Generating RVB states via Dicke subradiance

arXiv:1609.04853

R. Ganesh

L. Theerthagiri, G. Baskaran

The Institute of Mathematical Sciences, Chennai

Dicke's thought experiment

Prerequisite: two level atoms or 'spins' which couple to photons. An unexcited spin $(|\downarrow\rangle)$ can absorb a photon to become excited $(|\uparrow\rangle)$ and vice versa.

Consider an \uparrow spin which will emit a photon with a certain rate. If we bring a second unexcited spin (\downarrow) close to it, will this change the emission properties?

Naive expectation: It will not as the second spin does not emit.

Quantum effects: The wavefunction for both spins is

$$|\uparrow\downarrow\rangle = \frac{1}{\sqrt{2}} \left[\frac{\{|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle\}}{\sqrt{2}} + \frac{\{|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle\}}{\sqrt{2}} \right]$$
$$= \frac{1}{\sqrt{2}} \left[\underbrace{|s\rangle}_{\text{dark}} + \underbrace{|t_0\rangle}_{\text{bright}} \right]$$

- ► A photon will now only be emitted with probability half
- Dicke showed that the average rate of emission does not change as the triplet radiates at twice the rate
- ▶ Building on this quantum picture, he identified states of *N* spins with the highest rate of emission 'superradiance'
- Note that observation of emitted photon will collapse the spin wavefunction to $|t_{-1}\rangle$

The Dicke model

Minimal model for spins interacting with photons:

- Spins are placed within a cavity quantised photon modes
- ▶ Only one mode is near resonance ignore others
- $\lambda_{deB} \ll \lambda_{ph}$ size of spin spin-spin spacing λ_{ph} photon wavelength
 - Spins do not interact directly with one another
 - ► They couple to the photon mode as if they were all at the same point

Dicke Hamiltonian:

$$H = \omega_0 a^{\dagger} a + B \sum_{i=1}^{N} \hat{S}_i^z + g \sum_{i=1}^{N} \left[\hat{S}_i^- a^{\dagger} + \hat{S}_i^+ a \right]$$
$$= \omega_0 a^{\dagger} a + B \hat{S}_{tot}^z + g \left[\hat{S}_{tot}^- a^{\dagger} + \hat{S}_{tot}^+ a \right].$$

The Dicke model – states

$$H = \omega_0 a^{\dagger} a + B \hat{S}_{tot}^z + g \left[\hat{S}_{tot}^- a^{\dagger} + \hat{S}_{tot}^+ a \right].$$

$$|S_{tot}, m_{tot}, n_{ph}\rangle \stackrel{H}{\longrightarrow} |S_{tot}, m_{tot} + 1, n_{ph} - 1\rangle$$

 $|S_{tot}, m_{tot}, n_{ph}\rangle \stackrel{H}{\longrightarrow} |S_{tot}, m_{tot} - 1, n_{ph} + 1\rangle$

Conserved quantities: S_{tot} , $m_{tot} + n_{ph}$

<u>'Superradiance'</u>: In a system of N spin-1/2 spins, the rate of photon emission highest from $|S_{tot} = N/2, m_{tot} = 0\rangle$.

- seen in BECs, magnons, cavity QED experiments, etc.
- <u>'Subradiance'</u>¹: No emission from any state with $S_{tot} = 0$.
- long lived states with potential for use as quantum memories

¹Scully, PRL 2015 and others

Realising Dicke's thought experiment

Realised only in 2014^1 : N = 2 spins in a cavity. Measured quantity: density matrix of outgoing photon

(Inverse) time scales in a Dicke model experiment

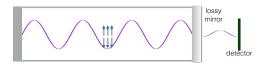
- $ightharpoonup \tilde{g}$: rate of spin-photon coupling
- \blacktriangleright κ : rate of loss of photon from cavity
- spin-spin interaction, non-radiative loss, etc.

To realise Dicke's thought experiment, we need:

 $\kappa \gg \tilde{\mathrm{g}} \gg \mathrm{all}$ other rates – 'lossy cavity limit'

If the spins emit photon(s), they are not reabsorbed. Rather, they 'immediately' leave the cavity. They can then be measured outside as they exit the cavity.

Proposal to generate RVB states



Dicke's thought experiment as a Stern-Gerlach measurement:

- ▶ Initialise *N* spins in a direct product state
- ▶ Measure number of photons emitted timescale: \tilde{g}^{-1}
- Claim: null observation collapses spin wavefunction onto an RVB state
- ► Further claim: *almost* every outcome of this measurement leads to an RVB state

Two spin example:

- Initial state: |↑↓⟩
- Possible outcome for photon measurement: 0 or 1
- 0-measurement collapses wavefunction onto singlet

Detecting null emission

Non-detection of photons is also a measurement in the quantum mechanical sense!

No detection \leftrightarrow no photon was emitted by the spins

Possible issues:

- Non-radiative decay of spins
- Photon leaves cavity through other mirror
- Initialisation in a direct product state may have errors

Current experiments already have the above issues under control¹

- Technology for number detection at the single photon level
- ▶ High precision to avoid false readouts of null measurement

Possible test for RVB character – if a photon is pumped in, the RVB state cannot absorb it

Radiation 'trapping'

$$H = \omega_0 a^{\dagger} a + B \hat{S}_{tot}^z + g \left[\hat{S}_{tot}^- a^{\dagger} + \hat{S}_{tot}^+ a \right].$$

Note: a state of N (even) spin-1/2 spins can have $S_{tot}=0,1,\ldots,N/2.$

Consider an initial state with one \uparrow spin and all others \downarrow .

$$|\psi_{init.}\rangle = |\uparrow\downarrow\cdots\downarrow\rangle$$

$$m_{tot} = -N/2 + 1 \longrightarrow S_{tot} = N/2 - 1, N/2$$
 $|\psi_{init.}\rangle = a_{N/2}|N/2, -N/2 + 1\rangle + a_{N/2-1}|N/2 - 1, -N/2 + 1\rangle$

- ▶ $|N/2, -N/2 + 1\rangle$: 'bright' state can emit one photon and decay to $|N/2, -N/2\rangle$
- ▶ $|N/2 1, -N/2 + 1\rangle$: 'dark' state cannot reduce m_{tot} any further \implies cannot emit

'Radiation trapping'

- ▶ Probability of emission: 1/N small for large N
- Bright component:

$$\frac{1}{\sqrt{N-1}} \Big[|\!\!\uparrow\downarrow\cdots\downarrow\rangle + |\!\!\downarrow\uparrow\cdots\downarrow\rangle + \dots |\!\!\downarrow\downarrow\cdots\uparrow\rangle \Big]$$

- ▶ Positive photon observation: spins collapse onto |↓ · · · ↓⟩
- Null observation collapses spins onto

- a 'resonating valence bond' state

- ► An excitation is 'trapped' it is continually absorbed and reemitted coherently – does not escape outside the cavity
- ▶ Phenomenon of trapping known since the 1960's however, RVB character has not been pointed before
- ► 'Weak' RVB one valence bond shared among N spins

Resonating Valence Bond state

- ► A linear combination of singlet arrangements typically highly entangled wavefunction
- First proposed by Pauling for benzene
- Proposed ground states for 'frustrated' magnets: first suggested in the triangular lattice antiferromagnet¹
- ► 'Spin liquid' wavefunction: first example of topological order²
- Precursor to high-T_c superconductivity 'mean-field' momentum space description ³
- No 'clean' examples (except in organic chemistry) − e. g., S. Nascimbène et. al., PRL 2012 - a cold atoms realisation with 4 spins
- Required: RVB realisations that are amenable to doping, manipulations, etc.

¹Anderson, Mat. Res. Bull. 1973

²Kivelson, Rokhsar and Sethna, Physical Review B 1987

³Anderson, Science 1987, Baskaran Zou Anderson, Solid State Comm. 1987 990

Strong RVB

Consider an initial state with N/2 spins excited and N/2 unexcited

$$|\Psi_{initial}\rangle = |\underbrace{\uparrow \dots \uparrow}_{N/2} \underbrace{\downarrow \dots \downarrow}_{N/2}\rangle = \sum_{S=0}^{N/2} a_S |S_{tot} = S, m_{tot} = 0\rangle$$

$$m_{tot} = 0 \longrightarrow S_{tot} = \begin{cases} 0 & \text{dark} \\ 1 & \text{emits 1 photon} \rightarrow m_{tot} = -1 \\ 2 & \text{emits 2 photons} \rightarrow m_{tot} = -2 \\ 3 & \text{emits 3 photons} \rightarrow m_{tot} = -2 \\ \vdots & \vdots \\ N/2 & \text{emits N/2 photons} \rightarrow m_{tot} = -N/2 \end{cases}$$

Probability of observing p photons is $|a_p|^2$ Claim: Null observation collapses spins onto a 'strong RVB' state

RVB construction

Rule for constructing the strong RVB state

- ► Arrange ↑ spins in top row and ↓ spins in bottom row
- Place dimers (singlets) connecting each site in top row to a site in bottom row
- Superpose all such configurations symmetrically and in-phase

Note the symmetry under in-row permutations.

Proof of RVB Nature of dark state

Key ingredient: symmetry under in-row permutations

- ▶ Lemma 1: A state of M spins that is symmetric under any permutation of the M constituent spins must necessarily have $S_{tot} = M/2$, i.e., it has the maximal total angular momentum quantum number. Conversely, if a state of M spins has $S_{tot} = M/2$, it is symmetric under any permutation of the constituent spins.
- ▶ Lemma 2: For the system with M spins, a quantum state with $S_{tot} = M/2$ is uniquely defined by its m_{tot} quantum number, i.e., a state given by $|S_{tot} = M/2, m\rangle$ is unique.
- ▶ <u>Lemma 3</u>: For the system with *M* spins, the projection operator onto the subspace with fixed S_{tot} quantum number is symmetric under permutations. This can be seen by explicit construction. We have

$$\hat{P}_{S=\Sigma} = \prod_{S \neq \Sigma} \frac{\hat{S}_{tot}^2 - S(S+1)}{\Sigma(\Sigma+1) - S(S+1)}.$$
 (1)

Proof of RVB Nature of dark state

The dark state obtained from null emission is given by

$$|\Psi_{\textit{dark}}\rangle \sim \hat{P}_{\textit{S}=0}|\Psi_{\textit{initial}}\rangle$$

lacktriangle This state is symmetric under in-row permutations ightarrow

$$|\Psi_{dark}\rangle = \sum_{\lambda=0}^{N/2} C_{\lambda} |S_{tot} = N/4, m_{tot} = N/4 - \lambda\rangle_t \otimes |S_{tot} = N/4, m_{tot} = \lambda - N/4\rangle_b.$$

▶ The coefficients C_{λ} is simply the Clebsch Gordan coefficient $C\{j_1 = N/4, m_1 = N/4 - \lambda; j_2 = N/4, m_2 = N/4 + \lambda; j_3 = 0\}$

Proof of RVB Nature of dark state

- ▶ The RVB state also has in-row permutation symmetry \rightarrow if decomposed into row wavefunctions, each row-wavefunction must have $S_{tot} = N/4$
- We explicitly expand the wavefunction in the form

$$|\Psi_{RVB}\rangle = \sum_{\lambda=0}^{N/2} D_{\lambda} |S_{tot} = N/4, m_{tot} = N/4 - \lambda \rangle_t \otimes |S_{tot} = N/4, m_{tot} = \lambda - N/4 \rangle_b$$

- ▶ By explicit evaluation and regrouping of terms, we see that $D_{\lambda} = C_{\lambda}$, i.e., the proposed RVB state and the dark state are identical!
- Probability for null emission: $\langle \Psi_{initial} | \Psi_{RVB} \rangle |^2 = |D_{\lambda=0}|^2 = (N/2+1)^{-1} \sim N^{-1}$
- ightharpoonup Probability for creating an RVB state of 20 spins $\sim 10\%
 ightarrow 90\%$ of the runs must be discarded

Entanglement in RVB state

$$\begin{vmatrix} \uparrow \uparrow \uparrow \\ \downarrow \downarrow \downarrow \downarrow \end{vmatrix}_{(b)} \begin{vmatrix} \downarrow \downarrow \downarrow \\ \downarrow \downarrow \downarrow \end{vmatrix}_{(c)} \frac{1}{3\sqrt{2}} \begin{bmatrix} ||\downarrow\downarrow\rangle + |\chi\downarrow\rangle + |\chi\rangle \\ + ||\chi\rangle + |\chi\rangle + |\chi\rangle \end{bmatrix}$$

Definition: an entangled state is one that cannot be written as a direct product wavefunction

A fixed valence bond configuration: cannot be written as a direct product of spin wavefunctions. However, it can be written as a direct product of dimers \rightarrow not entangled in this sense

(a)
$$\frac{1}{\alpha_3} \left[\begin{array}{c|c} & & & \\ & \downarrow & \\ & + & \downarrow & \\ \end{array} \right] + \left[\begin{array}{c|c} & & & \\ & \downarrow & \\ \end{array} \right] + \left[\begin{array}{c|c} & & \\ & \downarrow & \\ \end{array} \right] + \left[\begin{array}{c|c} & & \\ & \downarrow & \\ \end{array} \right]$$
 (b)
$$\frac{1}{2} \quad \frac{3}{4} \quad \frac{5}{6} \quad \text{yenvironment}$$

$$\frac{2}{2} \quad \frac{4}{4} \quad \frac{6}{6} \quad \text{yenvironment}$$
 system environment}

Entanglement entropy from row-wise decomposition

=
$$\log(1 + N/2)$$
, grows with N

Summary

- ▶ Initialise *N* spins in a direct product state within a lossy cavity
- Measure number of photons emitted
- Null observation collapses wavefunction onto an RVB state
- Route to synthesize entangled pure states of 20 or more constituents

$$\hat{\mathcal{P}}_{0} \begin{vmatrix} \uparrow \uparrow \uparrow \\ \downarrow \downarrow \downarrow \downarrow \end{pmatrix} \sim \frac{1}{3\sqrt{2}} \begin{bmatrix} | | | | \rangle + | | | \rangle \\ + | | | | | \rangle + | | | | \rangle + | | | | \rangle \end{bmatrix}$$

Collapse by positive photon observation

If we observe $p \neq 0$ photons, this collapses the spin wavefunction onto a 'doped' RVB state

$$|\Psi_{RVB}
angle \sim \sum_{P(t)} \sum_{P(b)} |$$
 (N-p)/2 dimers punpaired spins

- ► Unpaired spins are analogues of 'spinons' (unpaired electrons) from the RVB theory of high-T_c superconductivity
- The number of spinons is always even!
- ► Spinons are formed in pairs Cooper pairing

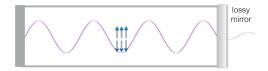
Collapse by positive photon observation

$$|\Psi_{\textit{initial}}\rangle = |\underbrace{\uparrow \dots \uparrow}_{\textit{N/2}}\underbrace{\downarrow \dots \downarrow}_{\textit{N/2}}\rangle = \sum_{\textit{S}=0}^{\textit{N/2}} \textit{a}_{\textit{S}}|\textit{S}_{tot} = \textit{S}, \textit{m}_{tot} = 0\rangle$$

$$m_{tot} = 0 \implies$$

$$S_{tot} = \left\{ \begin{array}{c|ccc} 0 & \operatorname{dark} & \operatorname{undoped} & \operatorname{RVB} \\ 1 & \operatorname{emits} & 1 & \operatorname{photon} \\ 2 & \operatorname{emits} & 2 & \operatorname{photons} \\ 3 & \operatorname{emits} & 3 & \operatorname{photons} \\ \vdots & \vdots & \vdots & \vdots \\ N/2 - 1 & \operatorname{emits} & N/2 - 1 & \operatorname{photons} \\ N/2 & \operatorname{emits} & N/2 & \operatorname{photons} \\ \end{array} \right. \quad \left. \begin{array}{c} \operatorname{undoped} & \operatorname{RVB} \\ 2 & \operatorname{spinons} \\ 6 & \operatorname{spinons} \\ \vdots & \vdots & \vdots \\ N - 2 & \operatorname{spinons} \\ \operatorname{Non} - \operatorname{RVB} : & |\downarrow \dots \downarrow \rangle. \end{array}$$

Incipient superconductivity and RVB states



If we do not measure the photon number, we obtain a mixed state of spins

$$\hat{\rho}_{spin} = \text{Tr}_{ph.}\hat{\rho} = \sum_{\rho=0}^{N/2} \alpha_{\rho} |\Psi_{\rho}\rangle \langle \Psi_{\rho}|$$
 (2)

– a state with fluctuating (even) spinon number – incipient superconductivity \sim finite size system with superconducting correlations

For large N, a small spin-spin interaction may suffice to generate coherence between different number sectors \implies signatures of superconductivity!