Open Quantum Systems
July 26, 2017
Bangalore, India

Probing Topology in Finite Temperature and Non-Equilibrium Quantum States

+ Non-equilibrium Phase Transition to Chaos

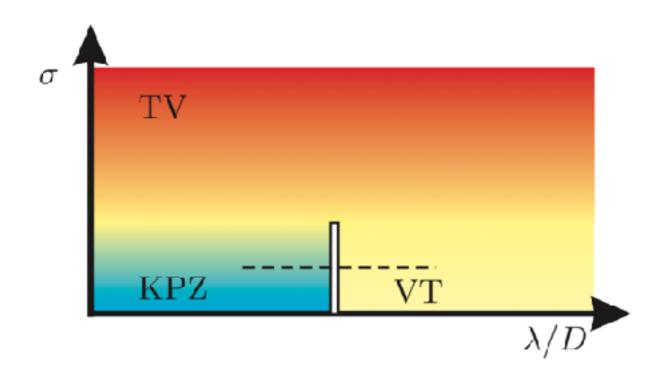
Sebastian Diehl

Institute for Theoretical Physics, University of Cologne

Based on

C.-E. Bardyn, L. Wawer, A. Altland, M. Fleischhauer, SD, arxiv:1706:02741

I. Non-equilibrium Phase Transition to Chaos



Exciton-polariton dynamics at small frequency

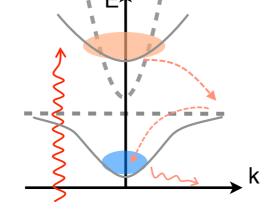
polariton-reservoir model

microphysics

polariton-only model

KPZ equation

starting point:



driven-dissipative stochastic Gross-Pitaevski equation

$$i\partial_t \phi = \left[-\frac{\nabla^2}{2m} - \mu + i(\gamma_p - \gamma_l) + (g - i\kappa) |\phi|^2 \right] \phi + \zeta$$

$$\phi = \rho e^{i\theta}$$

effective low frequency dynamics

E. Altman, L. Sieberer, L, Chen, SD, J. Toner, PRX (2015)

$$\partial_t \theta = D\nabla^2 \theta + \lambda(\nabla \theta)^2 + \xi$$

macrophysics

phase diffusion

phase nonlinearity

Markov noise

form of the KPZ equation

Kardar, Parisi, Zhang, PRL (1986)

nonlinearity: single-parameter measure of non-equilibrium strength (ruled out in equilibrium by detailed balance (symmetry))

Compact KPZ

wait a second — we ignored a fundamental symmetry of polaritons so far: local discrete gauge invariance

$$\phi(t, \mathbf{x}) = \rho(t, \mathbf{x}) e^{i\theta(t, \mathbf{x})}$$

$$\theta_{t,\mathbf{x}} \mapsto \theta_{t,\mathbf{x}} + 2\pi n_{t,\mathbf{x}}$$

Teaching symmetry to KPZ equation:

$$\theta_{t+\epsilon,\mathbf{x}} = \theta_{t,\mathbf{x}} + \epsilon \left(\mathcal{L}[\theta]_{t,\mathbf{x}} + \eta_{t,\mathbf{x}} \right) + 2\pi n_{t,\mathbf{x}}$$
 lattice regularized deterministic term

stochastic difference equation

Non-equilibrium electrodynamic duality:

Electric field <=> smooth phase fluct. (KPZ)

Charges <=> vortices

Dynamical & non-equilibrium analog of Kosterlitz-Thouless construction

discrete noise MSRJD functional integral

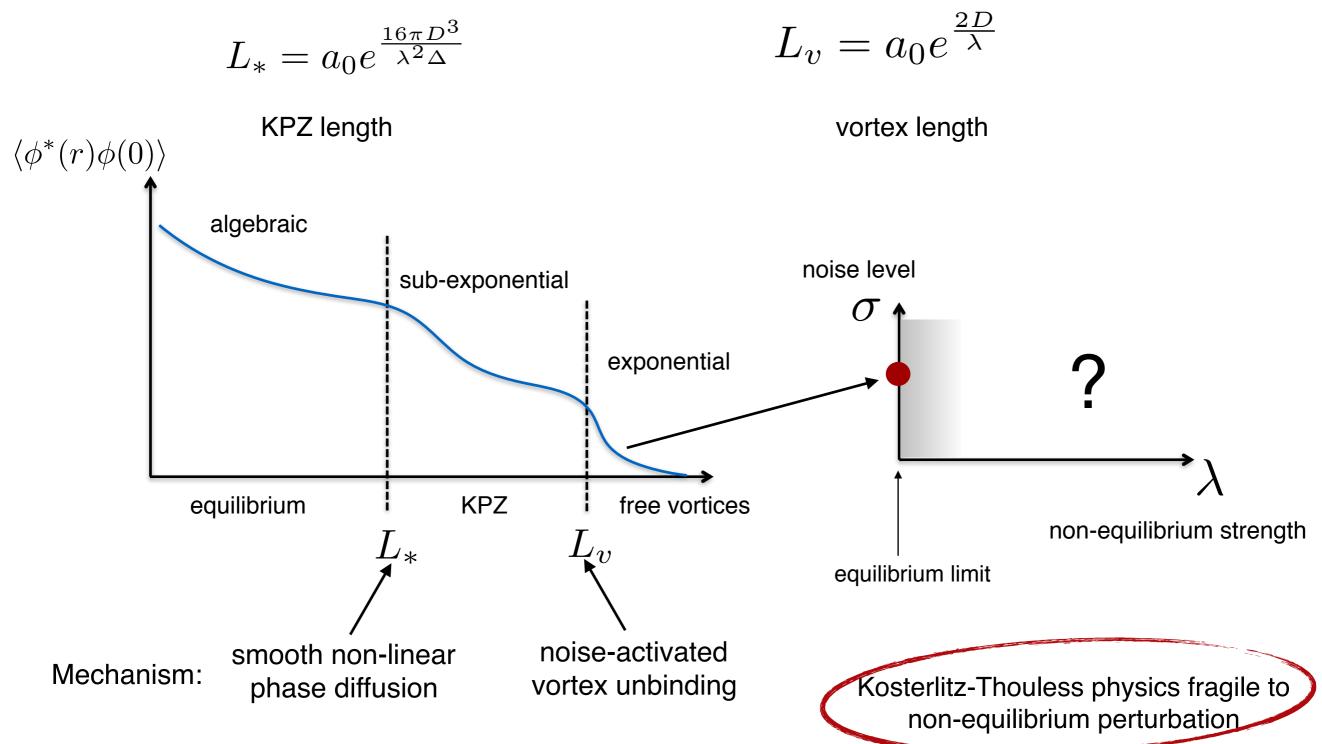
non-eq. lattice gauge theory

$$Z \propto \sum_{\substack{\{n_{vX}, \tilde{n}_{vX}, \\ \mathbf{J}_{vX}, \tilde{\mathbf{J}}_{vX}\}}} \int \mathcal{D}[\phi, \tilde{\phi}, \mathbf{A}, \tilde{\mathbf{A}}] e^{iS[\phi, \tilde{\phi}, \mathbf{A}, \tilde{\mathbf{A}}, n_v, \tilde{n}_v, \mathbf{J}_v, \tilde{\mathbf{J}}_v]}$$

non-equilibrium electrodynamic theory

2D: Competing Length Scales and Suppression of KT

two emergent length scales:

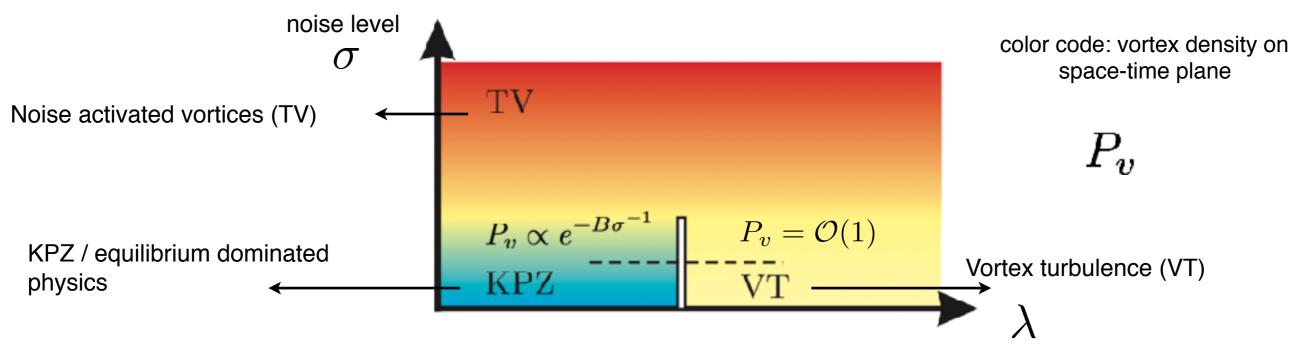


 Exponentially large in deviation from equilibrium sets challenge to experiment

Strong non-equilibrium: Compact KPZ vortex turbulence

In search of the phase diagram for XP condensates

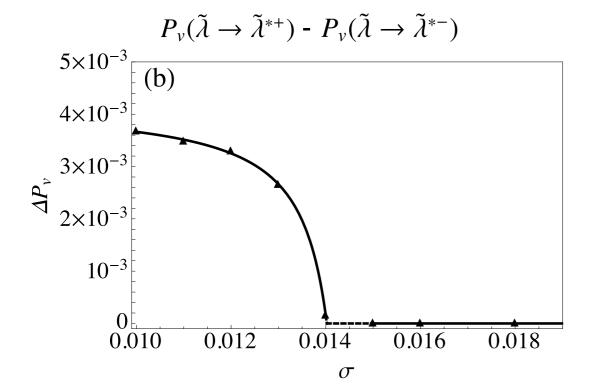
L. He, L. Sieberer, SD PRL (2017)



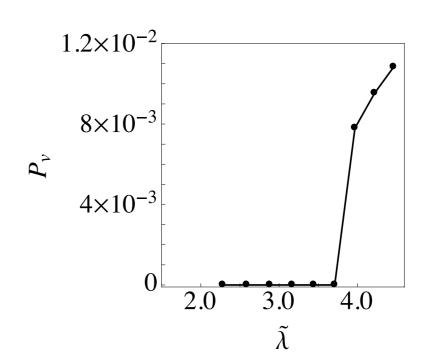
first order non-equilibrium phase transition

non-equilibrium strength

one dimension (vortex = space-time defect)



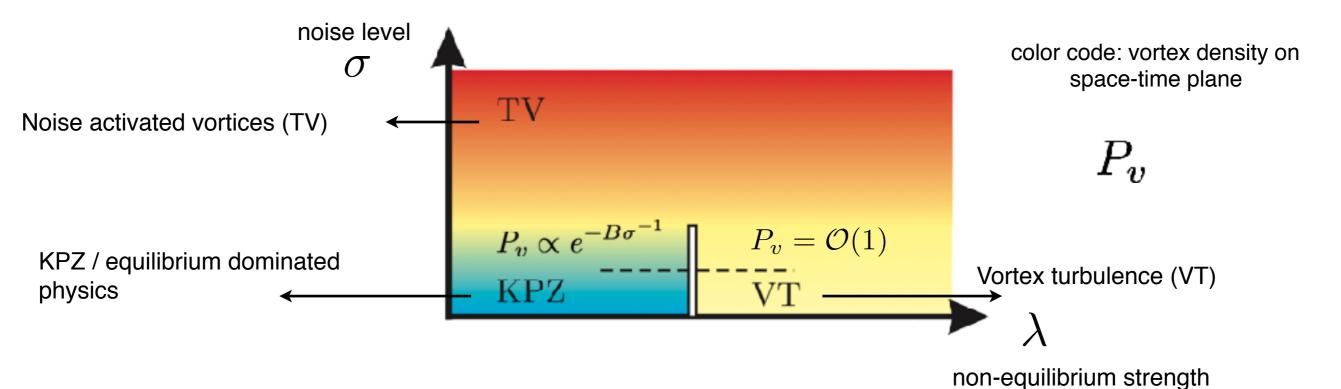
two dimensions (preliminary data)



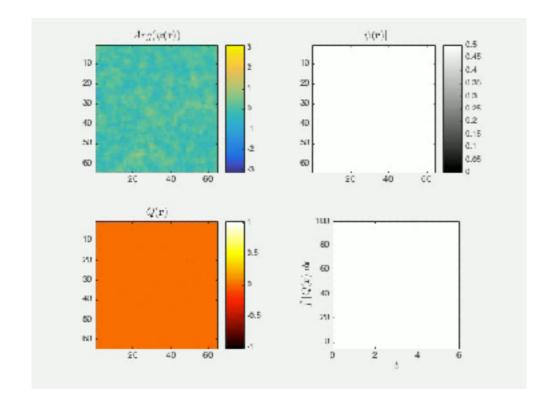
Strong non-equilibrium: Compact KPZ vortex turbulence

numerical solution of stochastic GPE and c-KPZ:

L. He, L. Sieberer, SD PRL (2017)

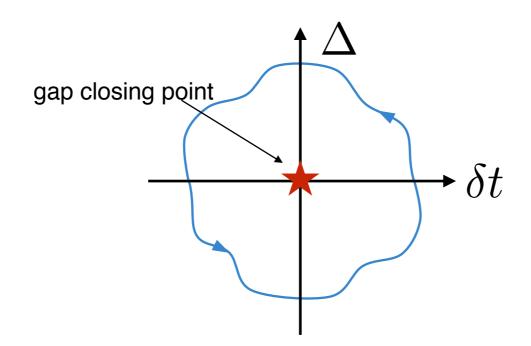


mechanism of the phase transition



deterministic limit: how does the system generate its own noise?

II. Topological quantization of observables in mixed quantum states

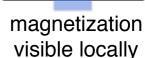


$$P = \frac{1}{2\pi} \operatorname{Im} \ln \langle \psi_0 | \hat{T} | \psi_0 \rangle = \frac{1}{2\pi} \varphi_{\mathbf{Z}} \qquad \qquad \varphi_{\mathbf{Z}} = \oint dk A_0(k)$$

Motivation: Topological States of Matter

Characteristics of topological states of matter

Nayak et al., RMP (2008)
Hasan and Kane, RMP (2010)
Qi and Zhang, RMP (2011)



er et al. PRB (2008); Kitaev (2009)

Zirnbauer, PRB (1997)

New paradigm for ordered states of matter: beyond Landau's local order parameters

Nonlocal "order narameters". Tonological invariante.

All statements for pure quantum states at zero temperature!

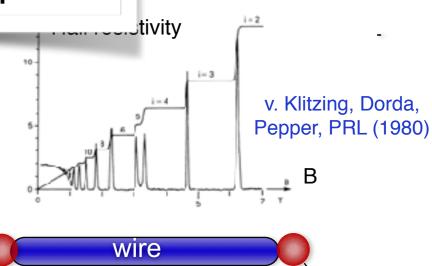
What about finite temperatures?

What about non-equilibrium states?

Observable consequences: e.g. Quantum Hall effect

- quantized bulk responses (e.g. Hall response)
- robust edge states (e.g. chiral edge modes)
- may carry non-abelian exchange statistics (e.g.
 Majorana edge states in topological superconductors)

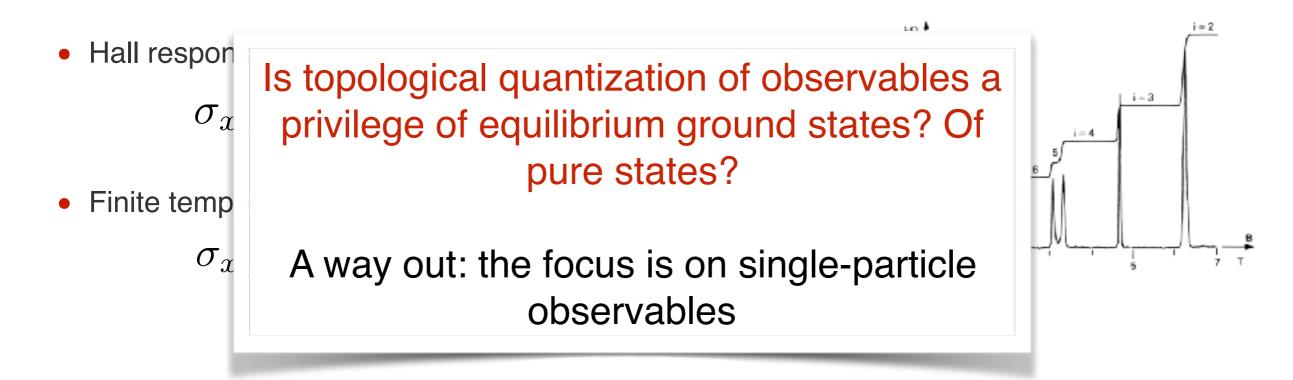
Applications: topological quantum memories and computing



Majorana edge mode

Motivation: Topological States of Matter for Mixed States?

- Discouraging common wisdom: topological quantization corrupted at finite T
- e.g. Quantum Hall effect

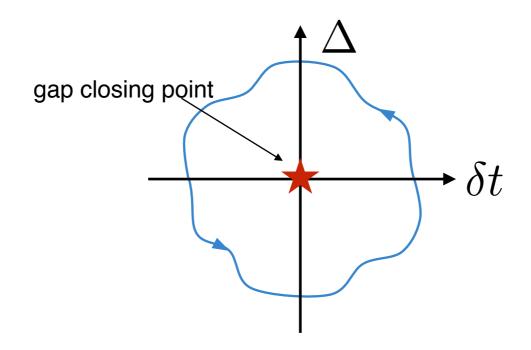


- Formal constructions of topological invariants possible for density matrices
- But not unique and related to system observables

Viyuela et al. PRL 2014, PRL 2014, Huang, Arovas PRL 2014, Budich, SD PRB (2015)

Viyuela et al., arxiv (2016)

Topological quantization of observables at zero temperature



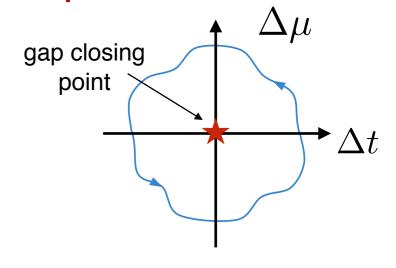
$$P = \frac{1}{2\pi} \operatorname{Im} \ln \langle \psi_0 | \hat{T} | \psi_0 \rangle = \frac{1}{2\pi} \varphi_{\mathbf{Z}} \qquad \qquad \varphi_{\mathbf{Z}} = \oint dk A_0(k)$$

Topological quantization of observables: zero temperature

- Prime example: adiabatic Thouless pump in one dimension
- Pumping of one unit of charge if and only if a critical point is encircled





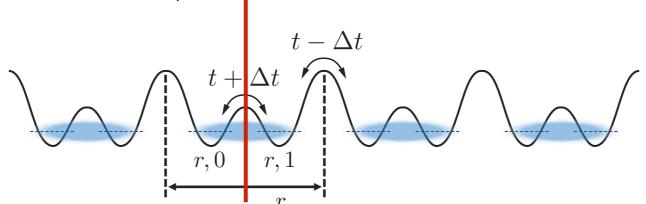


Rice, Mele, PRL (1982)

Special case: SSH model

$$H_{\text{SSH}} = -\sum_{r} \left[(t + \Delta t) a_{r,1}^{\dagger} a_{r,0} + (t - \Delta t) a_{r+1,0}^{\dagger} a_{r,1} \right] + \text{h.c.}$$

$$t - \Delta t$$
Su

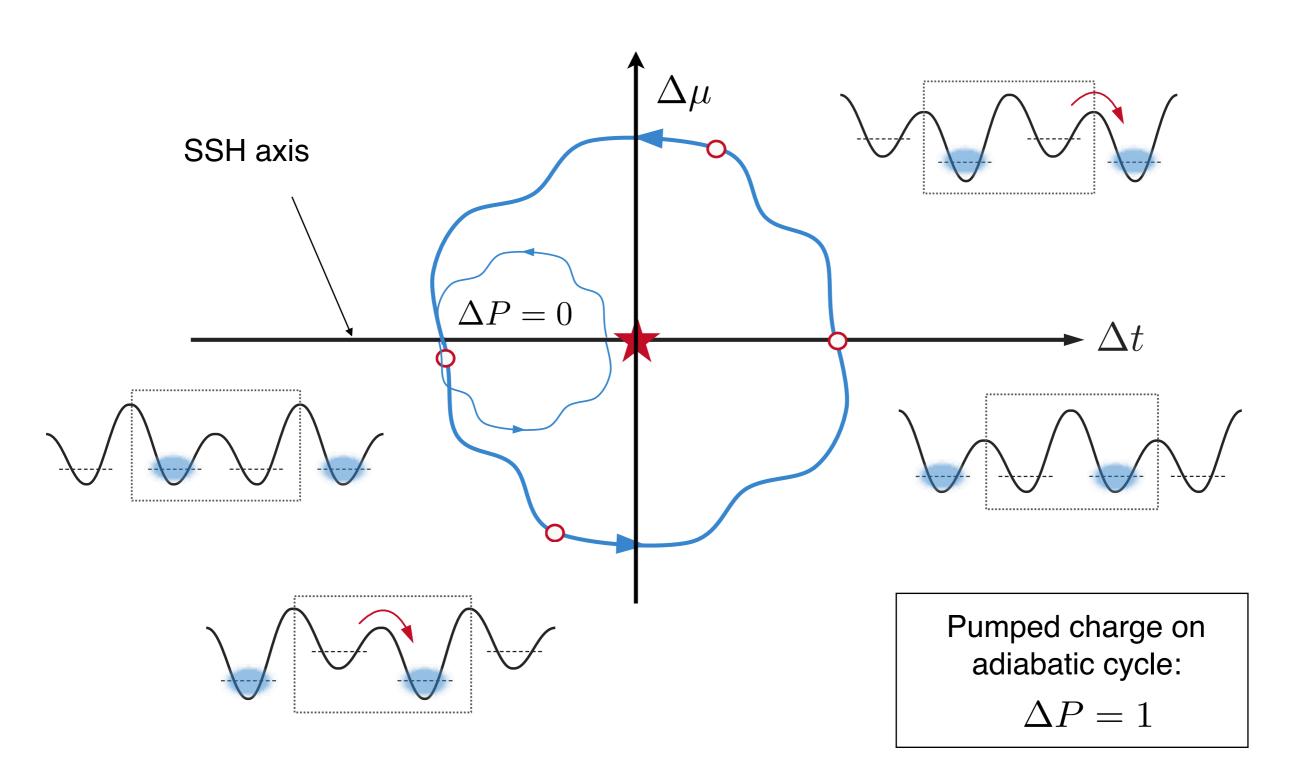


Su, Schrieffer, Heeger, PRL (1979)

Gap closing point at
$$\Delta t = 0$$

Thouless charge pump: intuition

$$H_{\rm RM} = H_{\rm SSH} - \frac{\Delta \mu}{2} \sum_{r,s} (-1)^s a_{r,s}^{\dagger} a_{r,s}$$



What is topological about it?

Thouless, PRB (1983) Thouless, Niu, J. Phys. A (1984) Resta, PRL (1998) $(\hbar=e=1)$

More precisely: demonstrate topological quantization of accumulated charge for ground states:

$$\Delta P = \oint dt \, I(t) \qquad I = \langle \psi_0 | \tfrac{1}{M} \hat{P} | \psi_0 \rangle$$
 Accumulated Current integrated charge over adiabatic cycle

Resta: current can be written as total derivative Resta, PRL (1998)

$$I(t) = \partial_t P(t)$$

• with "Resta polarization"

$$P = \frac{1}{2\pi} \operatorname{Im} \ln \langle \psi_0 | \hat{T} | \psi_0 \rangle, \quad \hat{T} \equiv e^{i\delta k \hat{X}}$$

quantization is obvious:

$$\langle \psi_0 | \hat{T} | \psi_0 \rangle(t) = e^{i\varphi(t)}$$

$$\hat{X} \equiv \sum_{j} \hat{x}_{j}$$

Position operator

$$\delta k = 2\pi/L$$

ightharpoonup Is it a topological quantization? What is the value of ΔP ?

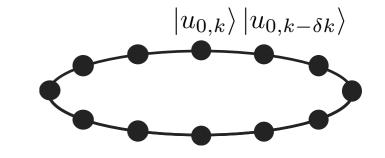
What is topological about it?

- Topological origin:
 - ullet T generates translations of all single-particle momenta $~k
 ightarrow k \delta k$

$$P = \frac{1}{2\pi} \operatorname{Im} \ln \langle \psi_0 | \hat{T} | \psi_0 \rangle, \quad \hat{T} \equiv e^{i\delta k \hat{X}}$$

- focus on Rice-Mele: non-interacting, translation invariant [real space] 2 band model:
- ullet $|\psi_0
 angle$ as Slater determinant of ground state Bloch functions:

$$P = \frac{1}{2\pi} \operatorname{Im} \ln \prod_{k} \langle u_{0,k} | u_{0,k-\delta k} \rangle$$
Wilson loop



Introduce a gauge connection

$$\langle u_{0,k}|u_{0,k-\delta k}\rangle = e^{i\delta k A_0(k)}$$
 $A_0(k) = i\langle u_{0,k}|\partial_k u_{0,k}\rangle$

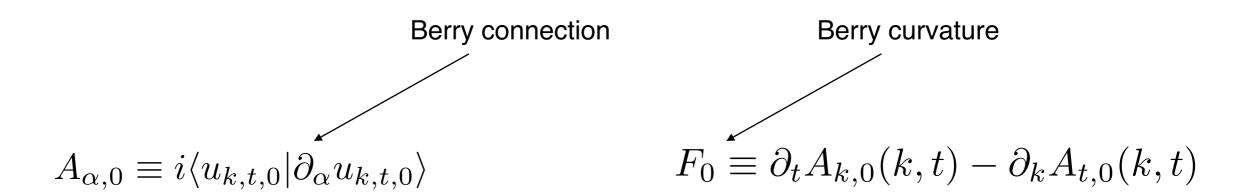
Identifies Resta polarization as geometric phase (Zak phase)

$$P = \frac{1}{2\pi}\varphi_{\mathbf{Z}} \qquad \qquad \varphi_{\mathbf{Z}} = \oint dk A_0(k)$$

What is topological about it?

Topological origin of accumulated charge:

$$\Delta P = \oint dt \partial_t P(t) = \frac{1}{2\pi} \oint dt dk \, \partial_t A_0(k,t) = \frac{1}{2\pi} \oint dt dk \, F_0(k,t) = C \in \mathbb{Z}$$

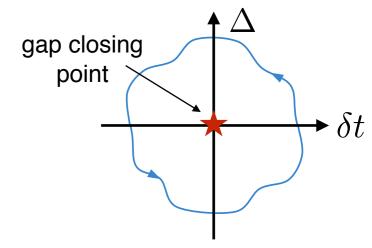


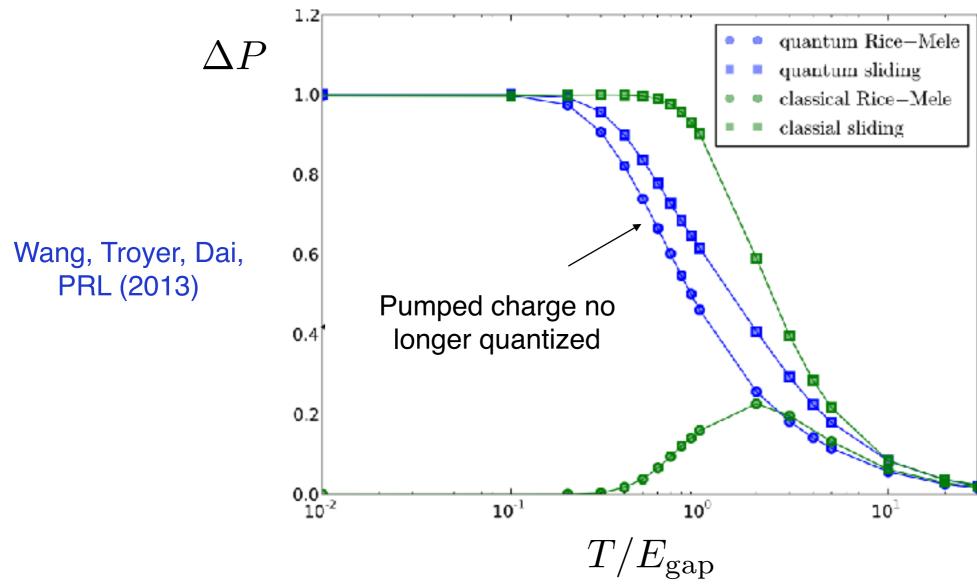
• Summary (T = 0)

→ We identified a topologically quantized observable

Failure of topological quantization at finite temperature

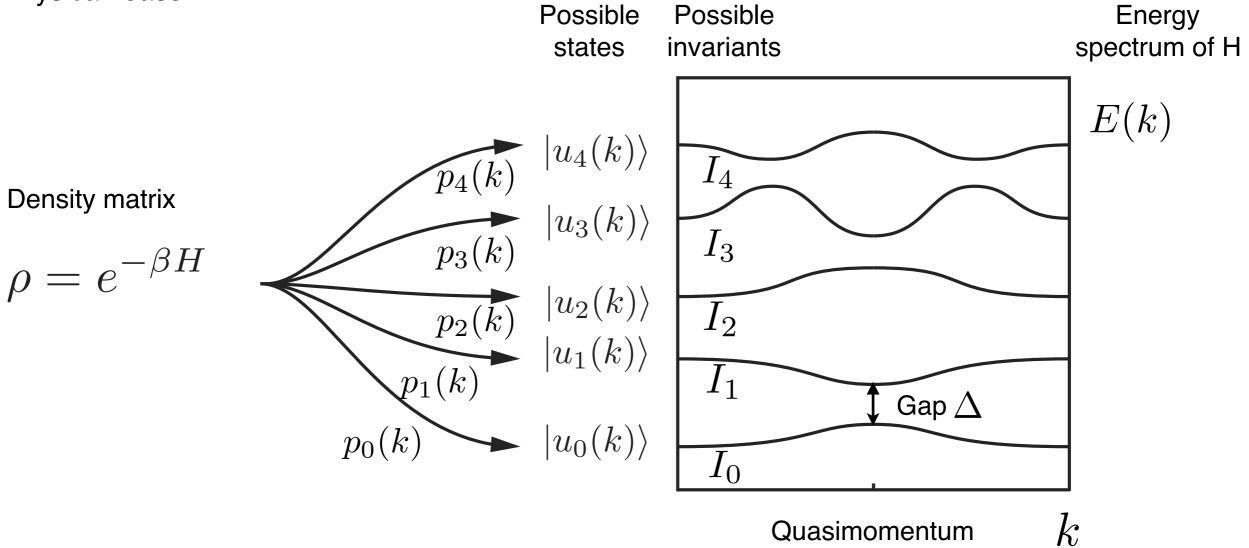
- Common wisdom: topological quantization corrupted at finite T (e.g. conductance in quantum Hall effect)
- Concrete example: Accumulated charge through Thouless pump





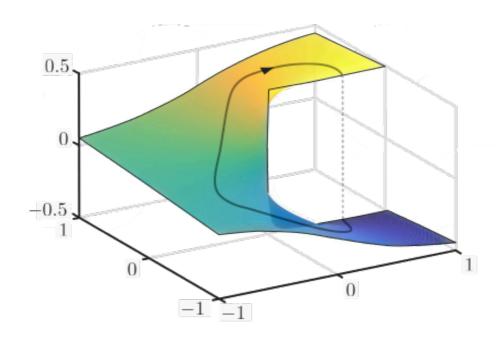
Failure of topological quantization at finite temperature

Physical reason



- Every band has its own Berry connection and Chern number
- Probability of finding invariant n: $p_n(k) = e^{-\beta E_n(k)}$
- Intensive corrections quantization only possible up to intensive corrections $\sim e^{-\beta\Delta}$?

Topological quantization of observables in mixed quantum states



$$\varphi_{\rm E} = \operatorname{Im} \operatorname{Tr} \ln (1 + \prod_{k} e^{-\beta \epsilon_k \sigma_z} e^{i\delta k \mathcal{A}_k \cdot \sigma})$$

Key Results

• Ensemble geometric phase: Natural extension of the Resta polarization / Zak phase to mixed states

$$\varphi_{\rm E} = {\rm Im} \ln {\rm Tr} \Big(\rho e^{i\delta k \hat{X}} \Big) \qquad \qquad \delta k = \frac{2\pi}{L}$$
 equilibrium or nonequilibrium density matrix

Reduction to Zak phase in thermodynamic limit

$$\varphi_{\rm E} = \varphi_{\rm Z} + \Delta(N)$$
 $\Delta(N) \xrightarrow{N \to \infty} 0$ $\varphi_{\rm Z} = \oint dk \, A_{k,0}, \quad A_{k,0} = i \langle u_{k,0} | \partial_k | u_{k,0} \rangle$

- ➡ Emergent geometric phase, different from formal (Uhlmann) approaches
- Exact topological quantization for cyclic adiabatic parameter changes (correction terms do not contribute to winding of Zak phase)

$$\Delta \varphi_{\rm E} = \oint d\phi \, \partial_{\phi} \varphi_{\rm E} = C \, \langle \rangle$$

Chern number of lowest band

Observability via many-body interferometry

→Topological quantization persists in suitable many-body correlators

Projection mechanism

Gaussian states (e.g. real space)

$$\rho = \frac{1}{\mathcal{Z}} \exp\left(-\sum_{i,j} \hat{a}_i^{\dagger} G_{ij} \hat{a}_j\right) \qquad \Leftrightarrow \langle \hat{a}_i^{\dagger} \hat{a}_j \rangle = [f(G)]_{ij} \qquad f(G) = (e^G + \mathbf{1})^{-1}$$

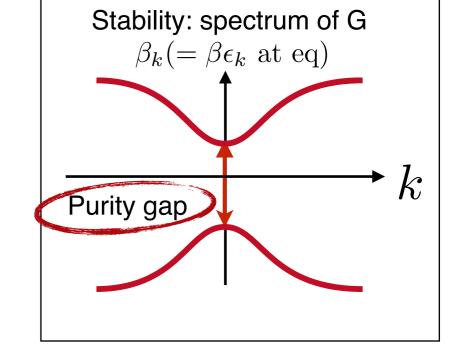
- G hermitean matrix, equilibrium or non-equilibrium, in equilibrium $G = \beta H$
- many-body correlator $\varphi_{\rm E}={
 m Im}\ln{{
 m Tr}}(\rho\hat{T})={
 m Im}{
 m Tr}\ln[{f 1}+({f 1}-f(G))^{-1}f(G)T]$
- interpretation (momentum space): $G = \sum_k G_k |k\rangle\langle k|, \quad T = \sum_k \mathbf{1} |k+1\rangle\langle k|$
- treat G as ordinary Hamiltonian: "Bloch basis"

$$G_k = U_k B_k U_k^{\dagger}, \quad B_k \equiv \operatorname{diag}_s(\beta_{k,s})$$

- ullet B_k collects "purity eigenvalues" Probability
- U_k collects eigenvectors of G "Bloch functions"

Topology

$$G_k|u_{k,s}\rangle = \beta_{k,s}|u_{k,s}\rangle$$



Full analogy to pure state discussion, but no mention of equilibrium

Projection mechanism

Ensemble geometric phase

$$\varphi_{\mathrm{E}} = \mathrm{Im} \ln \mathrm{Tr}(\hat{T}) = \mathrm{Im} \mathrm{Tr} \ln[\mathbf{1} - f(G) + f(G)T] = \mathrm{Im} \mathrm{Tr} \ln[\mathbf{1} + (\mathbf{1} - f(G))^{-1}f(G)T]$$

Evaluate in momentum space

$$G = \sum_{k} G_k |k\rangle\langle k|, \quad T = \sum_{k} \mathbf{1}|k+1\rangle\langle k|$$

many-body correlator

$$\begin{split} \varphi_{\mathrm{E}} &= \mathrm{Im} \ln \mathrm{Tr} \Big(\rho e^{i\delta k \hat{X}} \Big) \\ &= \mathrm{Im} \mathrm{Tr} \ln (\mathbf{1} + \prod_k \frac{f(B_{k+1})}{\mathbf{1} - f(B_{k+1})} U_{k+1}^\dagger U_k) \qquad \text{Momentum and band space} \end{split}$$

eg. two bands, particle hole symmetry

$$e^{-\beta_k \sigma_z} e^{i\delta k \mathcal{A}_k \cdot \sigma}$$

$$\mathcal{A}_k \cdot \sigma = \sum_{i=0}^3 \mathcal{A}_k^i \sigma_i$$

occupation probability

translation operator

→ Path ordered matrix product, reminiscent of Wilson loop

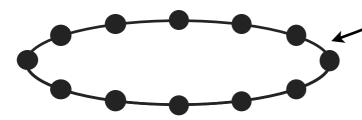
Projection mechanism (two bands, equilibrium)

many-body correlator, e.g. two bands, particle hole symmetry

$$\varphi_{\rm E}={\rm Im}{\rm Tr}\ln(1+\prod_k e^{-\beta_k\sigma_z}e^{i\delta k{\cal A}_k\cdot\sigma})$$
 • Assume all matrices commute

 $\mathcal{A}_k \cdot \sigma = \sum_{i=0}^3 \mathcal{A}_k^i \sigma_i$

Brillouin zone



- Key point:
 - Upper band: exponentially (in system size) suppressed
- $(e^{-\beta_k})^N = e^{-N\beta_k}$ $(e^{+\beta_k})^N = e^{+N\beta_k}$
- Lower band: exponentially (in system size) enhanced
- Effective projection onto lowest purity band = ground state

$$\varphi_{\mathcal{E}} \to \operatorname{Im} \operatorname{Tr} \ln e^{i \oint dk [P_{0,k} \mathcal{A}_k P_{0,k}]} = i \oint dk \langle u_{0,k} | \partial_k | u_{0,k} \rangle = \oint dk A_{0,k} = \varphi_{\mathcal{Z}}$$

Projection mechanism (two bands, equilibrium)

many-body correlator, e.g. two bands, thermal state, particle hole symmetry

$$\varphi_{\rm E} = {\rm Im} {\rm Tr} \ln (1 + \prod_k e^{-\beta_k \sigma_z} e^{i\delta k \mathcal{A}_k \cdot \sigma})$$

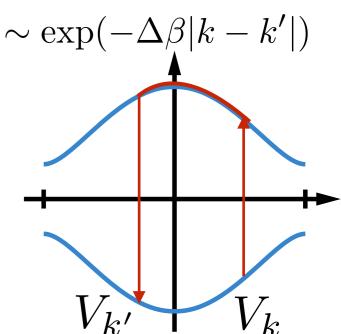
$$_k \text{ probability geometry}$$

$$\mathcal{A}_k \cdot \sigma = \sum_{i=0}^3 \mathcal{A}_k^i \sigma_i$$

non-commuting parts: perturbative corrections

$$e^{i\delta k\sum_{i=0}^3\mathcal{A}_k^i\sigma_i}=e^{i\delta k\sum_{i=0,3}\mathcal{A}_k^i\sigma_i}+\delta k\sum_{i=1,2}\mathcal{A}_k^i\sigma_i+\mathcal{O}(\delta k^2)$$
 Diagonal, commutes
$$V_k \text{ transition between bands}$$

Excursion penalty



 Expand and sum all possible second order processes (analogous second order time dependent perturbation theory)

$$\varphi_{\rm E} = \varphi_{\rm Z} + \Delta(N) \qquad \Delta(N) \sim [N\beta\Delta\epsilon]^{-2}$$

Ensemble geometric phase (EGP)

→ Emergent U(1) geometric phase in thermodynamic limit

Topological nature of accumulated phase for adiabatic cycle

EGP difference integer quantized by construction (phase variable defined mod(2pi))

$$\frac{1}{2\pi}\Delta\varphi_{\mathrm{E}} = \oint d\phi\,\partial_{\phi}\varphi_{\mathrm{E}}(\phi) = \frac{1}{2\pi}(\varphi_{\mathrm{E}}(\phi_f) - \varphi_{\mathrm{E}}(\phi_i)) \in \mathbb{Z}$$
 final/initial parameter of adiabatic cycle
$$\phi_f = \phi_i$$

• This quantization is of topological origin: N dependent correction cannot contribute to integer value

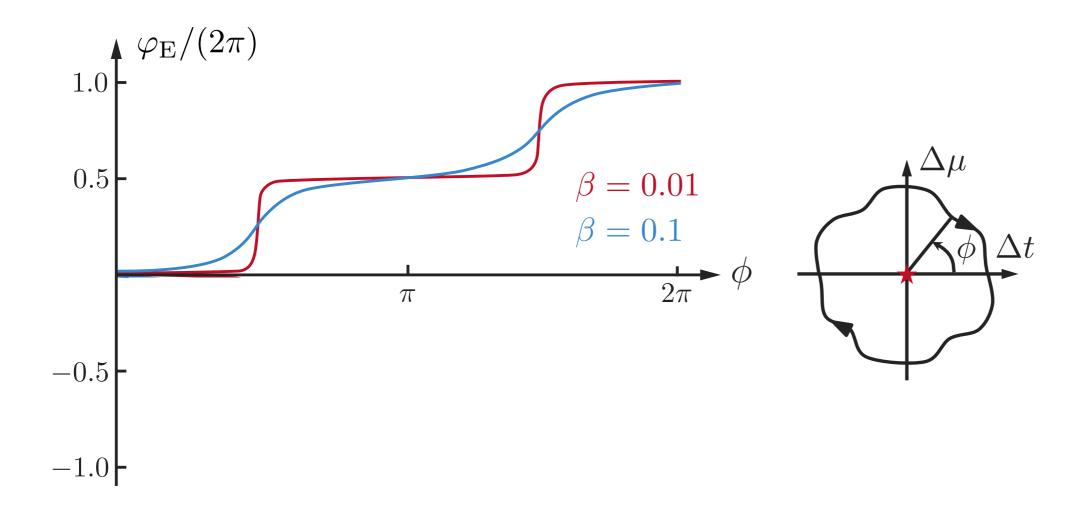
$$\frac{1}{2\pi}\Delta\varphi_{\rm E} = \frac{1}{2\pi} \oint d\phi \oint_{\rm BZ} dk \partial_{\phi} A_0(k,\phi) = \frac{1}{2\pi} \iint d\phi \, dk \, F_0(k,\phi) = C \in \mathbb{Z},$$

Berry connection of lowest purity band

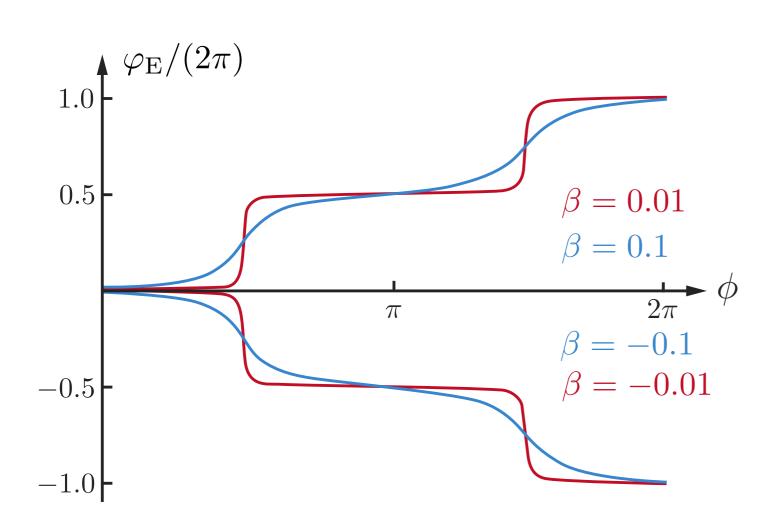
Berry curvature of lowest purity band

- Value of EGP difference connected to Chern number of lowest purity band, i.e. the topology of the density matrix
 - → toplogical quantization of EGP difference in irrespective to system size N

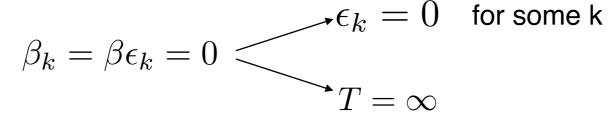
Topological quantization at finite T

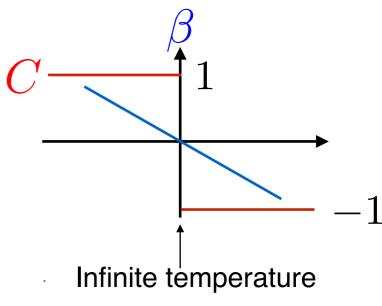


Infinite temperature topological phase transition

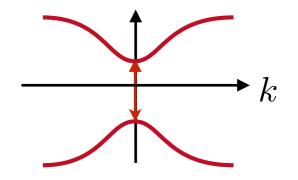


 Coordinate singularities for





Completely structureless states band population inversion



ultracold atoms: Bloch group, Science (2013)

Topological phase transition at infinite temperature detected by EGP

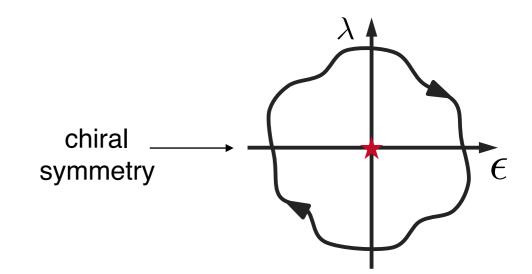
"Purity gap closings" and non-equilibrium phase transition

Topological Lindblad dynamics: Driven open analog Rice-Mele model (Linzner et al. PRA (2016))

$$\partial_{t} \rho = \sum_{r,s} \left(2L_{r,s} \rho L_{r,s}^{\dagger} - \{ L_{r,s}^{\dagger} L_{r,s}, \rho \} \right)$$

$$L_{r,0} = \sqrt{1 + \epsilon} \left[(1 - \lambda) \left(\hat{a}_{r,0}^{\dagger} + \hat{a}_{r,1} \right) + (1 + \lambda) \left(\hat{a}_{r,0} - \hat{a}_{r,1}^{\dagger} \right) \right]$$

$$L_{r,1} = \sqrt{1 - \epsilon} \left[(1 - \lambda) \left(\hat{a}_{r+1,0}^{\dagger} + \hat{a}_{r,1} \right) + (1 + \lambda) \left(\hat{a}_{r+1,0} - \hat{a}_{r,1}^{\dagger} \right) \right]$$



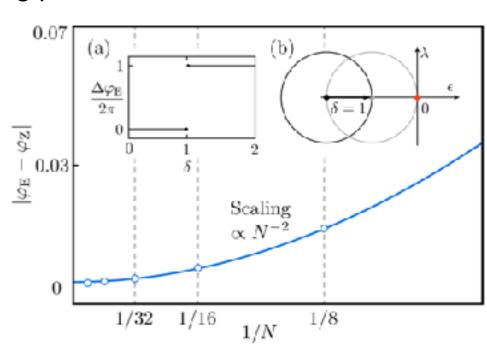
- Steady state density matrix shares symmetries of Rice-Mele model
- Spectral gap closing point is replaced by a purity gap closing point

$$\beta_{k_*}(\epsilon = \lambda = 0) = 0$$

Spectral (damping) gap is open

$$\Delta_d > 0$$

no divergent length/time scales at such critical point!



→ EGP detects non-equilibrium topological phase transitions without thermodynamic signatures

Observability

- Measuring the expectation value of a unitary matrix
- Measuring a genuine many-body operator (not: single particle current)

$$\varphi_{\rm E} = \operatorname{Im} \ln \langle \hat{T} \rangle \quad \hat{T} = \exp(i\delta k \sum_{i} x_i \hat{a}_i^{\dagger} \hat{a}_i)$$

Smallest possible lattice momentum

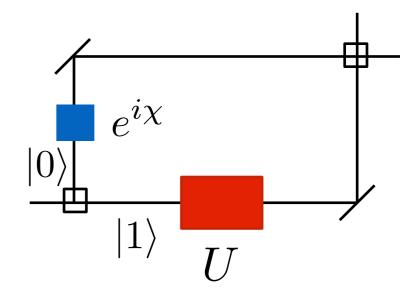
$$\delta k = 2\pi/L$$

- → Interferometric detection for mesoscopic setup of ultracold atoms
- Measuring the unitary: Partial trace of an interferometer-system unitary

Sjoeqvist et al., PRL (2000)

- ullet Interferometer Hilbert space $\hspace{.1cm} |0
 angle$, $\hspace{.1cm} |1
 angle$
- Desired total unitary

$$\mathcal{U} = \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right) \otimes U + \left(\begin{array}{cc} e^{i\chi} & 0 \\ 0 & 0 \end{array}\right) \otimes \mathbf{1}$$
 interferometer fermion system



ullet Including beam splitters, mirrors, output intensity along |0
angle

$$I \sim \text{tr}[U\rho U^{\dagger} + \rho + (e^{i\chi}\rho U^{\dagger} + h.c.)] \sim 1 + |\langle U \rangle| \cos[\chi - \arg\langle U \rangle]$$

Observability

- Here: Mach-Zehnder interferometer with a mirror replaced by fermion system
- Interferometer modes c, d coupling off-resonantly internal fermion states a, b, linear mode function profile

$$H_{\text{eff}} = \hat{X} \left[\eta_{\gamma} \hat{c}^{\dagger} \hat{c} + \eta_{\delta} \hat{d}^{\dagger} \hat{d} + \left(\eta_{\gamma \delta} \hat{c}^{\dagger} \hat{d} + \text{H.c.} \right) \right]$$

input-output relation

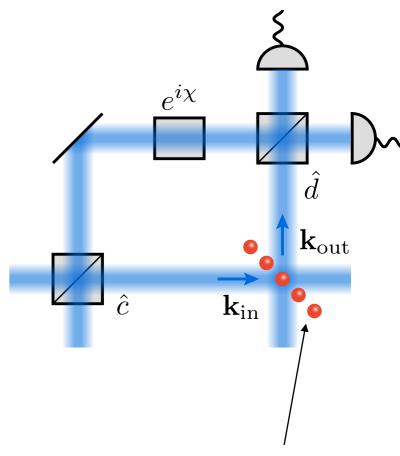
$$\begin{pmatrix} \hat{c} \\ \hat{d} \end{pmatrix}_{\mathrm{out}} = \langle \hat{T} \rangle \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \hat{c} \\ \hat{d} \end{pmatrix}_{\mathrm{in}}$$
 Independent of probed state

ullet EGP picked up by interferometer, measured via scanning reference phase χ

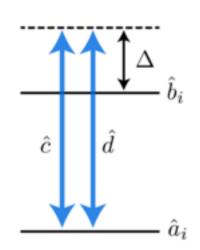
$$\langle\hat{T}\rangle=|\langle\hat{T}\rangle|e^{i\varphi_{\rm E}} \qquad \qquad {\rm Purity\ gap}$$
 • Visibility limited by amplitude of signal
$$|\langle\hat{T}\rangle|\approx \exp(-\tfrac{N}{2\pi}e^{-\Delta\beta/2})$$

→ Interferometric measurement of finite density mesoscopic fermion systems

$$N \approx 40, \quad T \approx 0.2T_{\rm F}$$



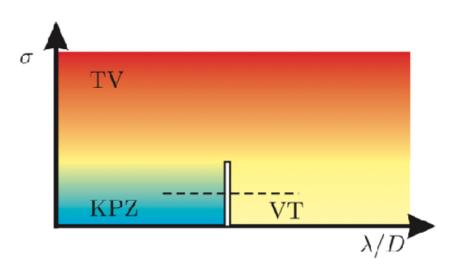
1D fermion system



Conclusions & Outlook

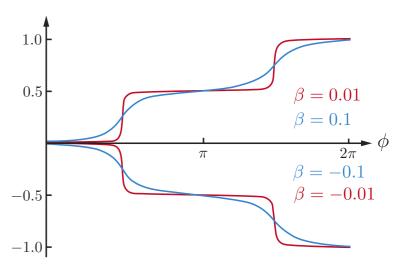
I. Phase diagram of Exciton-Polaritons

- Emergent Hamilton dynamics at strong non-equilibrium drive
- Explains phase transition as transition to chaos



II. Topology in mixed quantum states

- Exact toplogical quantization persists in certain many-body correlators
 - Many-body purification mechanism and emergent Zak phase
 - Detects non-equilibrium topological phase transitions
 - Observable via interferometry in mesoscopic samples



- → Validity of construction for interacting or disordered systems?
- → Topological classification of higher dimensional mixed states via many-body correlators?
- → Topology of bosonic non-equilibrium mixed states with equipartitioned occupations of selected bands (ultracold atoms, polaritons..)?