

Non-Hermitian Topological Phases

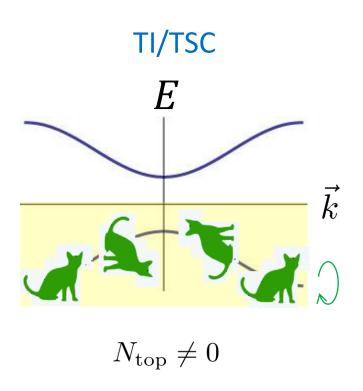
YITP, Kyoto University Masatoshi Sato

Based on

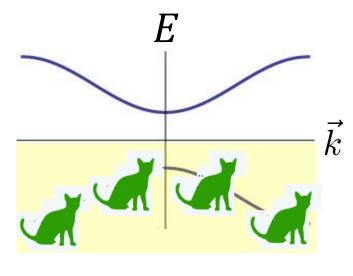
MS, K. Hasebe, K. Esaki, M.Kohmoto, Time-reversal symmetry in non-Hermitian systems, Progress of Theoretical Physics 127, 937 (2011)

K.Esaki, MS, K.Hasebe, M. Kohmoto, Edge states and topological phases in non-Hermitian systems, Phys. Rev. B84, 205129 (2011)

 $+\alpha$ (new)

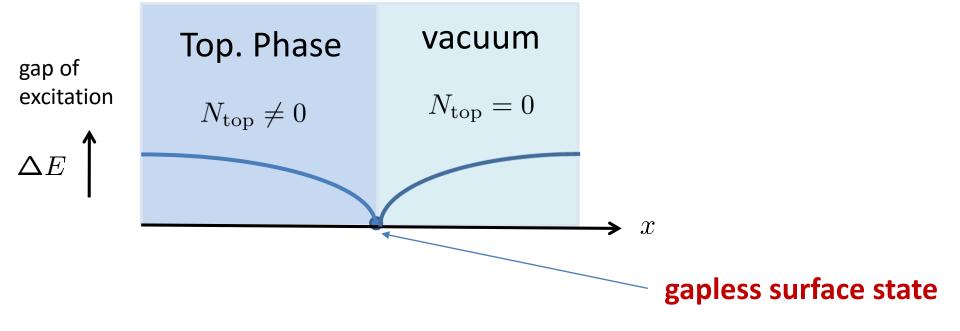

- Kenta Esaki (ISSP)
- Kazuki Hasebe (Kagawa National College of Technology)
- Mahito Kohmoto (ISSP)

Outline

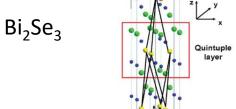

- Why non-hermitian topological phase?
- Basic symmetries in non-hermitian systems
- Topological phases intrinsic to non-Hermitian systems

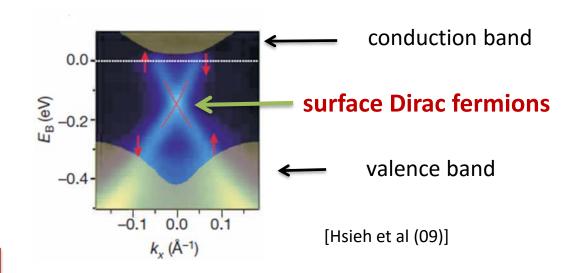
What is topological phase

Top. Phase = bulk top # of occupied state or gapped Hamiltonian


Ordinary insulator/SC

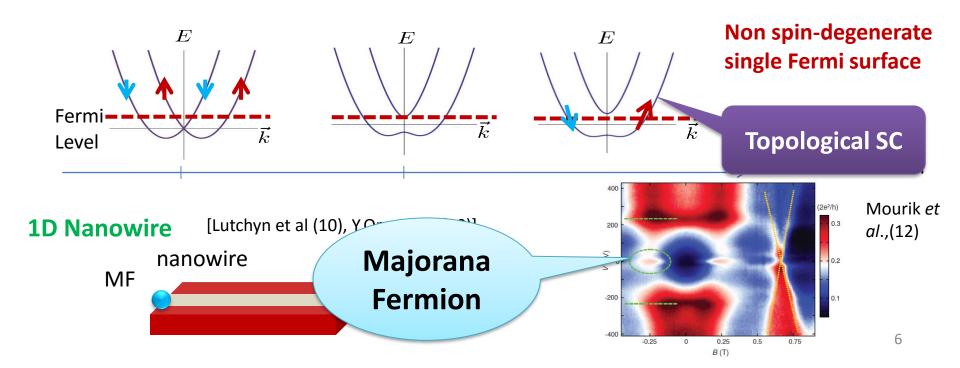
$$N_{\rm top} = 0$$


The idea of topological phases (topological insulators and topological superconductors) has been successfully established with many experimental supports


Indeed, the non-trivial topological structure can be detected experimentally as the existence of gapless surface states

Materials in topological phases have gapless boundary states ensured by bulk topological numbers

Topological insulators



Topological superconductors

S-wave SC with Rashba SOC + Zeeman field

[MS-Takahashi-Fujimoto (09), J. Sau et al (10)]

Symmetry is very important to obtain top. phases

Time-reversal symmetry (TRS)

Kramers pair

- No back scattering
- topologically stable

Particle-hole symmetry (PHS)

Majorana fermion

[StolmoydeeiRenusFinnous #8B]]udwig (12)]									
		TRS	PHS	CS	d=1	d=2 d=3	IQHS		
	А	0	0	0	0	Z • 0	Majorana nanowire		
	AIII	0	0	1	Z	0 Z	p+ip chiral p		
	Al	1	0	0	0	0 0	Sr ₂ RuO ₄ , ³ He-A		
	BDI	1	1	1	Z	0 0	31211034) 110 71		
	D	0	1	0	(Z_2)	$(z)^{\epsilon}$			
	DIII	-1	1	1	Z ₂	Z ₂ Z —	³He-B		
	All	-1	0	0	0	(Z_2) (Z_2)			
	CII	-1	-1	1	2Z	0 Z ₂	Cu _x Bi ₂ Se ₃		
	C	0	-1	0	0	2Z Q			
	CI	1	-1	1	0	0 2Z	QSH 3D TI		

But this is just a starting point ...

Indeed by taking into account crystalline symmetry, we can obtain huge #s of new topological phases

\mathbf{SG}	Short	$E_2^{0,0}$	$E_2^{1,0}$	$E_2^{2,0}$	$E_2^{3,0}$
1	P1	\mathbb{Z}	\mathbb{Z}^3	\mathbb{Z}^3	\mathbb{Z}
2	$P\bar{1}$	\mathbb{Z}^9	0	\mathbb{Z}^3	\mathbb{Z}_2
3	P2	\mathbb{Z}^5	\mathbb{Z}^5	\mathbb{Z}	\mathbb{Z}
4	$P2_1$	\mathbb{Z}	$\mathbb{Z}+\mathbb{Z}_2^3$	\mathbb{Z}	\mathbb{Z}
5	C2	\mathbb{Z}^3	\mathbb{Z}^3	\mathbb{Z}	\mathbb{Z}
6	Pm	\mathbb{Z}^3	\mathbb{Z}^6	\mathbb{Z}^3	0
7	Pc	\mathbb{Z}	$\mathbb{Z}^2 + \mathbb{Z}_2$	$\mathbb{Z} + \mathbb{Z}_2$	0
8	Cm	\mathbb{Z}^2	\mathbb{Z}^4	\mathbb{Z}^2	0
9	Cc	\mathbb{Z}	\mathbb{Z}^2	$\mathbb{Z} + \mathbb{Z}_2$	0

\mathbf{SG}	Short	$\epsilon(2_{001}, m_{001})$		$E_2^{1,0}$	$E_2^{2,0}$	$E_2^{3,0}$
10	P2/m	+0,1/2	\mathbb{Z}^{15}	0	\mathbb{Z}^3	0
		_	\mathbb{Z}	\mathbb{Z}^8	\mathbb{Z}	0
11	$P2_1/m$	$+_{0,1/2},-$	\mathbb{Z}^6	\mathbb{Z}^2	\mathbb{Z}^2	0
12	C2/m	$+_{0,1/2}$	\mathbb{Z}^{10}	0	\mathbb{Z}^2	0
			\mathbb{Z}^3	\mathbb{Z}^4	\mathbb{Z}	0
13	P2/c	$+_{0,1/2},-$	\mathbb{Z}^7	\mathbb{Z}^2	\mathbb{Z}	0
14	$P2_1/c$	$+_{0,1/2},-$	\mathbb{Z}^5	\mathbb{Z}_2	\mathbb{Z}	0
15	C2/c	$+_{0,1/2}, -$	\mathbb{Z}^6	\mathbb{Z}	\mathbb{Z}	0

\mathbf{SG}	Short	$\epsilon(2_{100}, 2_{010})$	$E_2^{0,0}$	$E_2^{1,0}$	$E_2^{2,0}$	$E_2^{3,0}$
16	P222	+0	\mathbb{Z}^{13}	\mathbb{Z}_2	0	\mathbb{Z}
		-1/2	\mathbb{Z}	\mathbb{Z}^{12}	0	\mathbb{Z}
17	$P222_{1}$	$+_0,{1/2}$	\mathbb{Z}^5	$\mathbb{Z}^4 + \mathbb{Z}_2$	0	\mathbb{Z}
18	$P2_{1}2_{1}2$	$+_0,{1/2}$	\mathbb{Z}^3	$\mathbb{Z}^2 + \mathbb{Z}_2^3$	0	\mathbb{Z}
19	$P2_12_12_1$	$+_0,{1/2}$	\mathbb{Z}	\mathbb{Z}_4^3	0	\mathbb{Z}
20	$C222_{1}$	$+_0,{1/2}$	\mathbb{Z}^3	$\mathbb{Z}^2 + \mathbb{Z}_2^2$	0	\mathbb{Z}
21	C222	+0	\mathbb{Z}^8	$\mathbb{Z} + \mathbb{Z}_2$	0	\mathbb{Z}
		${1/2}$	\mathbb{Z}^2	\mathbb{Z}^7	0	\mathbb{Z}
22	F222	+0	\mathbb{Z}^7	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
		${1/2}$	\mathbb{Z}	\mathbb{Z}^6	\mathbb{Z}_2	\mathbb{Z}
23	I222	+0	\mathbb{Z}^7	\mathbb{Z}_2^2	0	\mathbb{Z}
		${1/2}$	\mathbb{Z}	$\mathbb{Z}^{\bar{6}} + \mathbb{Z}_2$	0	\mathbb{Z}
24	$I2_{1}2_{1}2_{1}$	$+_0,{1/2}$	\mathbb{Z}^4	$\mathbb{Z}^3 + \mathbb{Z}_2$	0	\mathbb{Z}

\mathbf{SG}	Short	$\epsilon(m_{100}, m_{010})$	$E_2^{0,0}$	$E_2^{1,0}$	$E_2^{2,0}$	$E_2^{3,0}$
25	Pmm2	+0	$\mathbb{Z}^{\tilde{g}}$	\mathbb{Z}^9	0	0
		-1/2	\mathbb{Z}	\mathbb{Z}^5	\mathbb{Z}^4	0
26	$Pmc2_1$	+0	\mathbb{Z}^3	$\mathbb{Z}^3 + \mathbb{Z}_2^3$	0	0
		-1/2	\mathbb{Z}	\mathbb{Z}^3	$\mathbb{Z}^2 + \mathbb{Z}_2$	0
27	Pcc2	+0	\mathbb{Z}^5	\mathbb{Z}^5	0	0
		-1/2	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}_2^4	0
28	Pma2	$+_0,{1/2}$	\mathbb{Z}^4	\mathbb{Z}^5	$\mathbb{Z}^{}$	0
29	$Pca2_1$	$+_0,{1/2}$	\mathbb{Z}	$\mathbb{Z} + \mathbb{Z}_2^2$	\mathbb{Z}_2	0
30	$Pna2_1$	$+_0,{1/2}$	\mathbb{Z}^3	\mathbb{Z}^3	\mathbb{Z}_2	0
31	$Pmn2_1$	$+_0,{1/2}$	\mathbb{Z}^2 \mathbb{Z}^3	$\mathbb{Z}^3 + \mathbb{Z}_2$	$\mathbb{Z}^{}$	0
32	Pba2	$+_0,{1/2}$	\mathbb{Z}^3	$\mathbb{Z}^3 + \mathbb{Z}_2$	\mathbb{Z}_2	0
33	$Pna2_1$	+0, -1/2	\mathbb{Z}	$\mathbb{Z}+\mathbb{Z}_4$	\mathbb{Z}_2	0
34	Pnn2	+0, -1/2	\mathbb{Z}^3	\mathbb{Z}^3	\mathbb{Z}_2	0
35	Cmm2	+0	\mathbb{Z}^6	\mathbb{Z}^6	0	0
		-1/2	\mathbb{Z}^2	\mathbb{Z}^4	\mathbb{Z}^2	0
36	$Cmc2_1$	+0	\mathbb{Z}^2	$\mathbb{Z}^2 + \mathbb{Z}_2^2$	0	0
	•	-1/2	\mathbb{Z}	$\mathbb{Z}^2 + \mathbb{Z}_2$	\mathbb{Z}	0
37	Ccc2	+0	\mathbb{Z}^4	\mathbb{Z}^4	0	0
		-1/2	\mathbb{Z}^2	\mathbb{Z}^2	\mathbb{Z}_2^2	0
38	Amm2	+0	\mathbb{Z}^6	\mathbb{Z}^6	0	0
		-1/2	\mathbb{Z}	\mathbb{Z}^4	\mathbb{Z}^3	0
39	Abm2	+0	\mathbb{Z}^4	$\mathbb{Z}^4 + \mathbb{Z}_2$	0	0
		-1/2	\mathbb{Z}	\mathbb{Z}^2	$\mathbb{Z} + \mathbb{Z}_2^2$	0
40	Ama2	$+_0,{1/2}$	\mathbb{Z}^3	\mathbb{Z}^4	\mathbb{Z}	0
41	Aba2	$+_0,{1/2}$	\mathbb{Z}^2	$\mathbb{Z}^2 + \mathbb{Z}_2$	\mathbb{Z}_2	0
42	Fmm2	+0	\mathbb{Z}^5	\mathbb{Z}^5	0	0
		-1/2	\mathbb{Z}	\mathbb{Z}^3	$\mathbb{Z}^2 + \mathbb{Z}_2$	0
43	Fdd2	$+_0,{1/2}$	\mathbb{Z}^2	\mathbb{Z}^2	\mathbb{Z}_2	0
44	Imm2	+0	\mathbb{Z}^5	\mathbb{Z}^5	0	0
		-1/2	\mathbb{Z}	$\mathbb{Z}^3 + \mathbb{Z}_2$	\mathbb{Z}^2	0
45	Iba2	+0	\mathbb{Z}^3	$\mathbb{Z}^3 + \mathbb{Z}_2$	0	0
		-1/2	\mathbb{Z}	$\mathbb{Z} + \mathbb{Z}_2$	\mathbb{Z}_2^2	0
46	Ima2	+0	\mathbb{Z}^3	$\mathbb{Z}^3 + \mathbb{Z}_2$	0	0
		-1/2	\mathbb{Z}^2	\mathbb{Z}^3	\mathbb{Z}	0
		/				

List of top #s for materials with 230 space groups

[Shiozaki-MS-Gomi (18)]

(Cont.)

\mathbf{SG}	Short	$(\epsilon(m_{100}, m_{010}), \epsilon(m_{100}, m_{001}), \epsilon(m_{010}, m_{001}))$	$E_2^{0,0}$	$E_2^{1,0}$	$E_2^{2,0}$	$E_2^{3,0}$
47	Pmmm	$(+,+,+)_0$	\mathbb{Z}^{27}	0	0	0
		$(-,-,-)_{1/2}$	\mathbb{Z}^9	0	\mathbb{Z}^6	0
		(-,+,+),(+,-,+),(+,+,-)	\mathbb{Z}^3	\mathbb{Z}^{12}	0	0
		(+,-,-),(-,+,-),(-,-,+)	\mathbb{Z}^5	\mathbb{Z}^4	\mathbb{Z}^2	0
48	Pnnn	$(+,+,+)_0, (+,-,-), (-,+,-), (-,-,+)$	\mathbb{Z}^9	0	\mathbb{Z}_2	0
		$(-,-,-)_{1/2},(-,+,+),(+,-,+),(+,+,-)$	\mathbb{Z}^3	\mathbb{Z}^6	0	0
49	Pccm	$(+,+,+)_0,(+,-,-)$	\mathbb{Z}^{14}	0	\mathbb{Z}	0
		$(-,-,-)_{1/2},(-,+,+)$	\mathbb{Z}^6	\mathbb{Z}^4	\mathbb{Z}	0
		(+,-,+),(+,+,-)	\mathbb{Z}	\mathbb{Z}^{10}	0	0
		(-,+,-),(-,-,+)	\mathbb{Z}^5	\mathbb{Z}^2	\mathbb{Z}_2	0
50	Pban	$(+,+,+)_0, (+,-,-), (-,+,-), (-,-,+)$	\mathbb{Z}^9	0	\mathbb{Z}_2	0
		$(-,-,-)_{1/2},(-,+,+),(+,-,+),(+,+,-)$	\mathbb{Z}^3	\mathbb{Z}^6	0	0
51	Pmma	$(+,+,+)_0,(+,-,+)$	\mathbb{Z}^{12}	\mathbb{Z}^3	0	0
		$(-,-,-)_{1/2},(-,+,-)$	\mathbb{Z}^7	\mathbb{Z}	\mathbb{Z}^3	0
		(+,+,-),(+,-,-)	\mathbb{Z}^4	\mathbb{Z}^7	0	0
		(-,+,+),(-,-,+)	\mathbb{Z}	$\mathbb{Z}^5 + \mathbb{Z}_2$	\mathbb{Z}	0
52	Pnna	all	\mathbb{Z}^5	\mathbb{Z}^2	0	0
53	Pmna	$(+,+,+)_0, (-,-,-)_{1/2}, (+,+,-), (-,-,+)$	\mathbb{Z}^9	\mathbb{Z}	\mathbb{Z}	0
		(+,-,+),(-,+,+),(+,-,-),(-,+,-)	\mathbb{Z}^2	\mathbb{Z}^5	0	0

(Cont.)

\mathbf{SG}	Short	$(\epsilon(m_{100}, m_{010}), \epsilon(m_{100}, m_{001}), \epsilon(m_{010}, m_{001}))$	$E_2^{0,0}$	$E_2^{1,0}$	$E_2^{2,0}$	$E_2^{3,0}$
54	Pcca	$(+,+,+)_0,(+,+,-),(+,-,+),(+,-,-)$	$\mathbb{Z}^{\tilde{6}}$	\mathbb{Z}^3	0	0
		$(-,-,-)_{1/2},(-,+,+),(-,+,-),(-,-,+)$	\mathbb{Z}^4	\mathbb{Z}	\mathbb{Z}_2	0
55	Pbam	$(+,+,+)_0,(-,+,+)$	\mathbb{Z}^9	\mathbb{Z}_2^3	0	0
		$(-,-,-)_{1/2},(+,-,-)$	\mathbb{Z}^7	0	$\mathbb{Z}^2 + \mathbb{Z}_2$	0
		(+,-,+),(+,+,-),(-,+,-),(-,-,+)	\mathbb{Z}	$\mathbb{Z}^4 + \mathbb{Z}_2$	0	0
56	Pccn	$(+,+,+)_0,(+,+,-),(+,-,+),(+,-,-)$	\mathbb{Z}^5	$\mathbb{Z}^2 + \mathbb{Z}_2$		0
		$(-,-,-)_{1/2},(-,+,+),(-,+,-),(-,-,+)$	\mathbb{Z}^3	\mathbb{Z}_2	\mathbb{Z}_2	0
57	Pbcm	$(+,+,+)_0, (+,+,-), (-,+,+), (-,+,-)$	\mathbb{Z}^5	$\mathbb{Z}^{\overline{2}} + \mathbb{Z}_2$	0	0
		$(-,-,-)_{1/2},(+,-,+),(+,-,-),(-,-,+)$	\mathbb{Z}^4	\mathbb{Z}^2	\mathbb{Z}	0
58	Pnnm	$(+,+,+)_0,(-,-,-)_{1/2},(-,+,+),(+,-,-)$	\mathbb{Z}^8	\mathbb{Z}_2	\mathbb{Z}	0
		(+,+,-),(+,-,+),(-,+,-),(-,-,+)	\mathbb{Z}	$\mathbb{Z}^{4} + \mathbb{Z}_{2}$	0	0
59	Pmmn	$(+,+,+)_0,(+,+,-),(+,-,+),(+,-,-)$	\mathbb{Z}^7	\mathbb{Z}^4	0	0
		$(-,-,-)_{1/2},(-,+,+),(-,+,-),(-,-,+)$	\mathbb{Z}^3	$\mathbb{Z}^2 + \mathbb{Z}_2$	\mathbb{Z}^2	0
60	Pbcn	all	\mathbb{Z}^4	$\mathbb{Z} + \mathbb{Z}_2$	0	0
61	Pbca	all	\mathbb{Z}^3	\mathbb{Z}_2^2	0	0
62	Pnma	$(+,+,+)_0, (+,-,+), (-,+,+), (-,-,+)$	\mathbb{Z}^4	$\mathbb{Z}+\mathbb{Z}_2^2$	0	0
		$(-,-,-)_{1/2},(+,-,-),(-,+,-),(+,+,-)$	\mathbb{Z}^3	$\mathbb{Z} + \mathbb{Z}_2$	\mathbb{Z}	0
63	Cmcm	$(+,+,+)_0,(+,+,-)$	\mathbb{Z}^8	\mathbb{Z}^2	0	0
		$(-,-,-)_{1/2},(-,-,+)$	\mathbb{Z}^5	\mathbb{Z}	\mathbb{Z}^2	0
		(+,-,+),(+,-,-)	\mathbb{Z}^2	\mathbb{Z}^3	\mathbb{Z}	0
		(-,+,+),(-,+,-)	\mathbb{Z}^4	\mathbb{Z}^4	0	0
64	Cmca	$(+,+,+)_0,(+,+,-)$	\mathbb{Z}^7	$\mathbb{Z} + \mathbb{Z}_2$	0	0
		$(-,-,-)_{1/2},(-,-,+)$	\mathbb{Z}^5	0	$\mathbb{Z} + \mathbb{Z}_2$	0
		(+,-,+),(+,-,-)	\mathbb{Z}^2	\mathbb{Z}^2	\mathbb{Z}_2	0
		(-,+,+),(-,+,-)	\mathbb{Z}^3	\mathbb{Z}^3	0	0
65	Cmmm	$(+,+,+)_0$	\mathbb{Z}^{18}	0	0	0
		$(-,-,-)_{1/2}$	\mathbb{Z}^8	0	\mathbb{Z}^4	0
		(+,+,-),(+,-,+)	\mathbb{Z}^2	\mathbb{Z}^8	0	0
		(-, +, +)	\mathbb{Z}^6	\mathbb{Z}^6	0	0
		(+, -, -)	\mathbb{Z}^6	\mathbb{Z}^2	\mathbb{Z}^2	0
		(-,+,-),(-,-,+)	\mathbb{Z}^3	\mathbb{Z}^4	\mathbb{Z}	0
66	Cccm	$(+,+,+)_0,(+,-,-)$	\mathbb{Z}_{2}^{11}	0	\mathbb{Z}	0
		$(-,-,-)_{1/2},(-,+,+)$	\mathbb{Z}^7	\mathbb{Z}_2^2	\mathbb{Z}	0
		(+,+,-),(+,-,+)	$\mathbb{Z}_{\mathbb{Q}}$	\mathbb{Z}^7	0	0
		(-,+,-),(-,-,+)	\mathbb{Z}^3	\mathbb{Z}^3	\mathbb{Z}_2	0
67	Cmma	$(+,+,+)_0$	$\mathbb{Z}_{\downarrow}^{13}$	\mathbb{Z}	0	0
		$(-,-,-)_{1/2}$	\mathbb{Z}^5	\mathbb{Z}_{\downarrow}	$\mathbb{Z}^2 + \mathbb{Z}_2$	0
		(+,+,-),(+,-,+)	\mathbb{Z}^5	\mathbb{Z}^5	0	0
		(-, +, +)	$\mathbb{Z}_{\mathbb{Q}}$	$\mathbb{Z}^7 + \mathbb{Z}_2$	0	0
		(+, -, -)	\mathbb{Z}^3	\mathbb{Z}^3	\mathbb{Z}_2^2	0
		(-,+,-),(-,-,+)	\mathbb{Z}^6	\mathbb{Z}	\mathbb{Z}	0
68	Ccca	$(+,+,+)_0,(+,-,-)$	\mathbb{Z}^7	$\mathbb{Z}_{\mathbb{Q}}$	\mathbb{Z}_2	0
		$(-,-,-)_{1/2},(-,+,+)$	\mathbb{Z}^3	\mathbb{Z}^3	\mathbb{Z}_2	0
		(+,+,-),(+,-,+)	\mathbb{Z}^4	\mathbb{Z}^4	0	0
		(-,+,-),(-,-,+)	\mathbb{Z}^6	0	\mathbb{Z}_2	0
69	Fmmm	$(+,+,+)_0$	\mathbb{Z}^{15}	0	0	0
		$(-,-,-)_{1/2}$	\mathbb{Z}^6	0	$\mathbb{Z}^3 + \mathbb{Z}_2$	0
		(+,+,-), (+,-,+), (-,+,+)	\mathbb{Z}^3	\mathbb{Z}^6	0	0
		(+,-,-),(-,+,-),(-,-,+)	\mathbb{Z}^4	\mathbb{Z}^2	\mathbb{Z}	0
70	Fddd	$(+,+,+)_0, (+,-,-), (-,+,-), (-,-,+)$	\mathbb{Z}^6	0	\mathbb{Z}_2	0
	_	$(-,-,-)_{1/2},(+,+,-),(+,-,+),(-,+,+)$	\mathbb{Z}^3	\mathbb{Z}^3	0	0
71	Immm	$(+,+,+)_0$	\mathbb{Z}^{15}	0	0	0
		$(-,-,-)_{1/2}$	\mathbb{Z}^6	\mathbb{Z}_2	\mathbb{Z}^3	0
		(+,+,-), (+,-,+), (-,+,+)	\mathbb{Z}^3	\mathbb{Z}^6	0	0
		(+,-,-),(-,+,-),(-,-,+)	\mathbb{Z}^4	\mathbb{Z}^2	\mathbb{Z}	0

(Cont.)

another 5 pages ...

By imposing symmetry, we can obtain rich structures of top. phases

Question

Is there another way to obtain new top. phases?

Our answer

Non-Hermiticity opens a new direction in topological phases

Why non-Hermitian systems?

Key point

For non-Hermitian Hamiltonians, complex conjugation and transpose are different

$$H^{\dagger} \neq H$$
 $H^* \neq H^t$

This small change gives a crucial difference in symmetry consideration.

Basic symmetry in non-Hermitian Hamiltonian

- TRS and PHS (=AZ sym.) are fundamental symmetry for topology since they are robust against disorders.
- For Hermitian Hamiltonians, both can be given as anti-unitary symmetries, but for non-Hermitian ones, PHS cannot be.

BdG Hamiltonian

$$\mathcal{H} = rac{1}{2} \sum_{ij} (c_i^\dagger, c_i) \underline{H_{ij}} \left(egin{array}{c} c_j \ c_j^\dagger \end{array}
ight)$$

$$\mathcal{H} = \frac{1}{2} \sum_{i,j} (c_i^{\dagger}, c_i) \underline{H_{ij}} \begin{pmatrix} c_j \\ c_j^{\dagger} \end{pmatrix} \qquad (c_i^{\dagger}, c_i) = (c_i, c_i^{\dagger}) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \equiv (c_i, c_i^{\dagger}) \tau_x$$

PHS
$$\tau_x H \tau_x^{-1} = -H^t$$

non-Hermiticity $\neq -H^*$

PHS is not anti-unitary sym.

From this property, the basic sym. should change accordingly

Hermitian case

complex conj.

non-Hermitian case

[Bernard-LeClair (01)]

[MS(18)]

TRS
$$\mathcal{T}H\mathcal{T}^{-1} = H, \quad \mathcal{T} = U_TK$$

$$U_T^{-1}HU_T = H^*$$

$$U_T^{-1}HU_T = H^*$$

K-sym.

PHS
$$\mathcal{C}H\mathcal{C}^{-1}=-H, \quad \mathcal{C}=U_CK$$
 $U_C^{-1}HU_C=-H^*$

$$U_C^{-1}HU_C = -H^t$$

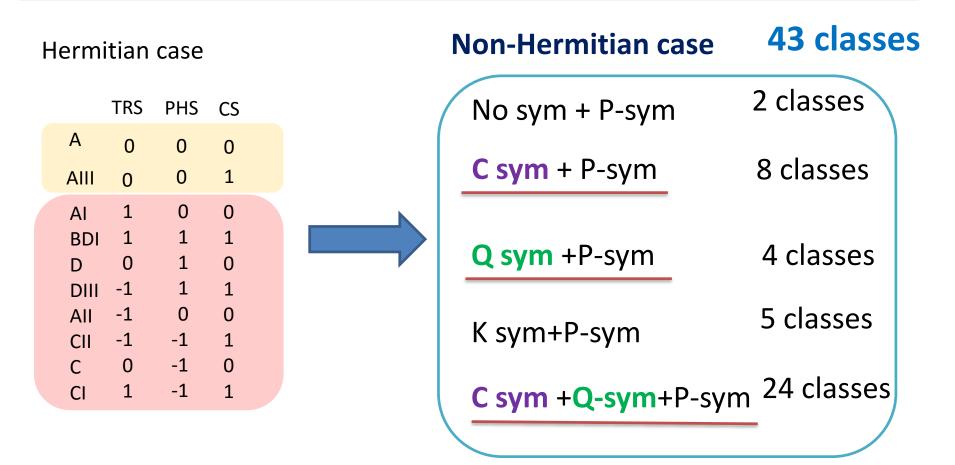
C-sym.

$$\Gamma^{-1}H\Gamma = -H$$

$$\Gamma^{-1}H\Gamma = -H$$

P-sym.

$$\Gamma'^{-1}H\Gamma' = -H$$


$$\Gamma' = U_C U_T^*$$

$$\Gamma'^{-1}H\Gamma' = -H^{\dagger}$$

Q-sym.

New types of symmetry appear !!

Taking into account these new types of sym., we can obtain extended fundamental symmetry classes in non-Hermitian systems

10 classes (AZ classes)

New families of classes intrinsic to non-Hermitian Hamiltonians

In the remaining time, I will show that these new families of symmetry classes indeed may host new topological phases intrinsic to non-Hermitian Hamiltonians

- 1) Q sym protected topological phase
 - Graphene with non-Hermitian onsite potential
- 2) C sym +Q-sym protected topological phase
 - SO(3,2) Luttinger model

K.Esaki, MS, K.Hasebe, M. Kohmoto, PRB(11)

1) Q-sym protected topological phase

$$\Gamma^{-1}H\Gamma=-H^{\dagger} \hspace{1cm} \Gamma^{2}=1 \hspace{1cm} \Gamma^{\dagger}=\Gamma \hspace{1cm} \text{Q-sym}$$

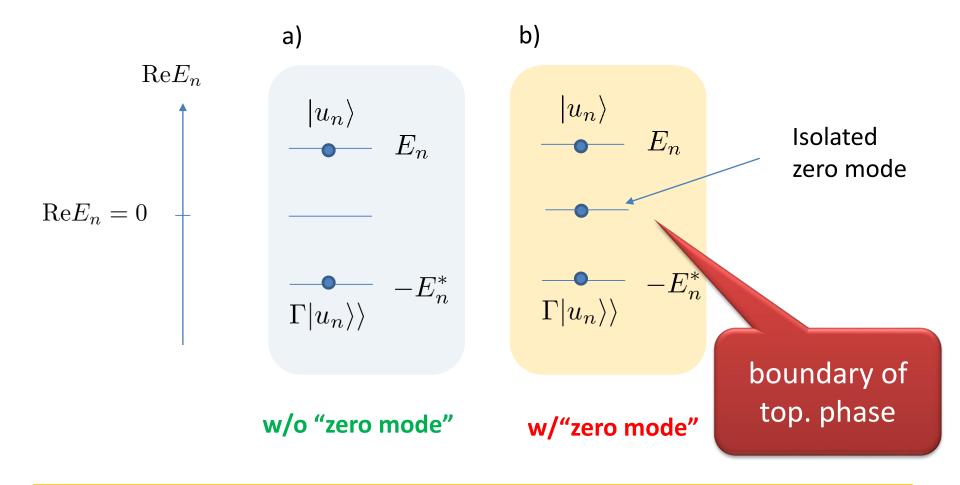
$$\Gamma^2 = 1$$

$$\Gamma^{\dagger} = \Gamma$$

From this symmetry, the spectrum of the system has a unique feature, which enables us to obtain topological stability

$$H|u_n\rangle = E_n|u_n\rangle \qquad H^{\dagger}|u_n\rangle\rangle = E_n^*|u_n\rangle\rangle$$

$$H\Gamma|u_n\rangle\rangle = -E_n^*\Gamma|u_n\rangle\rangle$$

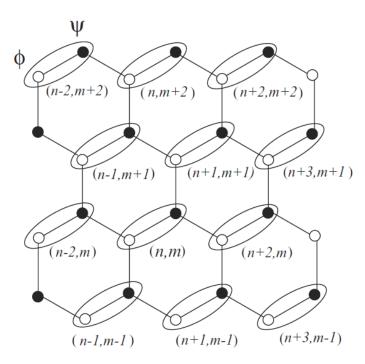

If Re $E_n \neq 0$, it holds that $E_n \neq -E_n^*$, so $|u_n\rangle$ and $\Gamma|u_n\rangle$ are independent

$$\Gamma|u_n\rangle\rangle$$
 \longrightarrow $|u_n\rangle$ Pair of "gapped" state

On the other hand, for Re $E_n=0$, they are not independent with the same energy

$$\Gamma|u_n\rangle\rangle\sim|u_n\rangle$$
 Isolated "zero" mode

From this property, we have two different patterns of spectrum



These two patterns of spectrum are not adiabatically connected to each other, so the latter can keep stable zero mode

Graphene with non-Hermitian on-site potential

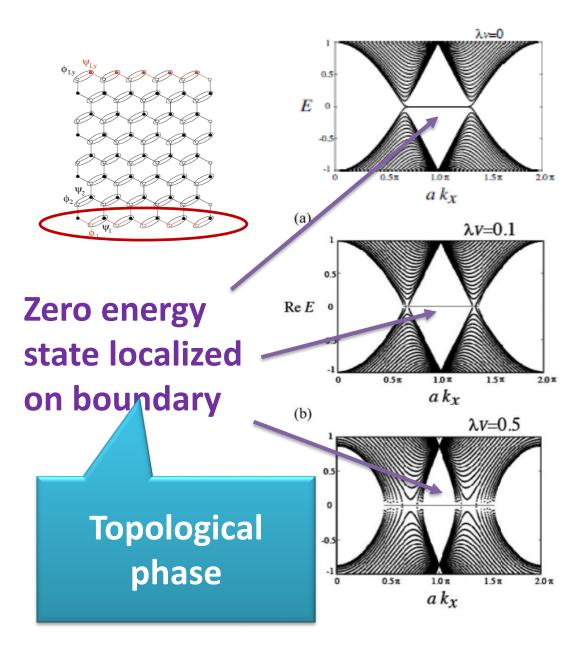
[Esaki-MS-Hasebe-Kohmoto (11)]

honeycomb lattice

$$H = t \sum_{\langle i,j \rangle} \left(c_i^{\dagger} c_j + H.c \right) + i \lambda_{v} \sum_{i} \xi_i c_i^{\dagger} c_i$$

non-Hermitian on-site potential

In momentum space, we have


$$H(\mathbf{k}) = \left(egin{array}{cc} i\lambda_{\mathrm{V}} & D(\mathbf{k}) \\ D^{\dagger}(\mathbf{k}) & -i\lambda_{\mathrm{V}} \end{array}
ight)$$

$$D(\mathbf{k}) = 2t\cos(k_x/2) + te^{i\sqrt{3}k_y/2}$$

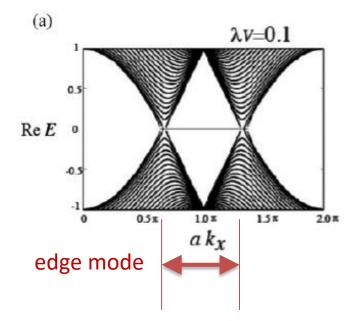
$$\Gamma^{-1}H(\mathbf{k})\Gamma = -H^{\dagger}(\mathbf{k}) \qquad \Gamma = \sigma_z$$

Q-symmetry

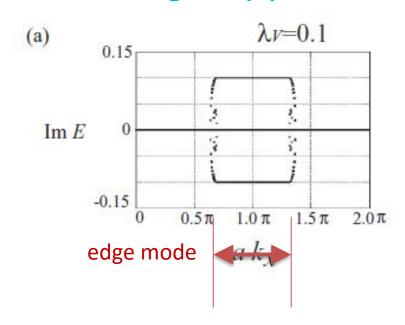
Spectrum with boundary

Hermiticity

$$\lambda_{\rm V} = 0$$

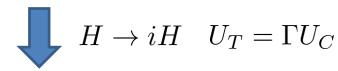

$$\lambda_{\rm V} = 0.1$$

$$\lambda_{\rm V} = 0.5$$


non-Hermiticity

In contrast to ordinary topological phase, non-hermitian topological phase has an edge state with an imaginary part of the spectrum.

Imaginary part of E



Imaginary part of E for edge mode

2) C-sym+Q-sym protected topological phase

$$\begin{array}{ll} \text{C-sym} & U_C^{-1}HU_C=H^t & U_CU_C^*=-1 \end{array}$$

Q-sym
$$\Gamma^{-1}H\Gamma=-H^{\dagger}$$
 $\Gamma^{2}=1$ $\Gamma U_{C}=-U_{C}\Gamma^{*}$

$$\mathbf{K\text{-sym}} \quad U_T^{-1}HU_T = H^* \qquad \qquad U_TU_T^* = 1$$

K-sym
$$U_T^{-1}HU_T=H^*$$
 $U_TU_T^*=1$
$$Q'\text{-sym} \quad \Gamma^{-1}H\Gamma=H^\dagger \qquad \Gamma^2=1 \qquad \Gamma U_T=-U_T\Gamma^*$$

$$T = U_T K$$

T²=1 TRS
$$THT^{-1} = H$$
 $T^2 = 1$

$$\begin{array}{ll} {\bf Psude-} & & & \\ {\bf hermicity} & & \Gamma^{-1}H\Gamma=H^{\dagger} & & & \{\Gamma,T\}=0 \end{array}$$

Interestingly, due to the additional pseudo-hemiticity, $T^2=1$ TRS gives a kind of Kramers pairs.

$$H|\phi_n\rangle = E_n|\phi_n\rangle, \quad H^{\dagger}|\phi_n\rangle\rangle = E_n^*|\phi_n\rangle\rangle$$

From psuedo-hermiticity

$$\Gamma^{-1}H\Gamma = H^{\dagger}$$

Apply *T* from the left

$$H\Gamma|\phi_n\rangle\rangle = E_n^*\Gamma|\phi_n\rangle\rangle$$

$$HT\Gamma|\phi_n\rangle\rangle = E_nT\Gamma|\phi_n\rangle\rangle$$

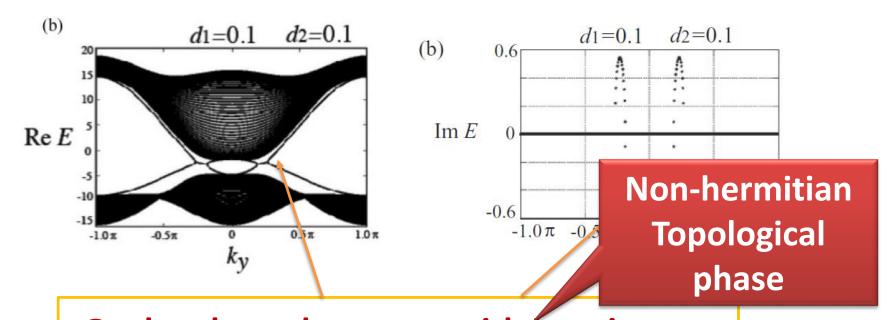
So $|\phi_n\rangle$ and $T\Gamma |\phi_n\rangle\rangle$ have the same energy. We also

 $T^{2} = 1 \qquad \Gamma^{\dagger} = \Gamma$ $\langle \langle \phi_{n} | T\Gamma | \phi_{n} \rangle \rangle = \langle \langle T^{2} \Gamma \phi_{n} | T\phi_{n} \rangle \rangle = \langle \langle \phi_{n} | \Gamma^{\dagger} T\phi_{n} \rangle \rangle = 1$ Ajoint of Γ Anti-unitarity of *T*

Possible new mechanism of topological stability

Kramers pair for T²=1 TRS

2dim SO(3,2) Luttinger model


[Esaki-MS-Hasebe-Kohmoto (11)]

$$H(\mathbf{k}) = \epsilon(\mathbf{k}) + V \sum_{a=3,4,5} d_a(\mathbf{k}) \Gamma_a + iV \sum_{a=1,2} d_a \Gamma_a$$

TRS +pseudo hermiticity

non-Hermitian term

Spectrum with boundary

Gapless boundary state with imaginary part of the spectrum

Summary

- To obtain topological phases, symmetry is very important.
- PHS is not anti-unitary for non-Hermitian Hamiltonians, which changes the basic set of symmetries relevant to topology
- The change of the basic set of symmetries makes it possible to obtain new topological phases intrinsic to non-Hermitian systems

For recent progress, see also poster by Kawabata