Symmetries of quantum potentials:

From $\mathcal{PT}\text{-}$ to super-, broken to unbroken

Géza Lévai

Institute for Nuclear Research, Hungarian Academy of Sciences (MTA Atomki), Debrecen, Hungary

NHP – PHHQP XVIII, 4–13 June 2018, Bengaluru, India

1. On the effect of symmetries on physical systems

Symmetry ⇒ special spectral patterns
What if there are **two** distinct symmetries?

The basics of \mathcal{PT} symmetry

The basics of supersymmetric quantum mechanics

2. Symmetries of quantum mechanical potentials

How do they match: general considerations

3. Examples from exactly solvable potentials

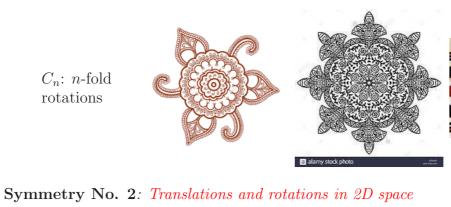
Combining unbroken/broken \mathcal{PT} symmetry with unbroken/broken SUSY What do we learn from it?

The basics on potential types: shape-invariant, Natanzon, etc. $\,$

1. On the effect of symmetries on physical systems

A simple example from classical physics

 ${\bf Symmetry\ No.\ 1:\ \it Discrete\ rotations}$



 E_2 : Euclidean group in 2D

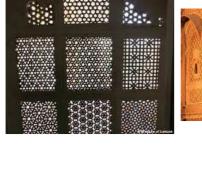
What about their joint effect?

Tile the 2D plane with C_n -symmetric plates

They restrict each other: $\begin{tabular}{ll} Not \ an \ n \ remain \ allowed \end{tabular}$

 $Not\ an\ n\ remain\ allowed$ $Not\ all\ translations\ and\ rotations\ remain\ allowed$

 $\mathbf{BUT}:$ their $\mathbf{combined}$ \mathbf{effect} is more spectacular...



(??? But why tile the praeri???)

 ${\bf 2. \ Symmetries \ of \ quantum \ mechanical \ potentials}$

 $1D, \, \hbar = 2m = 1$

 $-\frac{\mathrm{d}^2\Psi}{\mathrm{d}x^2} + V(x)\Psi(x) = E\Psi(x)$

 $x \in [-a, a], a < \infty$

 $x \in [0, \infty)$

 $x \in (-\infty, \infty)$

x can be shifted to this domain Radial problems; extended to $x \in (-\infty, \infty)$ in $\mathcal{PT}\mathrm{QM}$

Supersymmetric quantum mechanics (SUSYQM) $\,$ $Connects\ different\ isospectral\ potentials$

 $Unbroken\ or\ broken,\ depending\ on\ the\ SUSY\ transformation$

Possible symmetries:

Special type of complex potentials Unbroken or broken, depending on the potential

 $\mathcal{P}\mathcal{T}\text{-symmetric}$ quantum mechanics

Symmetries based on (Lie) algebras Possible after defining further (differential) operators

We combine here SUSYQM and $\mathcal{P}\mathcal{T}\mathrm{QM}$

What are the consequences? What if they are broken?

$$\mathcal{PT}: V(x) \equiv V_R(x) + iV_I(x) \Rightarrow V^*(-x)$$

$$V_R(-x) = V(x), \quad V_I(-x) = -V(x)$$
tates
$$\mathcal{PT}\psi_n^{(q)}(x) = \psi_n^{(q)}(x)$$

Real with states

Energy eigenvalues:

and/or Complex conjugate with states $\mathcal{P}T\psi_n^{(q)}(x) = \psi_n^{(-q)}(x)$

Real energy eigenvalues can merge to complex conjugate pairs: $% \left(1\right) =\left(1\right) \left(1\right$ Breakdown of $\mathcal{P}\mathcal{T}$ symmetry Merging/re-emerging states carry the quasi-parity $q=\pm 1$ quantum number

Potentials can be defined off the real x axis Reconsidered boundary conditions

Note: The breakdown of $\mathcal{P}\mathcal{T}$ symmetry does not occur for every potenial

A simple case: Imaginary coordinate shift: $\delta = -\mathrm{i}c$ It has no effect on the spectrum

Avoids singularities e.g. at x = 0: $[0, \infty) \Rightarrow (-\infty, \infty)$

The basics of supersymmetric quantum mechanics

The superalgebra of $N=2~{\rm SUSYQM}$

$$\{Q,Q^{\dagger}\}=\mathcal{H}$$

$$Q^2=(Q^{\dagger})^2=0$$

$$[Q,\mathcal{H}]=[Q^{\dagger},\mathcal{H}]=0$$

Realization of the charge operators and the SUSY Hamiltonian in terms of
$$2 \times 2$$
 matrices:

 $Q = \begin{pmatrix} 0 & 0 \\ A & 0 \end{pmatrix}, \qquad Q^\dagger = \begin{pmatrix} 0 & A^\dagger \\ 0 & 0 \end{pmatrix}, \qquad \mathcal{H} = \begin{pmatrix} A^\dagger A & 0 \\ 0 & AA^\dagger \end{pmatrix} \equiv \begin{pmatrix} H_- & 0 \\ 0 & H_+ \end{pmatrix}$

$$H_-$$
 "bosonic" and H_+ "fermionic" components
The SUSY of ${\cal H}$ implies isospectrality of H_- and H_+
$$H_-\psi^{(-)}=E^{(-)}\psi^{(-)} \qquad \qquad H_+\psi^{(+)}=E^{(+)}\psi^{(+)}$$

 $H_{+}(A\psi^{(-)}) = AA^{\dagger}(A\psi^{(-)}) = AH_{-}\psi^{(-)} = E^{(-)}A\psi^{(-)}$ except when $A\psi^{(-)} = 0$ holds

Take the differential realization

$$A = \frac{d}{dx} + W(x), \qquad A^{\dagger} = -\frac{d}{dx} + W(x),$$

$$H_{\pm}\psi^{(\pm)}(x) = \left(-\frac{d^2}{dx^2} + V_{\pm}(x)\right)\psi^{(\pm)}(x) = E^{(\pm)}\psi^{(\pm)}(x).$$

where

where
$$V_{\pm}(x) = W^2(x) \pm \frac{\mathrm{d}}{\mathrm{d}x} W(x).$$
 For unbroken SUSY the $W(x)$ superpotential is related to $\psi_0^{(-)}(x)$ as

 $W(x) = -\frac{\mathrm{d}}{\mathrm{d}x} \ln \psi_0^{(-)}(x)$ For broken SUSY $\psi_0^{(-)}$ is replaced with other eigenfunctions: $H_-\chi=\epsilon\chi$

S
$$\rightarrow \pm \infty$$
 Case c):

If $\chi(x) = \psi_0^{(-)}(x)\xi(x)$, then

$$\chi(x)$$
: unphysical, but nodeless

Case b): unbound at $x \to \pm \infty$

Case c): unbound at $x \to +/-\infty$
 ϵ : factorization energy

 $W(x) = -\frac{\mathrm{d}}{\mathrm{d}x} \ln \chi(x) = -\frac{\mathrm{d}}{\mathrm{d}x} \left[\ln \psi_0^{(-)}(x) + \ln \xi(x) \right] \equiv W_0(x) + \widetilde{W}(x).$

Separate the $\mathbf{even}(e)/\mathbf{odd}(o)$ AND $\mathrm{real}(R)/\mathrm{imaginary}(I)$ components: $V_{\pm}(x) = V_{\pm R}(x) + iV_{\pm I}(x)$

$$W(x) = W_{Re}(x) + W_{Ro}(x) + iW_{Ie}(x) + iW_{Io}(x)$$
 Then
$$V_{-}(x) = \left(W_{Re}^2 + W_{Ro}^2 - W_{Ie}^2 - W_{Io}^2 - W_{Ro}' + \epsilon_R\right) + \left(2W_{Re}W_{Ro} - 2W_{Ie}W_{Io} - W_{Re}'\right)$$

Then

$$+\mathrm{i}\left(2W_{Re}W_{Ie}+2W_{Ro}W_{Io}-W_{Io}'+\epsilon_{I}\right)+\mathrm{i}\left(2W_{Re}W_{Io}+2W_{Ro}W_{Ie}-W_{Ie}'\right)$$

$$V_{-}(x) \text{ is } \mathcal{PT}\text{-symmetric, if }$$

$$W_{Re}'(x)-W_{Ro}(x)W_{Re}(x)+2W_{Ie}(x)W_{Io}(x)=0$$

Inhomogeneous system of first-order differential equation for $W_{Re}(x)$ and $W_{Io}(x)$

 $W'_{Io}(x) - 2W_{Ie}(x)W_{Re}(x) - 2W_{Ro}(x)W_{Io}(x) = \epsilon_I$

What about $V_{+}(x)$?

$$V_{+}(x) = V_{-}(x) + 2(W'_{Re}(x) + W'_{Ro}(x) + iW'_{Ie}(x) + iW'_{Io}(x))$$

 $W'_{Re} = 0$ and $W'_{Io} = 0$. $V_{+}(x)$ is \mathcal{PT} -symmetric if For $W(x) \neq const.$ this means $W_{Re} = 0$, $W_{Io} = 0$, implying $\epsilon_I = 0$

This implies

 $\mathcal{P}T: W(x) = \frac{W_{Ro}(x) + iW_{Re}(x)}{} \Rightarrow -W(x)$

Therefore,
$$\chi(x) \sim \exp\left(-\int^x W(y)\mathrm{d}y\right)$$

 $\mathcal{P}\mathcal{T}\chi(x) \sim \chi(x)$ is the eigenfunction of \mathcal{PT} : The \mathcal{PT} symmetry of $V_+(x)$ requires real factorization energy ϵ

3. Examples from exactly solvable potentials

The world map of solvable potentials

${\bf A}$ word about PHHQP sites

- 1 Prague 2 Prague 3 Istanbul

 - 3 Istanbul
 4 Stellenbosch
 5 Bologna
 6 London
 7 Benasque
 8 Mumbai
 9 Hangzhou
 10 Dresden
 11 Paris
 - 12 Istanbul
 - 13 Jerusalem 14 Sétif

 - 15 Palermo 16 Kyoto 17 Bad Honnef 18 Bengaluru

The main territories in the map

 $_2F_1$: Natanzon class, solved by $_2F_1$ in general, by $P_n^{(\alpha,\beta)}(z)$ for bound states

 $_1F_1$: Natanzon confluent class, solved by $_1F_1$ in general, by $L_n^{(\alpha)}(z)$ for bound states

Shape-invariant: Natanzon (confluent) subclass, closed under a SUSY transformation

 $\Sigma_2 F1$ and $\Sigma_1 F_1$: solutions in terms of the linear combination of several $({\rm confluent})\ {\rm hypergeometric}\ {\rm functions}$

> Non-SI SUSY partners of Natanzon (confluent) potentials Potentials solved by exceptional orthogonal polynomials, a new type of SI

Solutions containing both independent solutions gen. Woods–Saxon $\,$ J_{ν} : potentials solved by Bessel functions

 $\Sigma x^p \colon$ Quasi-exactly solvable potentials: exact solutions up to a finite n

 $\implies AMERICA$?

Outside the world: solvable by $\operatorname{semi-analytically}$ solvable potentials, etc.

A reminder on the exact solutions of the Schrödinger equation

An old variable transformation method

Schrödinger eq. \Longrightarrow differential equation of special function F

 ${\cal E}$ and the main potential terms

Bhattacharjie and Sudarshan 1962

 $\frac{\mathrm{d}^2 \psi}{\mathrm{d}x^2} + (E - V(x))\psi(x) = 0 \qquad \text{insert} \qquad \psi(x) = \mathbf{f}(x)F(\mathbf{z}(x))$

Schwartzian derivatve terms

and compare with
$$\frac{\mathrm{d}^2 F}{\mathrm{d}\mathbf{z}^2} + Q(\mathbf{z}) \frac{\mathrm{d}F}{\mathrm{d}\mathbf{z}} + R(\mathbf{z})F(\mathbf{z}) = 0$$

to get

to get
$$E - V(x) = \frac{\mathbf{z}'''(x)}{2\mathbf{z}'(x)} - \frac{3}{4} \left(\frac{\mathbf{z}''(x)}{\mathbf{z}'(x)}\right)^2 + (\mathbf{z}'(x))^2 \left(R(\mathbf{z}(x)) - \frac{1}{2} \frac{\mathrm{d}Q(\mathbf{z})}{\mathrm{d}\mathbf{z}} - \frac{1}{4}Q^2(\mathbf{z}(x))\right).$$

Connection

to

Connection to SUSYQM:
$$W(x) = -\frac{1}{2}Q(z(x))z'(x) + \frac{z''(x)}{2z'(x)}$$

Apply the method to the Jacobi polynomials: $F(z) = P_n^{(\alpha,\beta)}(z)$

$$V(x) = -\frac{z'''(x)}{2z'(x)} + \frac{3}{4} \left(\frac{z''(x)}{z'(x)}\right)^2 + \frac{C}{\phi(z)} \left[s_I(1-z^2(x)) + s_{II} + s_{III}z(x)\right].$$

 $\mathbf{z}(x)$ obtained from

$$\left(\frac{\mathrm{d}z}{\mathrm{d}x}\right)^2\phi(z)\equiv\left(\frac{\mathrm{d}z}{\mathrm{d}x}\right)^2\frac{p_\mathrm{I}(1-z^2)+p_\mathrm{II}+p_\mathrm{III}z}{(1-z^2)^2}=C\ .$$
 by direct integration

$$\int \phi^{1/2}(\mathbf{z}) d\mathbf{z} = C^{1/2}x + \varepsilon \ .$$

$$\varepsilon: \text{ integration constant, coordinate shift, imaginary in } \mathcal{P}\mathcal{T}QM: \varepsilon = -\mathrm{i}c$$

 ε : integrates The solutions are

$$\psi(x) \sim [\phi(z(x))]^{\frac{1}{4}} (1 + z(x))^{\frac{\beta}{2}} (1 - z(x))^{\frac{\alpha}{2}} P_n^{(\alpha,\beta)}(z(x))$$
.

 $(n + \frac{1}{2} + \omega)^2 - \frac{1}{4} + s_I - p_I \frac{E_n}{C} = 0$

$$(1 - \omega^2 - \rho^2) + s_{II} - p_{II} \frac{E_n}{C} = 0$$
$$-2\omega\rho + s_{III} - p_{III} \frac{E_n}{C} = 0$$

 $\omega = (\alpha + \beta)/2 \text{ and } \rho = (\alpha - \beta)/2$ Solving the problem: chose $p_i \Longrightarrow \text{get } z(x) \Longrightarrow \text{get } V(x) = 0$

chose $p_i \Longrightarrow \text{get } z(x) \Longrightarrow \text{get } V(x) \Longrightarrow \text{express } E_n$

The $\mathcal{P}\mathcal{T}$ -symmetrization of z(x)

...is related to the
$$\mathcal{PT}$$
-symmetrization of $z'(x) = C^{1/2}(1-z^2)[\phi(x)]^{-1/2}...$
... that is to that of $\phi(x) = p_{\rm I}(1-z^2) + p_{\rm II} + p_{\rm III}z(1-z^2)^2...$
...that depends on $p_{\rm I}$, $p_{\rm II}$ and $p_{\rm III}$

 $\phi(z(x))$ is \mathcal{PT} -even if $\begin{cases} z(x) \text{ is } \mathcal{PT}$ -even, i.e. p_i are real z(x) is \mathcal{PT} -odd, i.e. p_I and p_{II} are real, p_{III} imaginary

$$V(x) = -\frac{z'''(x)}{2z'(x)} + \frac{3}{4} \left(\frac{z''(x)}{z'(x)}\right)^2 + \frac{C}{\phi(z)} \left[s_I(1 - z^2(x)) + s_{II} + s_{III}z(x)\right]$$

$$V(x)$$
 is \mathcal{PT} -even if $\begin{cases} z(x) \text{ is } \mathcal{PT}$ -even, i.e. s_i are real $z(x)$ is \mathcal{PT} -odd, i.e. s_I and s_{II} are real, s_{III} imaginary Note: The Schwartzian derivative is \mathcal{PT} -even if $z(x)$ has definite \mathcal{PT} -parity

 $\psi(x) \sim [\phi(z(x))]^{\frac{1}{4}} (1 + z(x))^{\frac{\beta}{2}} (1 - z(x))^{\frac{\alpha}{2}} P_n^{(\alpha,\beta)}(z(x))$. depend on $z(x),\,\phi(z),\,\alpha$ and β

The \mathcal{PT} -transformation properties and normalizability of

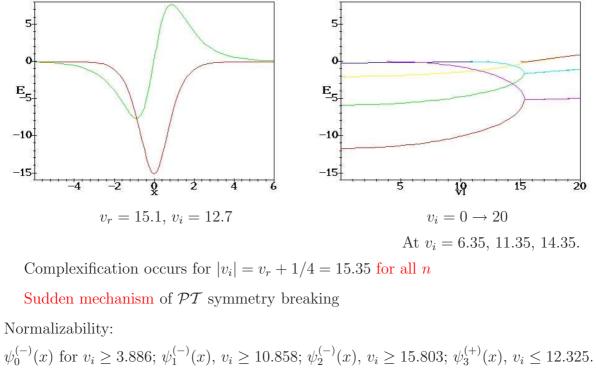
The list of (real) shape-invariant potentials $(a = 1, C = \pm 1)$

$(z')^2 = $ (Class)	V(x)	$x \in$	Name					
	$(B^{2} - A^{2} - A)\operatorname{sech}^{2}(x) + B(2A + 1)\operatorname{sech}(x) \tanh(x)$ $(B^{2} + A^{2} + A)\operatorname{cosech}^{2}(x) - B(2A + 1)\operatorname{cosech}(x) \coth(x)$ $(B^{2} + A^{2} - A)\operatorname{cosec}^{2}(x) - B(2A - 1)\operatorname{cosec}(x) \cot(x)$ $A(A - 1)\operatorname{sec}^{2}(x) + B(B - 1)\operatorname{cosec}^{2}(x)$ $-A(A + 1)\operatorname{sech}^{2}(x) + B(B - 1)\operatorname{cosech}^{2}(x)$	$(-\infty, \infty)$ $[0, \infty)$ $[0, \pi]$ $[0, \pi/2]$ $[0, \infty)$	Scarf II gen. Pöschl-Teller Scarf I (Pöschl-Teller I) (Pöschl-Teller II)					
$C(1-z^2)^2$ (PII)	$-A(A + 1)\operatorname{sech}^{2}(x) + 2B\tanh(x) A(A - 1)\operatorname{cosech}^{2}(x) - 2B\coth(x) A(A + 1)\operatorname{cosec}^{2}(x) - 2B\cot(x)$	$(-\infty, \infty)$ $[0, \infty)$ $[0, \pi]$	Rosen-Morse II Eckart Rosen-Morse I					
Cz	$\frac{1}{4}\omega^2 x^2 + \frac{l(l+1)}{x^2} - (l + \frac{3}{2})\omega$	$[0,\infty)$	3d harmonic oscillator					
(LI) <i>C</i>	$\frac{e^4}{4(l+1)^2} - \frac{e^2}{x} + \frac{l(l+1)}{x^2}$	$[0,\infty)$	Coulomb					
(LII) Cz^2	$A^{2} - B(2A+1)\exp(-x) + B^{2}\exp(-2x)$	$(-\infty,\infty)$	Morse					
$\begin{array}{c} (\text{LIII}) \\ C \\ (\text{HI}) \end{array}$	$-\frac{1}{2}\omega + \frac{1}{4}\omega^2 x^2$	$(-\infty,\infty)$	1d harmonic oscillator					
Obtained by selecting certain single terms on the right hand side of $E-V(x)=\dots$								

$$p_I = 1, \ p_{II} = p_{III} = 0, \ s_I = 1/4, \ s_{II}, \ s_{III}$$

The transition to complex energy eigenvalues

Reparametrize to $V(x) = -v_r V_R(x) + i v_i V_I(x)$, v_r fixed, v_i varied



A Natanzon-class example: the generalized Ginocchio potential

 $G.~L\'evai~et~al.~J.~Phys.~A~{\bf 36}~(2003)~7611$ $p_I=-C/(4\gamma^4),~~p_{II}=-p_{III}=-C(\gamma-1)/(2\gamma^4),~~s_I=1/4,~s_{III},~s_{III}$

$$\gamma^4(s(s+1)+1-\gamma^2) \qquad \text{coth}^2 u$$

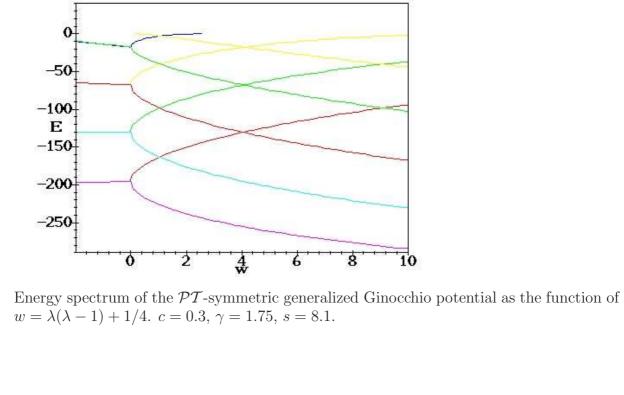
$$\begin{split} V(r) &= -\frac{\gamma^4(s(s+1)+1-\gamma^2)}{\gamma^2+\sinh^2 u} + \gamma^4 \lambda (\lambda-1) \frac{\coth^2 u}{\gamma^2+\sinh^2 u} \\ &-\frac{3\gamma^4(\gamma^2-1)(3\gamma^2-1)}{4(\gamma^2+\sinh^2 u)^2} + \frac{5\gamma^6(\gamma^2-1)^2}{4(\gamma^2+\sinh^2 u)^3} \;, \end{split}$$
 where the Implicit $u(x)$ function is
$$r \equiv x - \mathrm{i}c = \frac{1}{\gamma^2} \qquad \Big[\tanh^{-1} \Big((\gamma^2+\sinh^2 u)^{-\frac{1}{2}} \sinh u \Big) \end{split}$$

 $+ (\gamma^2 - 1)^{\frac{1}{2}} \tan^{-1} \left((\gamma^2 - 1)^{\frac{1}{2}} (\gamma^2 + \sinh^2 u)^{-\frac{1}{2}} \sinh u \right) \right].$ $c \neq 0 \text{ to avoid singularity at } x = 0 \qquad z(x) = \cosh(2u(x)) \text{ is } \mathcal{PT}\text{-even}$

$$\gamma=1: \text{ generalized P\"oschl-Teller limit}$$
 The bound-state solutions depend on the $q=\pm 1$ quasi-parity
$$\psi_n^{(q)}(x) = N_n^{(q)}(\gamma^2+\sinh^2 u)^{1/4}(\cosh u)^{-2n-1-\mu_{nq}-q(\lambda-\frac{1}{2})}(\sinh u)^{\frac{1}{2}+q(\lambda-\frac{1}{2})} \times P_n^{(q(\lambda-\frac{1}{2}),-2n-1-\mu_{nq}-q(\lambda-\frac{1}{2}))}(\cosh(2u)) \ .$$

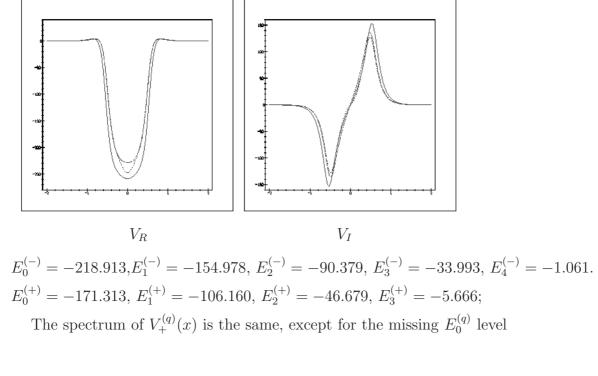
Complexification of the energy eigenvalues $E_n^{(q)} = -\gamma^4 \mu_{nq}^2$

$$\mu_{nq} = \frac{1}{\gamma^2} \left[-\left(2n + 1 + q(\lambda - \frac{1}{2})\right) + \left[\gamma^2(s + \frac{1}{2})^2 + (1 - \gamma^2)\left(2n + 1 + q(\lambda - \frac{1}{2})\right)^2\right]^{1/2} \right]$$



 $c = 0.3, \ \gamma = 1.75, \ s = 8.1, \ \lambda = 1.25$

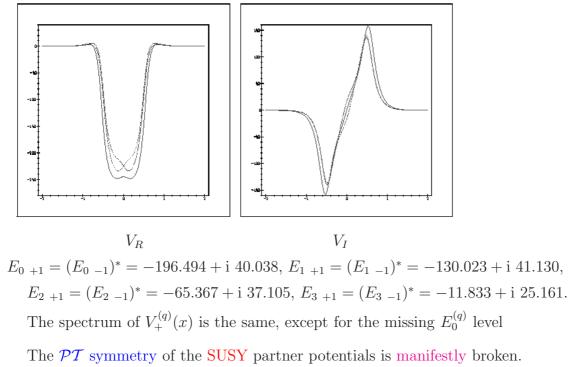
 $V_{-}(x)$: solid line, $V_{+}^{(q=+)}(x)$: dashed line, $V_{+}^{(q=-)}(x)$: dotted line



Unbroken SUSY, broken \mathcal{PT} symmetry: complex μ_{qn} , $\lambda = \frac{1}{2} - i\lambda$

 $c = 0.3, \ \gamma = 1.75, \ s = 8.1, \ \lambda = 0.5 + 1.25i$

 $V_{-}(x)$: solid line, $V_{+}^{(q=+)}(x)$: dashed line, $V_{+}^{(q=-)}(x)$: dotted line



Beyond the Natanzon-class: the rationally extended Scarf II potential

Solved by the X_1 type exceptional Jacobi polynomials Gomez-Ullate et al. 2010

$$\hat{P}_{n+1}^{(\alpha,\beta)}(z) = \left[-\frac{z}{2} + \frac{\beta + \alpha}{\beta - \alpha} \left(\frac{1}{2} + \frac{1}{\alpha + \beta + 2n} \right) \right] P_n^{(\alpha,\beta)}(z) - \frac{P_{n-1}^{(\alpha,\beta)}(z)}{\alpha + \beta + 2n}.$$
 They satisfy a differential equation similar to ordinary Jacobi polynomials

They form an orthogonal basis, but start with degree $\nu=n+1>0$

Linear combinations of two Jacobi polynomials The potential: Quesne 2008, Bagchi et al. 2009

 $V(x) = -\frac{(\beta - \alpha)^2 + (\beta + \alpha)^2 + 1}{4\cosh^2 x} + \frac{\mathrm{i}(\beta + \alpha)(\beta - \alpha)\sinh x}{2\cosh^2 x} - \frac{2(\beta + \alpha)}{\beta + \alpha - \mathrm{i}(\beta - \alpha)\sinh x} + \frac{2[(\beta + \alpha)^2 - (\beta - \alpha)^2]}{(\beta + \alpha - \mathrm{i}(\beta - \alpha)\sinh x)^2},$

Bound-state eigenfunctions:
$$\psi_n = N_n [1 - \mathrm{i} \sinh(x)]^{\frac{\alpha}{2} - \frac{1}{4}} [1 + \mathrm{i} \sinh(x)]^{\frac{\beta}{2} - \frac{1}{4}} [\alpha + \beta - \mathrm{i}(\beta - \alpha) \sinh x]^{-1} \hat{P}_{n+1}^{(\alpha,\beta)} [\mathrm{i} \sinh(x)]$$
 Energy eigenvalues:
$$E_n = -\left[n + \frac{1}{2}(\alpha + \beta - 1)\right]^2$$

This potential is related to the Scarf II potential by ${\color{red} {\bf SUSYQM}}$

And it can be \mathcal{PT} -symmetrized

Bagchi and Quesne 2010 $also,\ Mandal,\ Yadav,\ Kumari$

Take the Scarf II potential and a SUSY transformation with $\chi(x) = [1 - \mathrm{i} \sinh(x)]^{-(\beta + \alpha - 1)/4} [1 + \mathrm{i} \sinh(x)]^{-(\beta - \alpha)/4} (c + \mathrm{i} \sinh x).$

and factorization energy $\epsilon = -\frac{1}{4}(\beta + \alpha - 3)^2$

 $V_{+}(x)$ becomes the rationally extended Scarf II potential for $c = -(\beta - \alpha)/(\beta + \alpha - 2)$

The transformation introduces a new ground state at $E=\varepsilon$ It can be $\mathcal{PT}\text{-symmetrized}$ as usual: $\alpha,\,\beta$ real

With $\alpha \Rightarrow q\alpha$ two SUSY partners are generated In fact, $V_{+}(x)$ can be non-singular only in the \mathcal{PT} -symmetric setting:

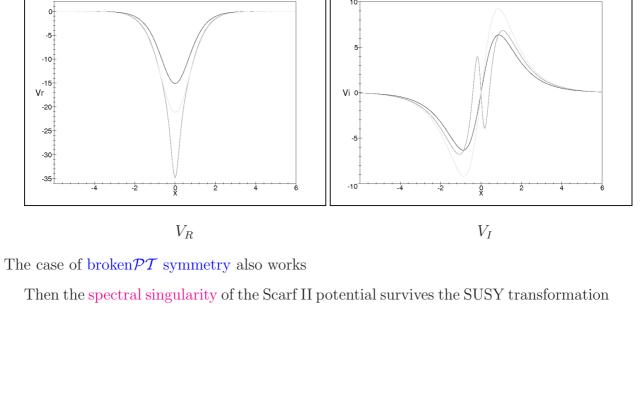
 $\chi(x)$ cannot be nodeless in the real case

The rationally extended Scarf II potential from broken SUSY and unbroken \mathcal{PT} symmetry:

The \mathcal{PT} -symmetric Scarf II potential and its partners with $\alpha=-1.628,\,\beta=-5.296$

 $V_{+}^{(+)}(x)$: New ground state at E=-24.621 $V_{+}^{(-)}(x)$: New ground state at E=-11.116

+ ()



Extended to $x \in (-\infty, \infty)$ by an imaginary coordinate shift

$$V(x)=\frac{1}{4}\omega^2(x-{\rm i}c)^2+(\alpha^2-\frac{1}{4})(x-{\rm i}c)^{-2}.$$
 ${\cal PT}\text{-symmetric}$ for real ω and α^2

Two sets of eigenstates discriminated by quasi-parity q

 $\psi_n^{(q)}(x) = N_n^{(q)} \exp\left[-\frac{1}{4}\omega(x - ic)^2\right](x - ic)^{q\alpha - 1/2}L_n^{(q\alpha)}\left[\frac{1}{2}(x - ic)^2\right]$

$$E_n^{(q)} = \omega(2n+1+q\alpha).$$
Unbroken/broken $\mathcal{P}\mathcal{T}$ symmetry: real/imaginary α $(w=\alpha^2)$

10_Ţ

Unbroken SUSY: ground state $\psi_n^{(q)}$ eliminated

Transformation with broken SUSY adding a new ground state

Works for both unbroken and broken $\mathcal{P}\mathcal{T}$ symmetry

Sinha, Lévai, Roy 2004

With superpotential

$$W^{(q)}(x) = \frac{\omega}{2}(x-\mathrm{i}c) + \frac{q\alpha+1/2}{x-\mathrm{i}c} + \frac{2\omega(x-\mathrm{i}c)}{2q\alpha+2+\omega(x-\mathrm{i}c)^2}$$

$$v_+(x) \equiv V_+^{(q)}(x) - q\alpha\omega = \frac{\omega^2}{4}(x-\mathrm{i}c)^2 + \frac{\alpha^2-1/4}{(x-\mathrm{i}c)^2} + 3\omega$$

$$v_-^{(q)}(x) \equiv V_-^{(q)}(x) - q\alpha\omega = \frac{\omega^2}{4}(x-\mathrm{i}c)^2 + \frac{(q\alpha+1/2)(q\alpha+3/2)}{(x-\mathrm{i}c)^2} + 2\omega$$

$$+ \frac{4\omega}{2q\alpha+2+\omega(x-\mathrm{i}c)^2} - \frac{8\omega(2q\alpha+2)}{(2q\alpha+2+\omega(x-\mathrm{i}c)^2)^2}.$$
 Note that technically, the inverse transformation was used, with the $\mathcal{P}\mathcal{T}$ HO as target But, the transformation corresponds to inserting new ground state to the $\mathcal{P}\mathcal{T}$ HO

Energy eigenvalues:

$$E_{n,+}^{(q)} = \omega(2n + 4 + q\alpha)$$
 and $E_{n,-}^{(q)} = \omega(2n + 2 + q\alpha)$

Bound-state wavefunctions, n > 0:

$$\begin{array}{lcl} \psi_{n,-}^{(q)}(x) & = & N_{n,-}^{(q)}e^{-\omega(x-\mathrm{i}c)^2/4}(x-\mathrm{i}c)^{q\alpha-\frac{1}{2}}\Big\{-2(n+1)L_{n+1}^{(q\alpha)}[\frac{1}{2}\omega(x-\mathrm{i}c)^2]\\ & + & \left[2n+2q\alpha+4-\frac{4(q\alpha+1)}{2q\alpha+2+\omega(x-\mathrm{i}c)^2}\right]L_n^{(q\alpha)}[frac12\omega(x-\mathrm{i}c)^2]\Big\}, \end{array}$$
 The new ground state:
$$\psi_{0,-}^{(q)}(x) & = & N_{0,-}^{(q)}\exp\left[-\int W^{(q)}(x)\mathrm{d}x\right] \end{array}$$

 $= N_{0,-}^{(q)} e^{-\omega(x-ic)^2/4} (x-ic)^{-q\alpha-\frac{1}{2}} [2q\alpha+2+\omega(x-ic)^2]^{-1}.$

Similar to generating the rationally extended harmonic oscillator
$$G$$
. The wave functions there contain X_1 type exceptional Laguerre polynomials (Unfortunately, these were not known in 2004)

 $Quesne\ 2008$

Summary of the SUSY transformations of \mathcal{PT} -symmetric potentials

Name	V_{-} Type	$\mathcal{P}\mathcal{T}$	SUSY	Name	V_{+} Type	$\mathcal{P}\mathcal{T}$
Scarf II	SI (PI)	U B U B	U U B B	Scarf II RE Scarf II	SI (PI) SI (PI) Non-Nat. SI SI	U NO U NO
Gen. Ginocchio	Natanzon	U B	U U	"GG-SUSY"	Non-Nat.	U NO
НО	SI (LI)	U B U B	U U B B	HO RE HO	SI (LI) SI (LI) Non-Nat. SI	U NO U NO

Summary and outlook

- \bullet The combination of \mathcal{PT} symmetry and SUSY leads to characteristic results \bullet The breakdown of \mathcal{PT} symmetry in V_- destroys the \mathcal{PT} symmetry of V_+
- \Rightarrow There can be no broken \mathcal{PT} symmetry in rationally extended potentials \bullet The isospectrality induced by SUSYQM restricts \mathcal{PT}
- The $\mathcal{P}\mathcal{T}$ symmetry of V_- restricts the SUSY transformations
- Yet the results are inspiring \bullet SUSYQM determines scattering too The spectrum can also be determined from T(k) and R(k)
- \bullet SUSYQM has many more realizations (matrix sizes, differential operators) that could be combined with $\mathcal{P}\mathcal{T}$ symmetry

 \bullet Many more potentials could be considered

• Connection with algebras: e.g. potential algebra

The combination of symmetries is always fascinating

