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Motivations

» High-resolution LES studies of upper-ocean turbulence in two process studies
whose environmental parameters (stratification, wind stress, etc.) are guided by
recent observational campaigns in the Bay of Bengal.

» Process # 1: Simulations of a diurnal warm layer to quantify turbulent fluxes
and surface temperature in response to the diurnal cycle of heat flux.

» Process # 2: Simulations of a fresh water filament influenced by wind to
explore frontal instabilities and turbulence that emerge and lead to qualitative
differences in the vertical structure between the two sides of the front.

» Additional objectives:
» provide a benchmark solution for use in a coordinated study with
other modelers in MISO-BOB to evaluate the accuracy of 1-D mixing
parameterizations
» provide upscaled fluxes in regional-model computations of the Bay of
Bengal in flows with both vertical and horizontal buoyancy gradients.



LES of a diurnal warm layer (DWL)
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> A 20-m mixed layer driven by a constant westward wind stress t = -0.06 N m-2
on top of a halocline with N2 = 104 s2 at 18 N. The temperature is constant with
depth to model the isothermal layer inside a barrier layer.

» Spin-up of turbulence for 15 hours to generate the 20-m mixed layer with a
surface current.

> Diurnally heat flux: Q,, = 150 W m~? and Q, with a peak of -827 W m-2.

» Evolution of the diurnal warm layer is simulated for 7 days.

» Domain: 64 m x 64 m x 85 m with a grid of 128 x 128 x 256.

» Grid resolution: horizontal: 0.5 m; vertical: 0.1-0.2 m in the top 30 m, stretched
at 3% in the halocline.
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Variability of Temperature and Salinity

Daily-averaged temperature in
the SML increases due to a daily
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Salinity in the mixed layer
increases in time due to turbulent
entrainment of saline water from
the halocline
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In spite of the salinity increase, density in the mixed layer decreases in time due
to the heat accumulation in response to the surface heat flux.
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Diurnal warm layers

Enhanced stratification during
day-time in the top 10 m layer.

Night-time 10-m deep
convective layer with N2 < 0
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Diurnally-enhanced surface jet
(Moulin et al. , JPO 2018)
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The diurnal surface jet and the descending Descending shear layers from 10

shear layer have a narrow range of Ri ~ 0.25. to 20 m depths (analog to EUC
study by Pham et al. , JPO 2017)
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Variability of turbulence

Night-time dissipation: strong
_ 200 ol I . __— during evening and weaker
after midnight by an order of
magnitude.
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The strong dissipation is
driven by shear production
associated with the DWL and
the descending shear layer
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During the late afternoon, turbulence transports nearly all solar heat
flux from the surface to 20-m depth in just a few hours.



Turbulent entrainment

Diurnal variability of SSS:
SSS increases only at night
time when the MLD is farthest
from the surface. The time
——— rate of change of SSS
decreases as the MLD gets
larger.
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Late-time entrainment rate
with no diurnal heat flux
(Pham & Sarkar, 2014):
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Diurnal Warm Layer Summary

> The diurnal cycle of the heat flux drives diurnal variability of stratification, shear,
Richardson number and turbulent mixing of heat and salinity in the SML.

> The dissipation is strongest during the late afternoon when the surface jet and the
corresponding shear layer become unstable.

> Nearly all downward heat flux is transported to the bottom of the ML by the turbulent flux
associated with the surface jet.

> Future work: LES using initial conditions and surface forcing that was observed during the
summer 2018 cruise including evaporation and precipitation.
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Fronts and Bores in Bay of Bengal
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(Courtesy of J. Sree Lekha & D. Sengupta)

» Shallow fronts: width ~ 10 km, depth ~ 20 m, strong lateral density gradient M?/{> ~
500, with geostrophic jet, vertical density gradient N? varies with Ri, between 0 and 1.
Nonlinear bores: sharp salinity and temperature increase over a few meters,
Shallow MLD (< 5 ma t front & bores) influences the air-sea fluxes.
»Initially-balanced front, if strong, can develop bores. Pham & Sarkar, JPO (2018).
What is the role of surface wind in thickening / thinning the MLD at fronts?
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Hypothesis: from fronts to bore

A schematic riverwater filament
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» Process study of the evolution of the MLD on the downfront and upfront sides

of the filament.
» Explore how turbulence (from wind-driven BL and from frontal instabilities)

controls the MLD at shallow fronts.



A fresh water filament

wind

Ekman Transport
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A partially compensated
salinity-controlled
geostrophically-balanced
light,fresh filament with a
uniform weak wind stress of -
0.02 N m~

Front characteristics: depth (30
m), width (2.56 km), stability
(Ri, = 0.2)

Domain: 50 km (cross-front) x
160 m (along-front) x 75 m
(vertical) with a grid resolution
of 1.25mx1.25mx0.25m

LES parameterization utilizes
filtered structure function
(Ducros et al. 1996)
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Evolution 0! salinity
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> Opverall, the entire filament is advected laterally by the Ekman transport.

> Upfront side Enhanced spreading of surface water since pressure gradient and Ekman
transport are co-directed. Both, vertical and lateral density gradient, increase.

> Downfront side Ekman transport overcomes the pressure gradient. Decrease in vertical

and lateral density gradient.
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f!ross-!ront circulation

Lateral velocity (v)
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Turbulence Structure: Downfront Side
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Turbulence structure: Upfront Side
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Shoaling isohalines with fine-
scale shear-driven overturns
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Mixed layer depth
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Downfront side: deep ML; enhanced ~ Upfront side: shallow ML with strong
shear and stratification at the base; layers shear and weak stratification
of complex N?, S?, Ri in the ML;
oscillations with period of ~ 1h.
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Fresh Water Filament Summary

> Asymmetric behavior at the two sides of the filament

> Deep MLD on the downfront side is driven by Ekman buoyancy flux.
Shallow MLD on the upfront side is driven by advection of fresh water over
saline water.

> On the downfront side, the frontogenesis 1s weaker than what 1s seen in case
with no wind (Pham & Sarkar, JPO 2018). The convective turbulence prevents

the gravity current to develop.

»>The upfront side sharpens until a surface gravity current shoots out



