Localized Eigenfunctions of Hermitian and Non-Hermitian Schroedinger Operators on Geometric Graphs

Anna I. Allilueva Moscow Institute of Physics and Technology Joint work with Andrei Shafarevich

13 июня 2018 г.

Рис.: Moscow Institute of Physics and Technology

Outline

- 1 Schrödinger operators on metric graphs
- 2 Exact localized eigenfunctions
 - Eigenfunctions, localized near a vertex
 - Eigenfunctions, localized near an edge
- 3 Semiclassical eigenvalues and eigenfunctions
 - Eigenfunctions, localized near a vertex
 - Eigenfunctions, localized near a segment
 - Eigenfunctions, localized near a subgraph

Metric graph — graph with parametrization and metric on edges.

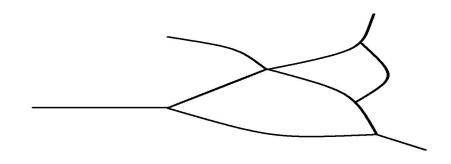


Рис.: Graph

Self-adjoint Schrödinger operator

Schrödinger operator

$$\hat{H}=-\frac{h^2}{2}\Delta+V(x),$$

V is smooth on edges.

Definition of the Laplace operator $\frac{h^2}{2}\Delta$: 2 conditions.

- Δ is self-adjont;
- \bullet If M is a disconnected then

$$\Delta = \oplus_j \frac{h^2}{2} \frac{d^2}{dz_i^2}$$

Self-adjoint Schrödinger operator

Schrödinger operator

$$\hat{H}=-\frac{h^2}{2}\Delta+V(x),$$

V is smooth on edges.

Definition of the Laplace operator $\frac{\hbar^2}{2}\Delta$: 2 conditions.

- Δ is self-adjont;
- \bullet If M is a disconnected then

$$\Delta = \oplus_j \frac{h^2}{2} \frac{d^2}{dz_i^2}$$

Laplacian

Formal definition. Consider the direct sum

$$\Delta_0 = \oplus_j \frac{h^2}{2} \frac{d^2}{dz_j^2}$$

with Neumann boundary conditions.

Definition

 Δ is a self-adjoint extension of the restriction $\Delta_0|_W$, where

$$W = \{ \psi \in Dom(\Delta_0), \quad \psi(q_s) = 0 \}.$$

Coupling conditions

Vector
$$\xi = (u, v), u = (h\psi'(q_1), \dots, h\psi'(q_N)),$$

 $v = (\psi(q_1), \dots, \psi(q_N)), q_j$ — endpoints of the edges.
In $\mathbb{C}^N \oplus \mathbb{C}^N$ consider standard skew-Hermitian form

$$<\xi^{1},\xi^{2}>=\sum_{j=1}^{N}(u_{j}^{1}\bar{v}_{j}^{2}-v_{j}^{1}\bar{u}_{j}^{2}).$$

and fix the Lagrangian (N-dimensional isotropic) plane L. Coupling conditions

$$\xi \in L$$
, $-i(E+U)u+(E-U)v=0$,

U is unitary matrix.

Coupling conditions

Vector
$$\xi = (u, v), u = (h\psi'(q_1), \dots, h\psi'(q_N)),$$

 $v = (\psi(q_1), \dots, \psi(q_N)), q_j$ — endpoints of the edges.
In $\mathbb{C}^N \oplus \mathbb{C}^N$ consider standard skew-Hermitian form

$$<\xi^{1},\xi^{2}>=\sum_{j=1}^{N}(u_{j}^{1}\bar{v}_{j}^{2}-v_{j}^{1}\bar{u}_{j}^{2}).$$

and fix the Lagrangian (N-dimensional isotropic) plane L. Coupling conditions

$$\xi \in L$$
, $-i(E+U)u+(E-U)v=0$,

U is unitary matrix.

Local coupling conditions — for each vertex separately:

$$L = \bigoplus_{q} L_q$$

.

For each vertex
$$q \xi_q = (u_q, v_q), u = (h\psi'(q_1), \dots, h\psi'(q_m)),$$

 $v = (\psi(q_1), \dots, \psi(q_m)),$

$$i(E+U_q)u_q+(E-U_q)v_q=0,$$

 U_q is a unitary $m \times m$ -matrix.

Non-Hermitian Laplacians

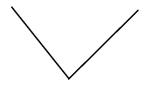
Non-Hermitian case: plane L is not Lagrangian (matrix U is not unitary). Then $\xi \in L$ for $\psi \in \text{Dom}(\Delta)$ and $\xi \in L^{\angle}$ for $\psi \in \text{Dom}(\Delta^*)$.

Examples:

- Real Δ (commutes with complex conjugation) ⇔ real plane
 L (invariant with respect to complex conjugation)
- Pseudo-Hermitian with respect to complex conjugation \Leftrightarrow plane L is Lagrangian with respect to the skew symmetric form

$$[\xi^1,\xi^2] = \sum_{i} (u_i^1 v_j^2 - v_j^1 u_j^2).$$

Exotic spectral properties for non-Hermitian case. Example:



If $\psi_1 = \psi_2$, $h\psi_1' = -h\psi_2'$ (self-adjoint case) then $E_n = -(\pi n/I)^2$. If $\psi_1 = \psi_2$, $h\psi_1' = h\psi_2'$ (real non-Hermitian case) then $E \in \mathbb{C}$. Further we discuss Hermitian case only.

Outline

- Schrödinger operators on metric graphs
- 2 Exact localized eigenfunctions
 - Eigenfunctions, localized near a vertex
 - Eigenfunctions, localized near an edge
- 3 Semiclassical eigenvalues and eigenfunctions
 - Eigenfunctions, localized near a vertex
 - Eigenfunctions, localized near a segment
 - Eigenfunctions, localized near a subgraph

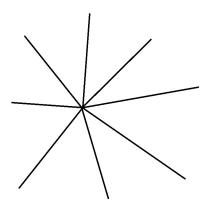
2 sources

2 sources of localized eigenfunctions

- Non-trivial coupling conditions.
- Jumps of the potential in vertices.

vertex

Let M be a star graph, potential is constant on each edge $V|_{e_j}=c_j,\;\varkappa_j=\sqrt{2(c_j-\lambda)}.$



Assertion

Let λ be a solution of equation

$$\det(i(E+U)\mathcal{K}+(E-U))=0,$$

 $\mathcal{K} = \text{diag}(\varkappa_1, \ldots \varkappa_m), \varphi \text{ is an eigenvector}$

$$(i(E+U)\mathcal{K}+(E-U))\varphi=0.$$

Then λ is an eigenvalue of \hat{H} ; eigenfunction coincides with $\varphi_j e^{-\varkappa_j x_j/h}$ on j-th edge.

- **1** As $h \to 0$ eigenfunctions are localized near the vertex.
- ② If $c_j = 0$ and U is nonsingular (i.e. -1 is not an eigenvalue), then $\lambda = -\frac{\varkappa^2}{2}$, where \varkappa is a positive eigenvalue of the matrix

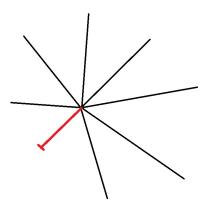
$$A=i\frac{E-U}{E+U}.$$

Outline

- Schrödinger operators on metric graphs
- 2 Exact localized eigenfunctions
 - Eigenfunctions, localized near a vertex
 - Eigenfunctions, localized near an edge
- 3 Semiclassical eigenvalues and eigenfunctions
 - Eigenfunctions, localized near a vertex
 - Eigenfunctions, localized near a segment
 - Eigenfunctions, localized near a subgraph

Segment

Let M be a finite interval, coupled to a star; Dirichlet condition in the vertex of degree 1. Let $V=c_0$ on the finite einterval, $V=c_j>c_0$ on j-th infinite edge, $k=\sqrt{2(\lambda-c_0)}$, $\varkappa_j=\sqrt{2(c_j-\lambda)},\ j\geq 1$.



Assertion

Let λ be solution of the equation

$$\det(i(E+U)\mathcal{K}_1+(E-U)\mathcal{K}_2)=0,$$

 $\mathcal{K}_1 = \operatorname{diag}(\cos(kl/h), \varkappa_1, \ldots, \varkappa_{m-1}),$

 $\mathcal{K}_2 = \operatorname{diag}(\sin(kl/h), 1, \dots, 1), \ \varphi \ \text{is an eigenvector.}$ Then λ is an eigenvalue of \hat{H} , the eigenfunction equals $\varphi_j \mathrm{e}^{-\varkappa_j x_j/h}$ on j-th infinite edge and equals $\varphi_0 \sin(kx_0/h)$ on the segment.

- **1** As $h \to 0$, eigenfunctions are localized near a finite interval.
- ② Localized eigenfunctions are produced by the jumps of V in the vertex these jumps form a potential barrier.

Outline

- Schrödinger operators on metric graphs
- 2 Exact localized eigenfunctions
 - Eigenfunctions, localized near a vertex
 - Eigenfunctions, localized near an edge
- 3 Semiclassical eigenvalues and eigenfunctions
 - Eigenfunctions, localized near a vertex
 - Eigenfunctions, localized near a segment
 - Eigenfunctions, localized near a subgraph

Let M be arbitrary graph and V be arbitrary potential. Let P be a vertex of degree m and c_j be limits of V in the vertex P. Let $\varkappa_i = \sqrt{2(c_i - \lambda_0)}$, $\lambda_0 < \min\{c_1, \ldots, c_m\}$.

Theorem

Let λ_0 be solution of the equation

$$\det(i(E+U)\mathcal{K}+(E-U))=0,$$

 $\mathcal{K} = \operatorname{diag}(\varkappa_1, \ldots, \varkappa_m), \, \phi_0$ is an eigenvector. There exists a point λ of the spectrum of \hat{H} , which is represented by the asymptotic serie

$$\lambda \sim \sum_{k=0}^{\infty} h^k \lambda_k.$$

For each K there exists a function

$$\psi_{(K)}^{j}(x_{j}) = e^{\frac{-S_{j}(x_{j})}{h}} \sum_{k=0}^{K} h^{k} \varphi_{k}^{j}(x_{j}), \quad \varphi_{0}^{j}(0) = \phi_{0}^{j},$$

with the following properties.

- ② There exists a function $\psi^{(K)}$ from the domain of \hat{H} , such that on j-th edge $\psi^{(K)} = \psi^j_{(K)}(x) + o(h^K)$, vanishing on the remaining part of M and satisfying the spectral equation

$$\hat{H}\psi^{(K)} = \lambda^{(K)}\psi^{(K)} + o(h^K), \quad \lambda^{(K)} = \sum_{j=0}^K h^j \lambda_j$$

Outline

- Schrödinger operators on metric graphs
- 2 Exact localized eigenfunctions
 - Eigenfunctions, localized near a vertex
 - Eigenfunctions, localized near an edge
- 3 Semiclassical eigenvalues and eigenfunctions
 - Eigenfunctions, localized near a vertex
 - Eigenfunctions, localized near a segment
 - Eigenfunctions, localized near a subgraph

Let M contains a vertex of degree 1; let e be the edge, starting from this vertex and let P be the second enpoint of e. Let $x \in [0, I]$ be coordinate on e, x_j be coordinates on the other edges, coming to P, $x_j(P) = 0$. Let c_j be the limits of V in P, and let $c_j > \max_{x \in e} V(x)$. Let $\mathcal{K}_1 = \operatorname{diag}(\cos \Phi, \varkappa_1, \ldots, \varkappa_{m-1})$, $K_2 = \operatorname{diag}(\sin \Phi, 1, \ldots, 1)$, $\mathcal{K}_0 = \operatorname{diag}(0, \varkappa_1, \ldots, \varkappa_{m-1})$.

$$\Phi = \frac{1}{h} \int_0^I \sqrt{2(\lambda_0 - V(x))} dx + \lambda_1 \int_0^I \frac{dx}{\sqrt{2(\lambda_0 - V(x))}},$$

$$\varkappa_j = \sqrt{2(c_j - \lambda_0)}, \quad j = 1, \dots, m-1, \quad \max_{x \in e} V(x) < \lambda_0 < \min_j c_j,$$

Theorem

Let the matrix $i(E+U)\mathcal{K}_0+(E-U)$ be nondegenerate. Let λ_1 satisfy quantization condition

$$\det(i(E+U)\mathcal{K}_1+(E-U)\mathcal{K}_2)=0.$$

Then there exists a poin λ from the spectrum of \hat{H} , such that $|\lambda - (\lambda_0 + h\lambda_1)| = O(h^2)$.

Quantization condition

$$F_1 \cos \Phi + F_2 \sin \Phi = 0,$$

 $F_j(\lambda_0)$ are smooth functions. Alternatively,

$$\frac{1}{\pi h} \int_0^I \sqrt{2(\lambda_0 - V(x))} dx + \frac{\lambda_1}{\pi} \int_0^I \frac{dx}{\sqrt{2(\lambda_0 - V(x))}} + \frac{1}{\pi} \arctan \frac{F_1}{F_2} = M,$$

 $M \in \mathbb{Z}$, $M = O(\frac{1}{h})$. Analog of the Maslov index

$$\frac{4}{\pi} \arctan \frac{F_1}{F_2} \in [-2, 2]$$

Explicit formula for λ_1 :

$$M_0 = \left[\frac{1}{\pi h} \int_0^I \sqrt{2(\lambda_0 - V(x))} dx\right],$$

$$\lambda_1 = \frac{\left(-\arctan\frac{F_1}{F_2} - \pi\{\frac{1}{\pi h}\int_0^I \sqrt{2(\lambda_0 - V(x))}dx\} + \pi M_1\right)}{\int_0^I \frac{dx}{\sqrt{2(\lambda_0 - V(x))}}}$$

where $M_1 = M - M_0 = O(1)$ (here $[\circ]$ and $\{\circ\}$ are integral and fractional parts).

Outline

- Schrödinger operators on metric graphs
- 2 Exact localized eigenfunctions
 - Eigenfunctions, localized near a vertex
 - Eigenfunctions, localized near an edge
- 3 Semiclassical eigenvalues and eigenfunctions
 - Eigenfunctions, localized near a vertex
 - Eigenfunctions, localized near a segment
 - Eigenfunctions, localized near a subgraph

Let M_0 be a subgraph of a graph M, containing finite edges only; a vertex of M_0 is said to be interior if all edges incident to the vertex belong to M_0 , and a vertex is said to be boundary otherwise. Consider the boundary vertices; for each of them, we compute the limits c_j of the potential V along all edges not belonging to M_0 . Suppose that the following condition is satisfied:

$$\max_{M_0} V(x) < \min_j c_j$$
.

This condition is central for the existence of semiclassical eigenfunctions localized near M_0 ; the "barriers" formed by the potential at the boundary vertices, prevent the quantum particle from leaving the subgraph.

Algorithm of construction of semi-classical eigenfunctions. Step 1.

Consider an edge of the graph M that does not belong to M_0 and is incident to one of the boundary vertices of the subgraph. Construct a semiclassical $\operatorname{mod} O(h^2)$ solution (of the Schrödinger equation) which is localized near this vertex; the corresponding function has the form $\varphi(x)\mathrm{e}^{-S(x)/h}$, where x is the coordinate on the corresponding edge. Denote by b the value of the function φ at the vertex.

Step 2.

On every edge of the subgraph M_0 , we construct the WKB-asymptotics $\operatorname{mod} O(h^2)$ of the solution of the Schrödinger equation of the form

$$\psi_j(x) = \frac{1}{(\lambda_0 - V(x))^{1/4}} \left(b_1 \cos \left(\frac{S(x)}{h} + \lambda_1 \int_{x_0}^x \frac{dx}{S'(x)} \right) + b_2 \sin \left(\frac{S(x)}{h} + \lambda_1 \int_{x_0}^x \frac{dx}{S'(x)} \right) \right).$$

Step 3.

Let us substitute all these functions into the boundary conditions at the vertices of the subgraph M_0 ; we obtain a homogeneous system of linear equations for a vector of the coefficients b, b_1, b_2 collected over all edges incident to the vertices of M_0 (it is easy to show that this is a square system). Equating the determinant of this system to zero, we obtain the quantization condition, from which, similarly to the previous section, we obtain a correction for the eigenvalue λ_1 (for a fixed λ_0).

Eigenfunctions, localized near a vertex Eigenfunctions, localized near a segment Eigenfunctions, localized near a subgraph

THANK YOU FOR YOUR ATTENTION!