log 2 > un)).$$

Define an intermediate random variable $\tilde{\mathcal{E}}_n^u \sim Poi(np_n)$.

On the other hand, $\mathcal{E}_{\infty}^{u} \sim Poi(u^{-1})$.

Use triangle inequality

$$d_{TV}(\mathcal{E}_n^u, \mathcal{E}_\infty^u) \leq d_{TV}(\mathcal{E}_n^u, \tilde{\mathcal{E}}_n^u) + d_{TV}(\tilde{\mathcal{E}}_n^u, \mathcal{E}_\infty^u).$$

- Bound $d_{TV}(\mathcal{E}_n^u, \tilde{\mathcal{E}}_n^u)$ using Chen-Stein method (Arratia, Goldstein and Gordon (1989)) + exponential mixing (Philipp (1970)).
- Estimate $d_{TV}(\tilde{\mathcal{E}}_n^u, \mathcal{E}_{\infty}^u)$ using second order regular variation.

Parthanil Roy CF and EVT 32 / 44

How to estimate $d_{TV}(\tilde{\mathcal{E}}_n^u, \mathcal{E}_{\infty}^u)$?

Recall $\tilde{\mathcal{E}}_n^u \sim Poi(np_n)$ and $\mathcal{E}_{\infty}^u \sim Poi(u^{-1})$.

33 / 44

Parthanil Roy CF and EVT

How to estimate $d_{TV}(\tilde{\mathcal{E}}_n^u, \mathcal{E}_{\infty}^u)$?

Recall
$$\tilde{\mathcal{E}}_n^u \sim Poi(np_n)$$
 and $\mathcal{E}_{\infty}^u \sim Poi(u^{-1})$.

Lemma (8) of Freedman (1974):

$$d_{TV}(\tilde{\mathcal{E}}_n^u, \mathcal{E}_{\infty}^u) \leq |np_n - u^{-1}|$$
 (soft bound)

Parthanil Roy CF and EVT 33 / 44

How to estimate $d_{TV}(\tilde{\mathcal{E}}_n^u, \mathcal{E}_{\infty}^u)$?

Recall
$$\tilde{\mathcal{E}}_n^u \sim Poi(np_n)$$
 and $\mathcal{E}_{\infty}^u \sim Poi(u^{-1})$.

Lemma (8) of Freedman (1974):

$$d_{TV}(\tilde{\mathcal{E}}_n^u, \mathcal{E}_{\infty}^u) \leq |np_n - u^{-1}|$$
 (soft bound)

$$= |nP(A_1 \log 2 > un) - u^{-1}|$$

Parthanil Roy CF and EVT 33 / 44

How to estimate $d_{TV}(\mathcal{E}_n^u, \mathcal{E}_\infty^u)$?

Recall
$$ilde{\mathcal{E}}_n^u \sim Poi(np_n)$$
 and $\mathcal{E}_{\infty}^u \sim Poi(u^{-1})$.

Lemma (8) of Freedman (1974):

$$d_{TV}(\tilde{\mathcal{E}}_n^u, \mathcal{E}_\infty^u) \leq |np_n - u^{-1}|$$
 (soft bound)

$$= |nP(A_1 \log 2 > un) - u^{-1}|$$

$$\leq \frac{3 \log 2}{2u^2} \frac{1}{n}$$
 (second order regular variation)

4 D > 4 D > 4 E > 4 E > E 9 Q C

33 / 44

Parthanil Roy CF and EVT

How to estimate $d_{TV}(\hat{\mathcal{E}}_n^u, \mathcal{E}_{\infty}^u)$?

Recall
$$\tilde{\mathcal{E}}_n^u \sim Poi(np_n)$$
 and $\mathcal{E}_{\infty}^u \sim Poi(u^{-1})$.

Lemma (8) of Freedman (1974):

$$d_{TV}(ilde{\mathcal{E}}_n^u, \mathcal{E}_\infty^u) \leq \left| np_n - u^{-1} \right| \quad \text{(soft bound)}$$

$$= \left| nP(A_1 \log 2 > un) - u^{-1} \right|$$

$$\leq \frac{3 \log 2}{2u^2} \frac{1}{n} \quad \text{(second order regular variation)}$$

$$\ll \frac{\ell_n}{n}$$

4 D > 4 B > 4 E > 4 E > 9 Q C

33 / 44

Parthanil Roy CF and EVT

How to bound $d_{TV}(\mathcal{E}_n^u, \tilde{\mathcal{E}}_n^u)$?

Recall
$$\mathcal{E}_n^u = \sum_{i=1}^n \mathbb{1}_{(A_i \log 2 > un)}$$
 and $\tilde{\mathcal{E}}_n^u \sim Poi(np_n)$.

Parthanii Roy CF and EVT 34 / 44

Recall
$$\mathcal{E}_n^u = \sum_{i=1}^n \mathbb{1}_{(A_i \log 2 > un)}$$
 and $\tilde{\mathcal{E}}_n^u \sim Poi(np_n)$.

$$\mathcal{I} := \{1, 2, \ldots, n\}.$$

Recall
$$\mathcal{E}_n^u = \sum_{i=1}^n \mathbb{1}_{(A_i \log 2 > un)}$$
 and $\tilde{\mathcal{E}}_n^u \sim Poi(np_n)$.

$$\mathcal{I} := \{1, 2, \dots, n\}$$
 $\{X_i := \mathbb{1}_{(A_i \log 2 > un)} \sim Ber(p_n)\}_{i \in \mathcal{I}}$ (dependent).

Recall
$$\mathcal{E}_n^u = \sum_{i=1}^n \mathbb{1}_{(A_i \log 2 > un)}$$
 and $\tilde{\mathcal{E}}_n^u \sim Poi(np_n)$.

$$\mathcal{I} := \{1, 2, \dots, n\}. \ \{X_i := \mathbbm{1}_{(A_i \log 2 > un)} \sim Ber(p_n)\}_{i \in \mathcal{I}} \ (\mathsf{dependent}).$$
 Note that $\mathcal{E}_n^u = \sum_{i \in \mathcal{I}} X_i$.

Recall
$$\mathcal{E}_n^u = \sum_{i=1}^n \mathbb{1}_{(A_i \log 2 > un)}$$
 and $\tilde{\mathcal{E}}_n^u \sim Poi(np_n)$.

$$\mathcal{I} := \{1, 2, \dots, n\}. \ \{X_i := \mathbbm{1}_{(A_i \log 2 > un)} \sim Ber(p_n)\}_{i \in \mathcal{I}} \ (\mathsf{dependent}).$$
 Note that $\mathcal{E}_n^u = \sum_{i \in \mathcal{I}} X_i$.

Take
$$Y_1, Y_2, \ldots, Y_n \stackrel{iid}{\sim} Poi(p_n)$$
.

Recall
$$\mathcal{E}_n^u = \sum_{i=1}^n \mathbb{1}_{(A_i \log 2 > un)}$$
 and $\tilde{\mathcal{E}}_n^u \sim Poi(np_n)$.

$$\mathcal{I} := \{1, 2, \dots, n\}. \ \{X_i := \mathbbm{1}_{(A_i \log 2 > un)} \sim Ber(p_n)\}_{i \in \mathcal{I}} \ (\mathsf{dependent}).$$
 Note that $\mathcal{E}_n^u = \sum_{i \in \mathcal{I}} X_i$.

Take
$$Y_1, Y_2, \ldots, Y_n \stackrel{iid}{\sim} Poi(p_n)$$
. Therefore $\tilde{\mathcal{E}}_n^u \stackrel{\mathcal{L}}{=} \sum_{i \in I} Y_i$.

How to bound $d_{TV}(\mathcal{E}_n^u, \mathcal{\tilde{E}}_n^u)$?

Recall
$$\mathcal{E}_n^u = \sum_{i=1}^n \mathbb{1}_{(A_i \log 2 > un)}$$
 and $\tilde{\mathcal{E}}_n^u \sim Poi(np_n)$.

$$\mathcal{I} := \{1, 2, \dots, n\}. \ \{X_i := \mathbbm{1}_{(A_i \log 2 > un)} \sim Ber(p_n)\}_{i \in \mathcal{I}} \ (\mathsf{dependent}).$$
 Note that $\mathcal{E}_n^u = \sum_{i \in \mathcal{I}} X_i$.

Take
$$Y_1, Y_2, \ldots, Y_n \stackrel{iid}{\sim} Poi(p_n)$$
. Therefore $\tilde{\mathcal{E}}_n^u \stackrel{\mathcal{L}}{=} \sum_{i \in I} Y_i$.

$$\left| d_{TV}(\mathcal{E}_n^u, \tilde{\mathcal{E}}_n^u) = d_{TV}\left(\sum_{i \in \mathcal{I}} X_i, \sum_{i \in \mathcal{I}} Y_i\right) \leq ?? \right|$$

- 4 ロ ト 4 昼 ト 4 豆 ト 4 豆 - か 9 0 0 0 0

```
\{X_i \sim Ber(\pi_i)\}_{i \in \mathcal{I}} (possibly dependent).
```

 $\{Y_i \sim Poi(\pi_i)\}_{i \in \mathcal{I}}$ (independent).

 $\{X_i \sim Ber(\pi_i)\}_{i \in \mathcal{I}}$ (possibly dependent).

 $\{Y_i \sim Poi(\pi_i)\}_{i \in \mathcal{I}}$ (independent).

For each $i \in \mathcal{I}$, there exists a subset $B_i \subseteq \mathcal{I}$ such that $i \in B_i$ and X_i is "nearly independent" of $\{X_j : j \in \mathcal{I} \setminus B_i\}$.

 $\{X_i \sim Ber(\pi_i)\}_{i \in \mathcal{I}}$ (possibly dependent).

 $\{Y_i \sim Poi(\pi_i)\}_{i \in \mathcal{I}}$ (independent).

For each $i \in \mathcal{I}$, there exists a subset $B_i \subseteq \mathcal{I}$ such that $i \in B_i$ and X_i is "nearly independent" of $\{X_j : j \in \mathcal{I} \setminus B_i\}$.

$$b_1 := \sum_{i \in \mathcal{I}} \sum_{j \in B_i} \pi_i \pi_j, \quad b_2 := \sum_{i \in \mathcal{I}} \sum_{j \in B_i \setminus \{i\}} E(X_i X_j),$$

 $\{X_i \sim Ber(\pi_i)\}_{i \in \mathcal{I}}$ (possibly dependent).

 $\{Y_i \sim Poi(\pi_i)\}_{i \in \mathcal{I}}$ (independent).

For each $i \in \mathcal{I}$, there exists a subset $B_i \subseteq \mathcal{I}$ such that $i \in B_i$ and X_i is "nearly independent" of $\{X_j : j \in \mathcal{I} \setminus B_i\}$.

$$b_1 := \sum_{i \in \mathcal{I}} \sum_{j \in B_i} \pi_i \pi_j, \quad b_2 := \sum_{i \in \mathcal{I}} \sum_{j \in B_i \setminus \{i\}} E(X_i X_j),$$

$$b_3 := \sum_{i \in \mathcal{I}} E\Big[|E(X_i - \pi_i | \{X_j : j \in \mathcal{I} \setminus B_j\})|\Big].$$

 $\{X_i \sim Ber(\pi_i)\}_{i \in \mathcal{I}}$ (possibly dependent).

 $\{Y_i \sim Poi(\pi_i)\}_{i \in \mathcal{I}}$ (independent).

For each $i \in \mathcal{I}$, there exists a subset $B_i \subseteq \mathcal{I}$ such that $i \in B_i$ and X_i is "nearly independent" of $\{X_j : j \in \mathcal{I} \setminus B_i\}$.

$$b_1 := \sum_{i \in \mathcal{I}} \sum_{j \in B_i} \pi_i \pi_j, \quad b_2 := \sum_{i \in \mathcal{I}} \sum_{j \in B_i \setminus \{i\}} E(X_i X_j),$$

$$b_3 := \sum_{i \in \mathcal{I}} E\Big[|E(X_i - \pi_i | \{X_j : j \in \mathcal{I} \setminus B_j\})|\Big].$$

$$\left| d_{TV} \left(\sum_{i \in \mathcal{I}} X_i, \sum_{i \in \mathcal{I}} Y_i \right) \le 4b_1 + 4b_2 + 2b_3 \right|$$

 $\{X_i \sim Ber(\pi_i)\}_{i \in \mathcal{I}}$ (possibly dependent).

 $\{Y_i \sim Poi(\pi_i)\}_{i \in \mathcal{I}}$ (independent).

For each $i \in \mathcal{I}$, there exists a subset $B_i \subseteq \mathcal{I}$ such that $i \in B_i$ and X_i is "nearly independent" of $\{X_j : j \in \mathcal{I} \setminus B_i\}$.

$$b_1 := \sum_{i \in \mathcal{I}} \sum_{j \in B_i} \pi_i \pi_j, \quad b_2 := \sum_{i \in \mathcal{I}} \sum_{j \in B_i \setminus \{i\}} E(X_i X_j),$$

$$b_3 := \sum_{i \in \mathcal{I}} E\Big[|E(X_i - \pi_i | \{X_j : j \in \mathcal{I} \setminus B_j\})|\Big].$$

$$\left| d_{TV}(\mathcal{E}_n^u, \tilde{\mathcal{E}}_n^u) = d_{TV}\left(\sum_{i \in \mathcal{I}} X_i, \sum_{i \in \mathcal{I}} Y_i\right) \leq 4b_1 + 4b_2 + 2b_3 \right|$$

Choose $B_i = (i - m_n, i + m_n)$ for each i, and "optimize" to get $m_n^* = \ell_n$

Choose $B_i = (i - m_n, i + m_n)$ for each i, and "optimize" to get $m_n^* = \ell_n \ll \log n$. (Rate of conv $\leq O(\ell_n/n)$.)

Choose
$$B_i = (i - m_n, i + m_n)$$
 for each i , and "optimize" to get $m_n^* = \ell_n \ll \log n$. (Rate of conv $\leq O(\ell_n/n)$.)

ullet b_1 can be bounded easily, and

Choose $B_i = (i - m_n, i + m_n)$ for each i, and "optimize" to get $m_n^* = \ell_n \ll \log n$. (Rate of conv $\leq O(\ell_n/n)$.)

- ullet b_1 can be bounded easily, and
- the bounds on b_2 and (mainly) b_3 need the following exponential mixing property of A_i 's:

Choose $B_i = (i - m_n, i + m_n)$ for each i, and "optimize" to get $m_n^* = \ell_n \ll \log n$. (Rate of conv $< O(\ell_n/n)$.)

- b_1 can be bounded easily, and
- the bounds on b_2 and (mainly) b_3 need the following exponential mixing property of A_i 's:

Theorem (Philipp (1970); see also Galambos (1972))

There exists C>0 and $\theta>1$ such that for all $m,n\in\mathbb{N}$, for all $F \in \sigma(A_1, A_2, \dots, A_m)$, and for all $H \in \sigma(A_{m+n}, A_{m+n+1}, \dots)$,

$$|P(F\cap H)-P(F)P(H)|\leq C\theta^{-n}\,P(F)P(H).$$

4 D > 4 A > 4 B > 4 B >

 Theorem 1 of Smith (1988) gives a similar Chen-Stein type upper bound in the more general setup of non-stationary processes.

- Theorem 1 of Smith (1988) gives a similar Chen-Stein type upper bound in the more general setup of non-stationary processes.
- Estimation of the terms b_1 and b_2 will be more involved than our work.

- Theorem 1 of Smith (1988) gives a similar Chen-Stein type upper bound in the more general setup of non-stationary processes.
- Estimation of the terms b_1 and b_2 will be more involved than our work.
- Bounding the term b_3 will be easier than ours.

- Theorem 1 of Smith (1988) gives a similar Chen-Stein type upper bound in the more general setup of non-stationary processes.
- Estimation of the terms b_1 and b_2 will be more involved than our work.
- Bounding the term b_3 will be easier than ours.
- Overall, application of Theorem 1 of Smith (1988), instead of Theorem 2 of Arratia, Goldstein and Gordon (1989), will result in an argument of similar length.

- Theorem 1 of Smith (1988) gives a similar Chen-Stein type upper bound in the more general setup of non-stationary processes.
- Estimation of the terms b_1 and b_2 will be more involved than our work.
- Bounding the term b_3 will be easier than ours.
- Overall, application of Theorem 1 of Smith (1988), instead of Theorem 2 of Arratia, Goldstein and Gordon (1989), will result in an argument of similar length.
- However, we have not compared the rates obtained by these two results in our setup.

Consequences and Future Work

The central limit theorem

Theorem 3.1 of Davis and Hsing (1995) + extremal point process convergence yields

$$\frac{A_1 + A_2 + \cdots + A_n - E(A_1 \mathbb{1}_{(A_1 \leq n)})}{n} \xrightarrow{\mathcal{L}} S,$$

The central limit theorem

Theorem 3.1 of Davis and Hsing (1995) + extremal point process convergence yields

$$\frac{A_1 + A_2 + \cdots + A_n - E(A_1 \mathbb{1}_{(A_1 \leq n)})}{n} \xrightarrow{\mathcal{L}} S,$$

where S is a 1-stable random variable.

40 / 44

The central limit theorem

Theorem 3.1 of Davis and Hsing (1995) + extremal point process convergence yields

$$\frac{A_1 + A_2 + \cdots + A_n - E(A_1 \mathbb{1}_{(A_1 \leq n)})}{n} \xrightarrow{\mathcal{L}} S,$$

where S is a 1-stable random variable.

This recovers a result of Samur (1989), who proved this using "direct frontal attack" with the help of exponential mixing.

Choose a number $\omega \in (0,1)$ uniformly at random.

Choose a number $\omega \in (0,1)$ uniformly at random.

Look at $\omega = [A_1(\omega), A_2(\omega), A_3(\omega), \ldots]$ (RCF expansion).

Choose a number $\omega \in (0,1)$ uniformly at random.

Look at
$$\omega = [A_1(\omega), A_2(\omega), A_3(\omega), \ldots]$$
 (RCF expansion).

Let
$$P_n(\omega) = \frac{1}{n} |\{1 \leq i \leq n : A_i(\omega) \equiv 2 \pmod{7}\}|, n \in \mathbb{N}.$$

Parthanii Roy CF and EVT 41/44

Choose a number $\omega \in (0,1)$ uniformly at random.

Look at
$$\omega = [A_1(\omega), A_2(\omega), A_3(\omega), \ldots]$$
 (RCF expansion).

Let
$$P_n(\omega) = \frac{1}{n} |\{1 \leq i \leq n : A_i(\omega) \equiv 2 \pmod{7}\}|, n \in \mathbb{N}.$$

 P_n (a seq of r.v.s) = the proportion of numbers of the form 7k + 2 ($k \in \mathbb{N} \cup \{0\}$) among first n RCF digits of a number chosen unifromly at random from (0, 1).

Parthanii Roy CF and EVT 41/44

Choose a number $\omega \in (0,1)$ uniformly at random.

Look at
$$\omega = [A_1(\omega), A_2(\omega), A_3(\omega), \ldots]$$
 (RCF expansion).

Let
$$P_n(\omega) = \frac{1}{n} |\{1 \leq i \leq n : A_i(\omega) \equiv 2 \pmod{7}\}|, n \in \mathbb{N}.$$

 P_n (a seq of r.v.s) = the proportion of numbers of the form 7k + 2 ($k \in \mathbb{N} \cup \{0\}$) among first n RCF digits of a number chosen unifromly at random from (0,1).

Corollary (Conseq of Extremal Point Process Conv)

$$P_n \stackrel{p}{\longrightarrow} \frac{1}{7} \text{ as } n \to \infty.$$

41 / 44

Choose a number $\omega \in (0,1)$ uniformly at random.

Look at
$$\omega = [A_1(\omega), A_2(\omega), A_3(\omega), \ldots]$$
 (RCF expansion).

Let
$$P_n(\omega) = \frac{1}{n} |\{1 \leq i \leq n : A_i(\omega) \equiv 2 \pmod{7}\}|, n \in \mathbb{N}.$$

 P_n (a seq of r.v.s) = the proportion of numbers of the form 7k + 2 ($k \in \mathbb{N} \cup \{0\}$) among first n RCF digits of a number chosen unifromly at random from (0,1).

Corollary (Conseq of Extremal Point Process Conv)

$$P_n \stackrel{p}{\longrightarrow} \frac{1}{7} \text{ as } n \to \infty.$$

Regular continued fraction is egalitarian towards all (residue) classes.

Parthanil Roy CF and EVT 41 / 44

4□ ト 4回 ト 4 亘 ト 4 亘 ト □ ■ の Q ()

$$PSL_2(\mathbb{Z}) := \left\{ \left(egin{array}{cc} a & b \\ c & d \end{array} \right) : a,b,c,d \in \mathbb{Z}, \ ad-bc=1 \right\} \left/ \left\{ \pm \right\} \right.$$

$$PSL_2(\mathbb{Z}) := \left\{ \left(egin{array}{cc} a & b \\ c & d \end{array} \right) : a,b,c,d \in \mathbb{Z}, \ ad-bc=1 \right\} \left/ \left\{ \pm \right\}$$
 acts isometrically on $\mathbb{H} := \left\{ z \in \mathbb{C} : \operatorname{Im}(z) > 0 \right\}$ by

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right).z = \frac{az+b}{cz+d}.$$

42 / 44

$$PSL_2(\mathbb{Z}) := \left\{ \left(egin{array}{c} a & b \\ c & d \end{array} \right) : a,b,c,d \in \mathbb{Z}, \ ad-bc=1 \right\} \left/ \left\{ \pm \right\}$$
 acts isometrically on $\mathbb{H} := \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$ by

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right).z = \frac{az+b}{cz+d}.$$

Series (1981, 1985): Related the geodesic flow on $M = \mathbb{H}/PSL_2(\mathbb{Z})$ to Gauss dynamical system using a symbolic dynamics.

42 / 44

$$PSL_2(\mathbb{Z}) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}, \ ad - bc = 1 \right\} / \left\{ \pm \right\}$$
 acts isometrically on $\mathbb{H} := \{ z \in \mathbb{C} : \operatorname{Im}(z) > 0 \}$ by

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right).z = \frac{az+b}{cz+d}.$$

Series (1981, 1985): Related the geodesic flow on $M = \mathbb{H}/PSL_2(\mathbb{Z})$ to Gauss dynamical system using a symbolic dynamics.

Pollicott (2009): Used this connection to find the weak limit of the normalized maxima of the geodesic flow on M.

$$PSL_2(\mathbb{Z}) := \left\{ \left(egin{array}{cc} a & b \\ c & d \end{array} \right) : a,b,c,d \in \mathbb{Z}, \ ad-bc=1 \right\} \left/ \left\{ \pm \right\}$$
 acts isometrically on $\mathbb{H} := \left\{ z \in \mathbb{C} : \operatorname{Im}(z) > 0 \right\}$ by

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right).z = \frac{az+b}{cz+d}.$$

Series (1981, 1985): Related the geodesic flow on $M = \mathbb{H}/PSL_2(\mathbb{Z})$ to Gauss dynamical system using a symbolic dynamics.

Pollicott (2009): Used this connection to find the weak limit of the normalized maxima of the geodesic flow on M.

Our work yields the rate of convergence in Pollicott's result.

• Large deviation issues for continued fractions.

• Large deviation issues for continued fractions.

• Extremes and large deviations for other dynamical systems.

• Large deviation issues for continued fractions.

• Extremes and large deviations for other dynamical systems.

CLT, LIL, etc. for various dynamical systems.

• Large deviation issues for continued fractions.

• Extremes and large deviations for other dynamical systems.

• CLT, LIL, etc. for various dynamical systems.

Extremes in the context of number theory and geometry.

arXiv:1904.07582

- Initiated during a visit by Maxim Sølund Kirsebom and P.R. at *Tata Institute of Fundamental Research, Mumbai.*
- Significant portion at *International Centre for Theoretical* Sciences, Bangalore during the program Probabilistic Methods in Negative Curvature.

Thank You Very Much