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Primarily a summary of:

* Binary Black Hole Mergers in the first Advanced LIGO Observing Run, arXiv:1606.04856
(the “O1 BBH paper”)

* GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole
Coalescence, PRL 116, 241103 (2016)



http://arxiv.org/abs/1606.04856
http://dx.doi.org/10.1103/PhysRevLett.116.241103
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N.B.: These curves look so nice because they’re reconstructed based
on the templates used in parameter estimation
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OUR FIRST GLIMPSE OF THE
DIVERSITY OF THE BINARY BLACK

HOLE POPULATION
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OUR FIRST GLIMPSE OF THE
DIVERSITY OF THE BINARY BLACK
HOLE POPULATION [Figure from

T Final O1 BBH paper]
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OUR FIRST GLIMPSE OF THE
DIVERSITY OF THE BINARY BLACK
HOLE POPULATION

The primary difference in the three binaries is their total mass: In the source

frame (i.e., without redshifts), these are 65341 | 37,7, 21.8737 M.
GW150914 LVTi151012 GW151226

This difference in total mass translates

directly into a difference in the radiated energy: 3.0702,1.5703 | 1.0701 Mgc?.

However, the peak gravitational wave luminosity is independent of the mass
and is roughly the same (and impressively large) for all three events: ~200
Mg c /s.

These binaries were not very well localised on the sky (90% credible regions
from 230 to 1600 square degrees), though we do know that GW150914 came
from a completely different portion of the sky than the other two events.
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[Figure from O1 BBH paper]

» These binaries were not very well localised on the sky (90% credible regions
from 230 to 1600 square degrees), though we do know that GW150914 came
from a completely different portion of the sky than the other two events.



A FEW SPECIAL
PROPERTIES OF GW151226

e In addition to being the lowest-mass binary detected so far,
GW151226 has some other notable features.

o Itis the only binary of the three that we are able to say has a
spinning component:

At least one of its black holes must have been spinning with at
least 20% of the maximum spin (or a horizon equatorial velocity
of at least ~0.1¢) at the 99% credible level.

o It also has the largest median final spin, 74% of maximum,
compared to 66% or 68% of maximum for the other two.



A FEW SPECIAL
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http://www.ligo.org/science/Publication-GW151226/index.php

A VISUALIZATION OF A SYSTEM
CONSISTENT WITH GW151226
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Nonprecessing binary with mass ratio ~3.3 and spins of ~0.5
and ~0.4 (one aligned and one antialigned); YouTube link
Credit: SXS Collaboration/www.black-holes.org



https://www.youtube.com/watch?v=KwbXxzgAObU
http://www.black-holes.org/

TESTS OF GENERAL RELATIVITY WITH THE
O1 BBH RESULTS:
A REMINDER OF THE TESTS MADE WITH
GW1509014

» The relatively high SNR and high mass of GW150914 made it
possible to apply a whole suite of tests to the signal, described in
PRL 116, 221101 (2016).
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http://dx.doi.org/10.1103/PhysRevLett.116.221101

TESTS OF GENERAL RELATIVITY WITH THE
O1 BBH RESULTS:
COMBINING TOGETHER PARAMETER
CONSTRAINTS FROM GW150914 AND GW151226

o The only test that receives an update with GW151226 is the
parameterized test:

The overall SNR is not high enough to perform the residual test
and the SNR in the ringdown is not high enough for the IMR
consistency test.

One can perform the dispersion/massive graviton test, but does
not find an improvement in the bounds.

(LVT151012 is not a strong enough signal to be of significant use
to tests of GR.)
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The tight constraints on the 1. 5PN term are partlcularly interesting, as this
contains the leading-order backscattering and spin-orbit coupling.
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UPDATES OF BINARY BLACK HOLE
RATE ESTIMATES USING ALL OF O1
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UPDATES OF BINARY BLACK HOLE
RATE ESTIMATES USING ALL OF O1
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One can convert this rate estimate into an estimate of the number of confident binary black
hole detections we can expect in future LIGO runs, notably O2 (6 months, starting later
this year) and O3 (9 months, starting in 2017).

We expect binary black hole detections to become routine in the next few years.



ASTROPHYSICAL
IMPLICATIONS

o GW150914 is consistent with a wide variety of binary black hole formation channels,
including isolated binary evolution (either via the standard common envelope phase or via
chemically homogeneous evolution in a tidally locked binary) and dynamical formation.

Its high masses imply formation in an environment with at most half solar metallicity (fraction of

elements heavier than Hydrogen).

o GW151226 and LVT151012 (if an astrophysical signal) are also compatible with both isolated
and dynamical formation, though the low masses of GW151226 (14.2f§:3 and 7.51%% Mp) are
likely inconsistent with chemically homogeneous evolution, which is thought to require higher

masses. There is a 4% probability that the secondary of GW151226 lies in the putative 3-5 M@

gap between neutron stars and black holes.

Both of these binaries could have been formed from higher mass progenitors at solar
metallicity, or by lower-mass progenitors at lower metallicities. They have masses in line with
those inferred from X-ray observations of black holes in binaries (with non-black hole companions).



ASTROPHYSICAL
IMPLICATIONS

o If one assumes that a single formation channel is operating, the inferred lower limit on
the rate of binary black hole coalescences disfavours certain scenarios (e.g., low-mass
globular clusters in the dynamical formation case, or very high natal kicks of several
100 km/s for black holes in the isolated binary channel). However, multiple channels
are likely in operation.

o The revised rate still leads to a stochastic gravitational wave signal of unresolved
merging black hole binaries that is potentially measurable with several years of
observation at design sensitivity.

o With the expected wealth of binary black hole detections in the coming years,
population models will start to become highly constrained, by estimates of the mass and
spin distributions of stellar mass binary black holes in our universe.

For a first taste, the LSC obtained constraints on the power law index of the binary
black hole component mass distribution assuming (for simplicity, but not very
realistically) a single power law from 5 to 100 M o the index is then a=2.5112.



CONCLUSIONS

Advanced LIGO’s first observing run gave us the first taste of the fruits of gravitational wave
astronomy, with two firm binary black hole coalescences, the famous GW150914 and the later
GW151226, and one possible binary black hole, LVT151012.

These binaries have total masses from ~20 to ~60 M, and poorly constrained spins, though we know

that at least one component of GW151226 was spinning, with a spin of at least 20% of the maximum.

We can perform various tests of general relativity, finding no evidence for deviations. The lower-mass
GW151226 helps to constrain the inspiral portion of the signal, while GW150914 is more constraining
for the merger-ringdown portion.

We can also constrain the rate of binary black hole coalescences in the universe, and from this expect
to see many more mergers in upcoming observing runs (Oz2 is starting later this year!).

All these signals are consistent with a wide variety of astrophysical models for their formation, but such
models will become increasingly constrained with the expected tens to hundreds of detections in the
coming years.
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http://arxiv.org/abs/1602.04531
http://dx.doi.org/10.3847/2041-8205/824/1/L8

ASTROPHYSICAL
IMPLICATIONS
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The median (with 90% credible interval) of « =2.5%|7 is not unexpected, as the
sensitive time-volume scales like M25. This is also consistent with the range of ~1.8 to
~5.0 for a obtained from dynamical mass measurements with X-rays (with no
accounting for selection effects).

For a first taste, the LSC obtained constraints on the power law index of the binary
black hole component mass distribution assuming (for simplicity, but not very
realistically) a single power law from 5 to 100 M o the index is then a=2.5112.



