Aperiodically driven integrable systems and their emergent steady states

Arnab Sen

Department of Theoretical Physics, Indian Association for the Cultivation of Science, Kolkata Collaborators: Sourav Nandy (IACS), Diptiman Sen (IISc)

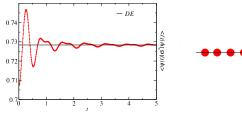
Ref: arXiv:1701.07596, to be published in Phys. Rev. X

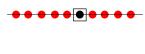
ICTS Conference on Open Quantum Systems, 01 Aug, 2017

Plan of the talk

- Non-equilibrium steady states of driven many-body systems $(i\frac{d\rho}{dt} = [H(t), \rho])$ —no external bath attached
- Case of periodically driven (Floquet) systems [H(t) = H(t + nT)]
- Perturbed Floquet integrable systems—periodic structure in time broken (s.t. drive H(t) stays periodic on average in time) ⇒ new steady states that are not possible with periodic drives
- Case of (any typical realization of) random noise
- Case of scale-invariant noise
- Conclusions and future directions

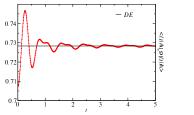
Driven systems: Steady state





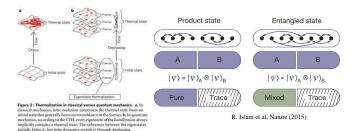
- Does an ensemble description exist for steady states of driven quantum systems? Guiding principles?
- Lots of progress in recent years for quenches $(H_i \rightarrow H_f)$ [Rigol, Dunjko, Olshanii (2008)] and periodically driven systems (H(t) = H(t+nT)) [Lazarides, Das, Moessner (2014,2015), D'Alessio, Rigol (2014), Bukov, D'Alessio, Polkovnikov (2015)]
- Steady state description for generic driving protocols still an open issue.

Guiding principle



- Conserved quantities during the dynamics play crucial role. E.g. $\langle \psi(t)|H_f|\psi(t)\rangle$ independent of t for quench.
- Write maximum entropy statistical description consistent with conservations (as we do in Statistical Mechanics, e.g. Jaynes (1957))
- Remarkably, local properties of the resulting pure state at late times indistinguishable from the max. ent. result in thermodynamic limit.

Eigenstate Thermalization Hypothesis



- Let $|\psi(0)\rangle = \sum_i c_i |\mathcal{E}_i\rangle$ where $|\mathcal{E}_i\rangle$ denote the post-quench eigenstates of H_f .
- $\langle \psi(t)|O|\psi(t)\rangle = \sum_{i} |c_{i}|^{2} \langle \mathcal{E}_{i}|O|\mathcal{E}_{i}\rangle + \sum_{i\neq j} c_{i}c_{i}^{*} \exp(-i(E_{i}-E_{j})t)\langle \mathcal{E}_{j}|O|\mathcal{E}_{i}\rangle$
- High-energy eigenstates in a generic system expected to follow ETH (Deutsch, Srednicki, Rigol+Dunjko+Olshanii, Kim+lkeda+Huse)

Periodically driven systems

- Synchronization of local properties with the drive frequency at late time allows for a *periodic ensemble* ⇒ can lead to novel nonequilibrium states like *Floquet time crystals* [Else, Bauer, Nayak (2016), Khemani, Lazarides, Moessner, Sondhi (2016)]
- $U(T) = \exp(-iH_FT)$ where U(T) is the Floquet operator and H_F the Floquet Hamiltonian.
- Thus, stroboscopic propagation where $|\psi(n)\rangle = U(T)^n |\psi(0)\rangle$ gives a steady state when $n \to \infty$.
- Generic systems, when continuously driven periodically, heat up to infinite temperature at large n.
- Not true for many body localized systems (Nandkishore, Huse (2014)) and for certain integrable models (extensive number of conservations remain present stroboscopically).

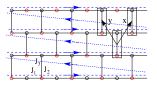
Class of integrable models

In 1D, transverse field Ising model (TFIM)

$$H = -\sum_{j} (g(t)\sigma_{j}^{x} + \sigma_{j}^{z}\sigma_{j+1}^{z})$$

In 2D, Kitaev model (see Chen+Nussinov, 2008)—

$$H_{\text{2D}} = \sum_{j+l=\text{even}} (J_1 \sigma_{j,l}^x \sigma_{j+1,l}^x + J_2 \sigma_{j-1,l}^y \sigma_{j,l}^y + J_3 \sigma_{j,l}^z \sigma_{j,l+1}^z)$$



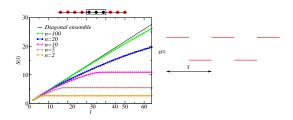
Jordan-Wigner transformation:

$$\sigma_n^{\mathsf{X}} = 1 - 2c_n^{\dagger}c_n \quad \sigma_n^{\mathsf{Z}} = -(c_n + c_n^{\dagger}) \prod_{m < n} (1 - 2c_m^{\dagger}c_m),$$

Psuedospin representation

- $\bullet \ \ H = -\sum_{n=1}^{L} \left(g(t) 2g(t)c_n^{\dagger}c_n + c_n^{\dagger}c_{n+1} + \text{h.c.} + c_n^{\dagger}c_{n+1}^{\dagger} + \text{h.c.} \right)$
- Hamiltonian connects $|\uparrow\rangle_{\vec{k}} = c^{\dagger}_{\vec{k}}c^{\dagger}_{-\vec{k}}|0\rangle$ with $|\downarrow\rangle_{\vec{k}} = |0\rangle$ where $|0\rangle$ denotes vacuum of c fermions, i.e. $|\cdots\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\cdots\rangle$ (ground state as $g\rightarrow\infty$)
- The wavefunction can be expressed as $|\psi(t)\rangle = \bigotimes_{k>0} |\psi_k(t)\rangle$ where $|\psi_k(t)\rangle = u_k(t)|\uparrow\rangle_k + v_k(t)|\downarrow\rangle_k$ with $k=2\pi m/L$, $m=1/2,3/2,\cdots,(L-1)/2$.
- Dynamics through $H_k = (g(t) \cos(k))\tau_3 + \sin(k)\tau_1$, which acts as a **time-dependent magnetic field**.

Entanglement generation after *n* drive cycles



• Need the knowledge of two $I \times I$ matrices to fix the reduced density matrix $\rho_I = \text{Tr}_{L-I}(\rho)$ (Peschel (2003))—

$$C_{ij} = \langle c_i^{\dagger} c_j \rangle_n = \frac{2}{L} \sum_{k>0} |u_k(t)|^2 \cos(k(i-j))$$

$$F_{ij} = \langle c_i^{\dagger} c_j^{\dagger} \rangle_n = \frac{2}{L} \sum_{k>0} u_k^*(t) v_k(t) \sin(k(i-j))$$

$$C_n(I) = \begin{pmatrix} \mathbf{I} - \mathbf{C} & \mathbf{F} \\ \mathbf{F}^* & \mathbf{C} \end{pmatrix}$$

Coarse-graining in momentum space

 RDM for I ≪ L depends only on suitably coarse-grained variables in k space (Lai+Yang, 2015 used idea for eigenstates)—

$$\left(|u_k(n)|^2 \right)_c = \frac{1}{N_c} \sum_{k \in k_{cell}} |u_k(n)|^2$$

$$\left(u_k^*(n) v_k(n) \right)_c = \frac{1}{N_c} \sum_{k \in k_{cell}} u_k^*(n) v_k(n)$$

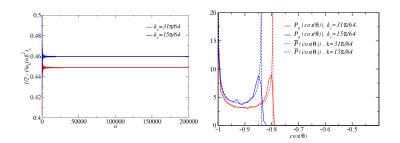
These defined using $N_c(\gg 1)$ consecutive k modes that lie within a cell (k_{cell}) which has average momentum k_c and size δk where $1/L \ll \delta k \ll 1/I$.

• Since $0 \le |i-j| \le l$, we have $\cos[k(i-j)] \simeq \cos[k_c(i-j)]$ (sim. for sin)

$$C_{ij} \simeq \frac{1}{\mathcal{N}_{cell}} \sum_{k_c} (|u_k(n)|^2)_c \cos(k_c(i-j))$$

$$F_{ij} \simeq \frac{1}{\mathcal{N}_{cell}} \sum_{k_c} (u_k^*(n)v_k(n))_c \sin(k_c(i-j))$$

Behaviour for periodically driven systems

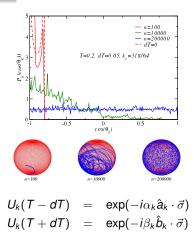


- Due to the 2 × 2 structure, $U_k(T) = \exp(-i\gamma_k \hat{e}_k \cdot \vec{\sigma}) \Rightarrow \mathcal{I}_k = \langle \psi_k(n) | \hat{e}_k \cdot \vec{\sigma} | \psi_k(n) \rangle$ independent of n
- A single k mode never thermalizes since $|u_k|^2 = \sin^2(n\gamma_k) \left(1 e_{k3}^2\right)$ but $(|u_k|^2)_c \to (1/2)(1 e_{3k}^2)$.

Perturbed Floquet dynamics

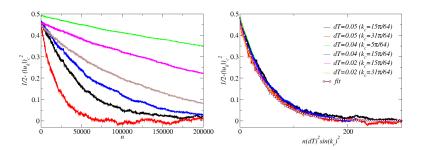
- Build using either U(T + dT) or U(T dT) at each n s.t. g(t) is g_i for $(T \pm dT)/2$ and g_f for $(T \pm dT)/2$
- $|\psi_k(n)\rangle = U_k(T + \tau_n dT)U_k(T + \tau_{n-1} dT)\cdots U_k(T + \tau_1 dT)|\psi_k(0)\rangle$ where the sequence $\tau_i = \tau_1, \tau_2, \tau_3, \cdots$ is the same for all the k modes.
- If dT = 0, back to periodically driven case.
- For Floquet systems perturbed with random noise, the sequence τ_i is any typical realization of a random process where each τ is chosen randomly to be either +1 or -1.
- For Floquet systems perturbed with scale-invariant noise, we take the Thue-Morse (TM) sequence. (Thue 1906, Morse 1921)

Perturbation with random noise-I



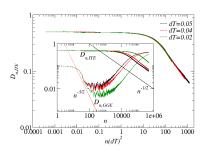
- $\Delta \phi_{1k} = \arccos(\hat{e}_k \cdot \hat{a}_k), \ \Delta \phi_{2k} = \arccos(\hat{e}_k \cdot \hat{b}_k), \ \Delta \phi_k \propto dT \sin(k) \rightarrow \sqrt{n}dT \sin(k)$ control parameter!
- Compact space—Surface of the unit sphere

Perturbation with random noise-II



- Behavior of $(|u_k|^2)_c$ shows the *irreversible approach* to an infinite temperature ensemble.
- Relaxation controlled by $\tau_{k,dT} = 1/((dT)^2(\sin k_c)^2)$

Perturbation with random noise-III



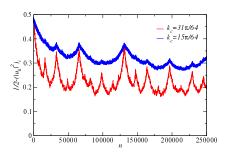
- $\mathcal{D} = \text{Tr}[(\mathcal{C}_{\text{ref}}(I) \mathcal{C}_n(I))^{\dagger}(\mathcal{C}_{\text{ref}}(I) \mathcal{C}_n(I))]^{1/2}/(2I)$
- $\mathcal{D}_{n,ITE}(I) \sim \int_0^{\pi} dk \exp(-n(dT)^2 \sin^2(k))$
- At large n, integral dominated by k = 0 and $k = \pi$
- $\mathcal{D}_{n,ITE}(I) \sim \mathcal{F}_I(n(dT)^2)$ where $\mathcal{F}_I(x) \sim 1/\sqrt{x}$ for $x \gg 1$ and $\mathcal{O}(1)$ for $x \ll 1$.

Perturbation with scale invariant noise-I

$$\begin{array}{lll} m & = & 0, \tau_1, -1 \\ m & = & 1, \tau_1, \tau_2, \boxed{-1}, +1 \\ m & = & 2, \tau_1, \cdots, \tau_4, \boxed{-1, +1}, +1, -1 \\ m & = & 3, \tau_1, \cdots, \tau_8, \boxed{-1, +1, +1, -1}, +1, -1, -1, +1 \\ m & = & 4, \tau_1, \cdots, \tau_{16}, \boxed{-1, +1, +1, -1, +1, -1, +1}, +1, -1, -1, +1, -1, \cdots \\ \vdots & & \vdots \end{array}$$

- At each recursion level m, we obtain the first 2^m elements of the infinite sequence.
- Self-similar structure in time (verify by removing every second term)
- Neither periodic nor random in time ⇒ quasiperiodic sequence

Perturbation with scale invariant noise-II



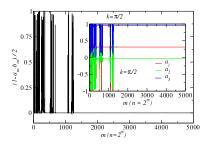
- Behaviour is *different* from ITE or the periodic-GGE (dT = 0).
- Not obvious that the coarse-grained quantities approach time-independent values—so, is there a NESS?

Perturbation with scale invariant noise-III

- Denote $U_k(T-dT)$ by A_0 and $U_k(T+dT)$ by B_0
- $A_{m+1} = B_m A_m$ and $B_{m+1} = A_m B_m$ for $m \ge 0$

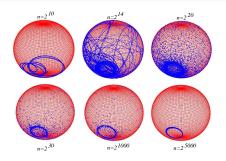
- Evolution operator after exactly 2^m drives is given by A_m .
- Remarkably, $A_m \rightarrow B_m$ at large m and we have emergent time periodicity!

Perturbation with scale invariant noise-IV



- $A_m = \exp(-i\alpha_m \hat{a}_m \cdot \vec{\sigma})$ and $B_m = \exp(-i\beta_m \hat{b}_m \cdot \vec{\sigma})$
- Define $\phi_m = \arccos(\hat{a}_m \cdot \hat{b}_m) \ (0 \le \phi_m \le \pi)$
- Easy to show that $\alpha_m = \beta_m$ for all $m \ge 1$.
- Furthermore, α_m covers $[0,\pi]$ uniformly AND $\phi_m \to 0$ as $m \to \infty$.

Perturbation with scale invariant noise-V

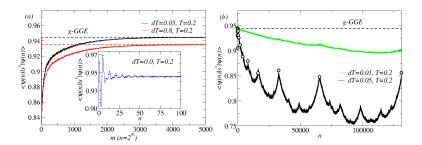


Emergent conservation law at each *k*–

$$\mathcal{J}_{k}(2^{m}) = \langle \psi_{k}(2^{m}) | \hat{a}_{\infty} \cdot \vec{\sigma} | \psi_{k}(2^{m}) \rangle
= \langle \psi_{k}(0) | A_{m}^{\dagger} (\hat{a}_{\infty} \cdot \vec{\sigma}) A_{m} | \psi_{k}(0) \rangle
= \langle \psi_{k}(0) | e^{i\alpha_{m}\hat{a}_{m} \cdot \vec{\sigma}} (\hat{a}_{\infty} \cdot \vec{\sigma}) e^{-i\alpha_{m}\hat{a}_{m} \cdot \vec{\sigma}} | \psi_{k}(0) \rangle$$

equals $\mathcal{J}_k(n=0) = \langle \psi_k(0) | \hat{a}_{\infty} \cdot \vec{\sigma} | \psi_k(0) \rangle$ and becomes independent of m for sufficiently large m at each momentum k.

Perturbation with scale invariant noise-VI



- The construction of steady state ⇒ the relevant integrals of motion are now J_k.
- The density matrix of the g-GGE then equals

$$\rho_{\text{g-GGE}} = \frac{1}{Z} \exp(-\sum_{k} \lambda_{k} \mathcal{J}_{k}),$$

where the Lagrange multipliers λ_k are fixed by the condition

$$\text{Tr}[\rho_{\sigma-\text{GGE}}\mathcal{J}_k] = \langle \psi_k(n=0) | \mathcal{J}_k | \psi_k(n=0) \rangle$$

Conclusions

- NESSs of continually driven systems not understood in general
- Here we construct two examples of driving protocols where there is no periodic structure in time
- Infinite temperature ensemble for perturbed Floquet with random noise even though model remains integrable
- Emergent conservation laws at extremely late times for perturbed Floquet with scale invariant noise leading to a geometric generalized Gibbs ensemble
- More general way of classifying possible NESSs in integrable models (work in progress)

Acknowledgements: Pushan Majumdar (IACS, Kolkata), Kedar Damle (TIFR, Mumbai), Arul Lakshminarayan (IIT Madras)

Thank you