Exploiting \mathcal{PT} -symmetry for all-optical applications: Soliton steering in \mathcal{PT} -symmetric non-Kerr media

A. Govindarajan

Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli-620 024, India
Non-Hermitian Physics - PHHPQ XVIII, ICTS, Bengaluru

Collaborator: Prof. M. Lakshmanan

Professor of Eminence and DST-SERB Distinguished Fellow

lacktriangledown Why \mathcal{PT} -symmetric dimer?

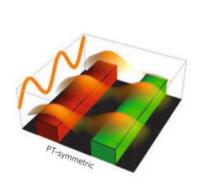
- lacktriangle Why \mathcal{PT} -symmetric dimer?
- Why soliton steering?

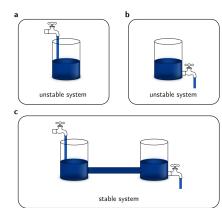
- Why \mathcal{PT} -symmetric dimer?
- Why soliton steering?
- Theoretical model

- Why \mathcal{PT} -symmetric dimer?
- Why soliton steering?
- Theoretical model
- $oldsymbol{0}$ Role of \mathcal{PT} -symmetry in different sorts of couplers

- Why \mathcal{PT} -symmetric dimer?
- Why soliton steering?
- Theoretical model
- lacktriangledown Role of \mathcal{PT} -symmetry in different sorts of couplers
- Confusion

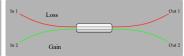
$\mathcal{PT} ext{-Symmetric Dimer}$



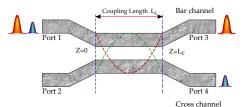


- Some intriguing applications like power oscillations¹ and non-reciprocal wave transport²
- What about steering dynamics?
- ¹S. Longhi, Phys. Rev. Lett. **103**, 2009.
- ²E. Rüter et al., Nat. Phys. 6, 2010.

Model under study and soliton steering



- (a) Type I \mathcal{PT} -symmetric coupler (b) Type 2 \mathcal{PT} -symmetric coupler



(c) Steering dynamics of solitons in nonlinear directional couplers

Governing Equations:

• CNLSE in a normalized form^a b,

$$i\frac{\partial\Psi_1}{\partial\zeta} + \frac{1}{2}\frac{\partial^2\Psi_1}{\partial\tau^2} + |\Psi_1|^2\Psi_1 - \gamma |\Psi_1|^4\Psi_1 + \kappa\Psi_2 = i\Gamma\Psi_1, \quad (I)$$

$$i\frac{\partial\Psi_2}{\partial\zeta} + \frac{1}{2}\frac{\partial^2\Psi_2}{\partial\tau^2} + |\Psi_2|^2\Psi_2 - \gamma |\Psi_2|^4\Psi_2 + \kappa\Psi_1 = -i\Gamma\Psi_2.$$
 (2)

System Parameters:

- Second and third terms respectively denote GVD and SPM
- $\gamma \approx$ quintic (non-Kerr) nonlinearity
- \bullet $\Gamma \approx$ the balanced gain and loss

^aG. Burlak and B. A. Malomed, Phys. Rev. E 88, 062904 (2013)

^bG. Burlak, S. Garcia-Paredes, and B. A. Malomed, Chaos 26, 113103 (2016).

Numerical Integration:

- Difficult to solve analytically (can't utilize methods like TMM, LA)
- Pseudospectral methods with $\kappa > \Gamma$ (unbroken \mathcal{PT} -symmetry)
- Initial conditions:

$$\Psi_1(\zeta = 0, \tau) = q \operatorname{sech}(\tau), \quad \Psi_2(\zeta = 0, \tau) = 0,$$
 (3)

Norms:
$$P(0) = \int_{-\infty}^{\infty} |\Psi_1(0,\tau)|^2 d\tau$$
,

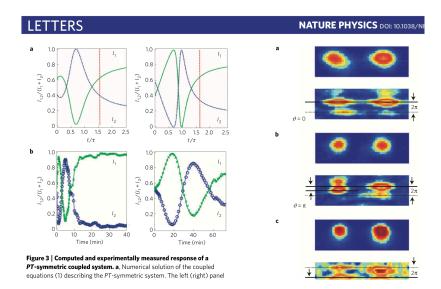
$$P_j = \int_{-\infty}^{\infty} |\Psi_j(L_c, \tau)|^2 d\tau, \ (j = 1, 2).$$
 (4)

Transmittance & Extinction Ratio

$$T_j = \frac{P_j}{P_1 + P_2}$$
 , $(j = 1, 2)$. (5)

$$\mathsf{Xratio} = 10 \log_{10} \left(\frac{P_1}{P_2} \right) \tag{6}$$

Observation of \mathcal{PT} -symmetry



Role of \mathcal{PT} -Symmetry

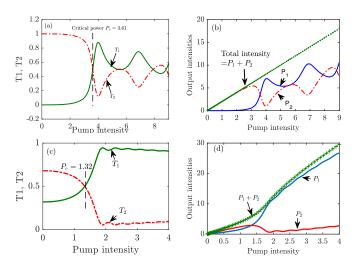


Figure 1: Steering dynamics of solitons in conventional couplers (top panels) and \mathcal{PT} -symmetric (type 1) couplers (bottom panels).

\mathcal{PT} -symmetry and Xratio

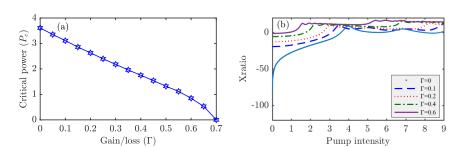


Figure 2: Relation between (a) the critical power and gain/loss parameter in (Γ, P_c) plane and (b) the extinction ratio as a function of pump intensity.

On 2π Coupler

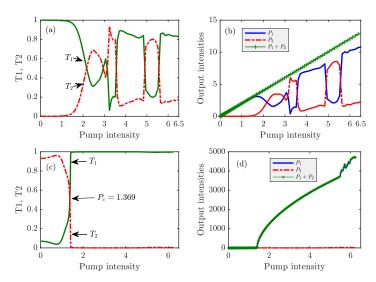


Figure 3: The same steering dynamics (as in the case of $\pi/2$ coupler) for 2π conventional couplers (top panels) and \mathcal{PT} -symmetric couplers (bottom panels).

On 4π Coupler

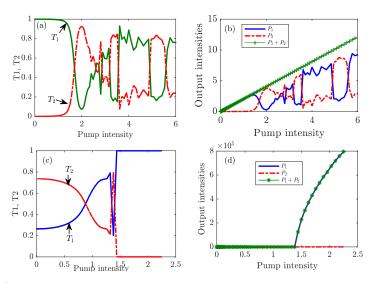


Figure 4: The steering dynamics for 4π conventional couplers (top panels) and \mathcal{PT} -symmetric couplers (bottom panels).

Type 2 PT-symmetric coupler

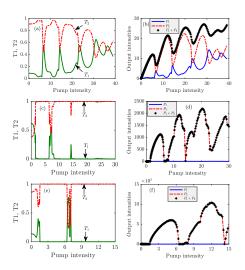


Figure 5: Transmittance and output intensities of solitons in the two channels of type 2 \mathcal{PT} -symmetric couplers for various coupling lengths. Top panel corresponds to $\pi/2$ coupler, center panel is for 2π and bottom panel refers to 4π coupler.

Tabulation

Table 1: Critical power for various lengths of different types of \mathcal{PT} -symmetric couplers.

Device length	Soliton input	Critical power for various types		
		Conventional	Type I	Type 2
			$\mathcal{PT} ext{-}coupler$	$\mathcal{PT} ext{-}coupler$
$\pi/2$		3.61	1.32	Incomplete
2π	sech(au)	2.17	1.36	1.10*
4π		1.69	0.85	6.50 [*]

^{*} Indicates the first steering threshold intensity

Influence of Quintic Nonlinearity

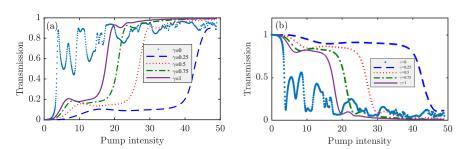


Figure 6: Influence of defocusing quintic nonlinearity on the steering dynamics of solitons in $\pi/2$ conventional couplers. Transmitted energy in (a) channel I and (b) channel 2 with the system parameters $\alpha=\Gamma=0$.

In \mathcal{PT} -symmetric coupler

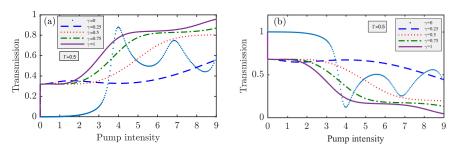


Figure 7: Plots showing the rapid variation of defocusing quintic nonlinearity on the transmittance of solitons in (a) the first channel and (b) second channel of $\pi/2$ \mathcal{PT} -symmetric couplers. Here we fixed the gain/loss parameter as $\Gamma=0.5$.

In (γ, P_c) plane

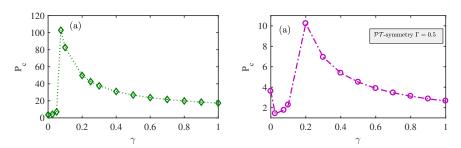
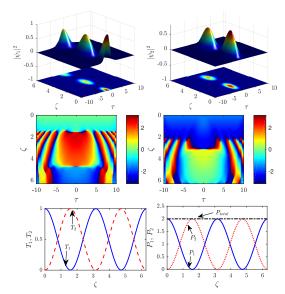


Figure 8: Relation between the critical power and defocusing nonlinearity in (γ, P_c) plane for (a) conventional and (b) \mathcal{PT} -symmetric couplers. The parameters are same as in Fig. 7.

Spatio-temporal dynamics in conventional coupler

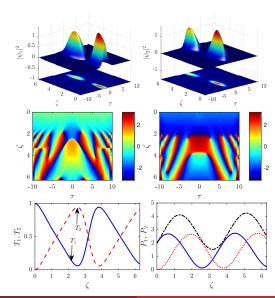


Energy route of the form $In_1 \rightarrow Out_3$.

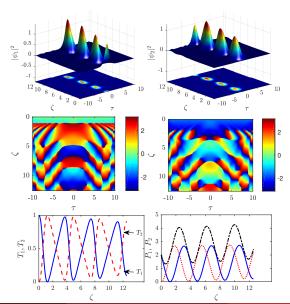
 Periodic transfer with constant (total) power

In Type I \mathcal{PT} coupler

- A new energy route of the form! $In_1 \rightarrow Out_4$.
- Power of the soliton pulse gets amplified
- Coupling length is increased



In Type 2 \mathcal{PT} coupler



Concluding Remarks

- ullet To wrap-up, we have numerically demonstrated the steering dynamics of optical (bright) solitons in \mathcal{PT} -symmetric couplers by taking into account the cubic-quintic nonlinearities.
- Have identified that the 'phenomenological' \mathcal{PT} -symmetric effect dramatically reduces the steering critical power with a sharp steering in the competing \mathcal{PT} -symmetric couplers, which was further corroborated by the evolution dynamics.
- Ramifications of such phenomenological \mathcal{PT} -symmetric driven couplers may open up new possibilities of enabling ultralow- power and ultrafast all-optical soliton switch in the light-wave communication systems.
- Also, the \mathcal{PT} -symmetric dimer can be exploited for other potential applications such as all-optical logical gates and soliton compression, which are being currently investiged.

Thank You!

ANY QUERIES

