Non-Hermitian Physics - PHHQP XVIII

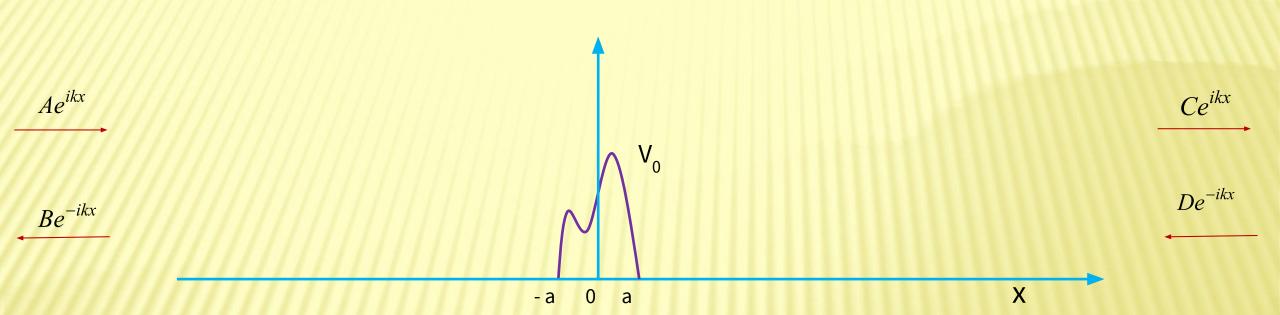
Super Periodic Potential

Mohammad Hasan
(Scientist)
Space Astronomy Group
U.R. Rao Satellite Centre
Indian Space Research Organisation (ISRO)
Bangalore-India

Prof. Bhabani Prasad Mandal
Department of Physics
Institute of Science
Banaras Hindu University (B.H.U.)
Varanasi-India

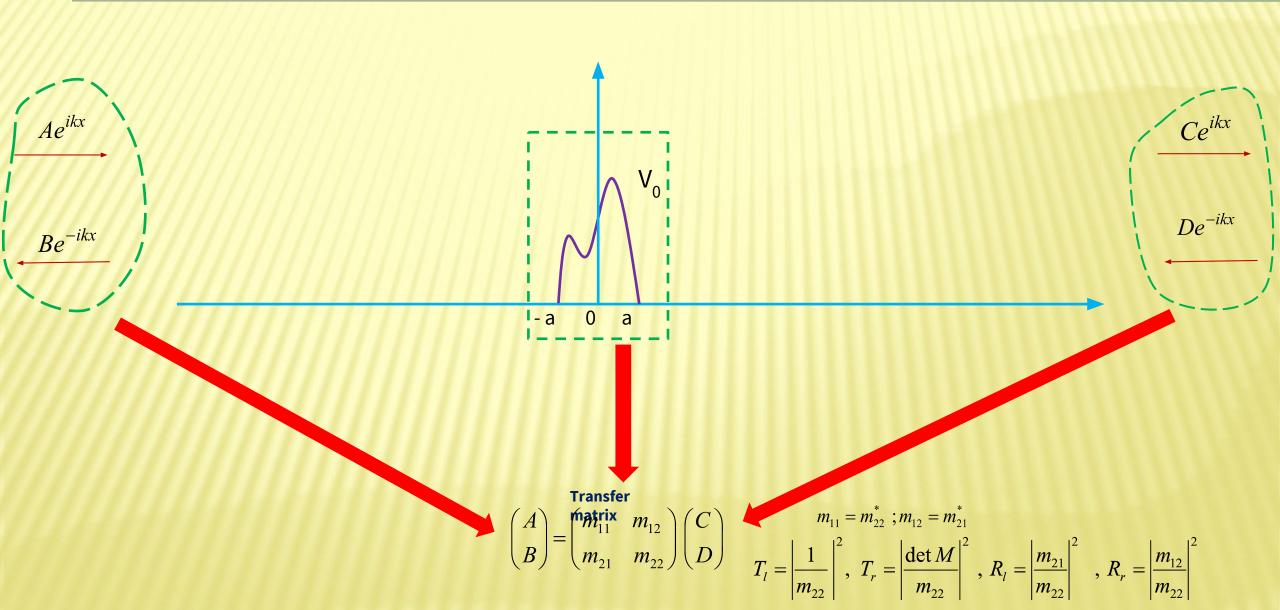
Super Periodic Potential: Concepts

Next→ Transfer matrix elements
Next → Tunneling probability



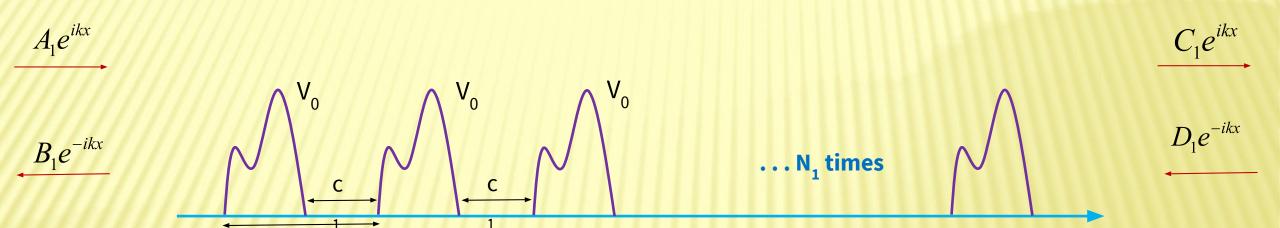
Super Periodic Potential: Concepts

Next→ Transfer matrix elements
Next → Tunneling probability



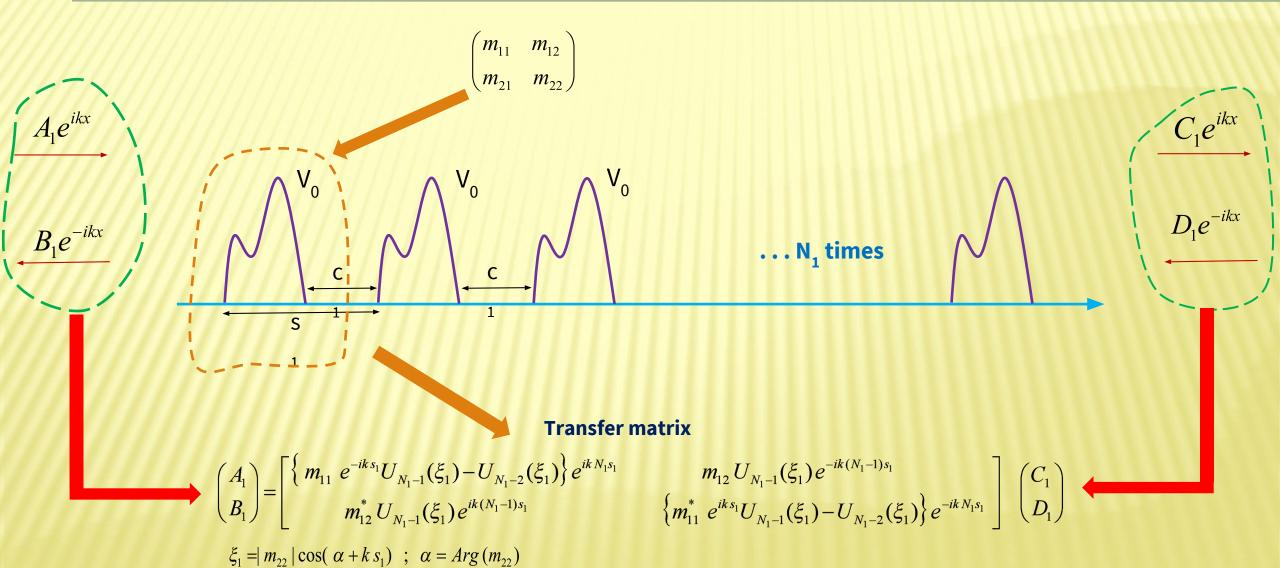
Super Periodic Potential: Concepts

Next→ Transfer matrix elements
Next → Tunneling probability



Super Periodic Potential: Concepts

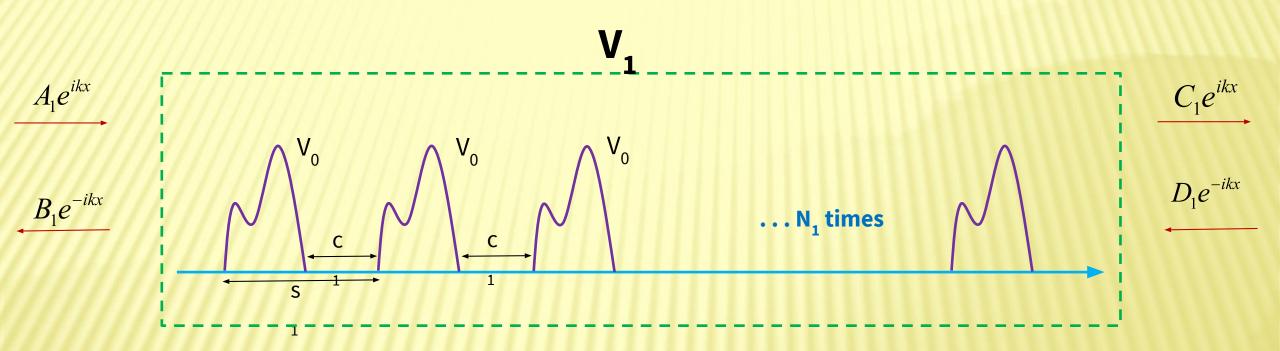
Next→ Transfer matrix elements
Next → Tunneling probability



David J. Griffiths and Carl A. Steinke, 'Waves in locally periodic media', Am. J. Phys. 69 (2), 2001

Super Periodic Potential: Concepts

Next→ Transfer matrix elements
Next → Tunneling probability



Transfer matrix

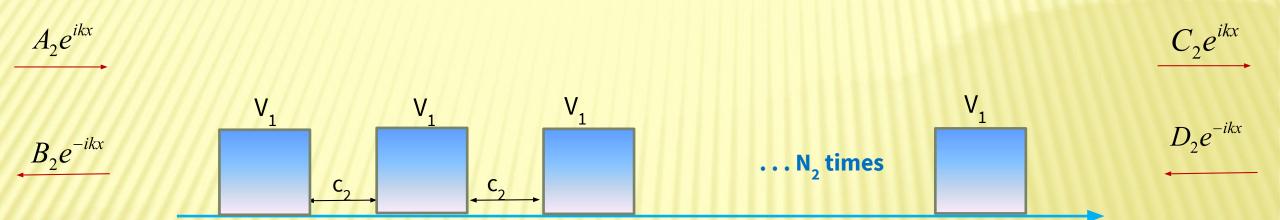
$$\begin{bmatrix} A_1 \\ B_1 \end{bmatrix} = \begin{bmatrix} (m_{11})_1 & (m_{12})_1 \\ (m_{21})_1 & (m_{22})_1 \end{bmatrix} \begin{bmatrix} C_1 \\ D_1 \end{bmatrix}$$

David J. Griffiths and Carl A. Steinke, 'Waves in locally periodic media', Am. J. Phys. 69 (2), 2001

Super Periodic Potential: Concepts

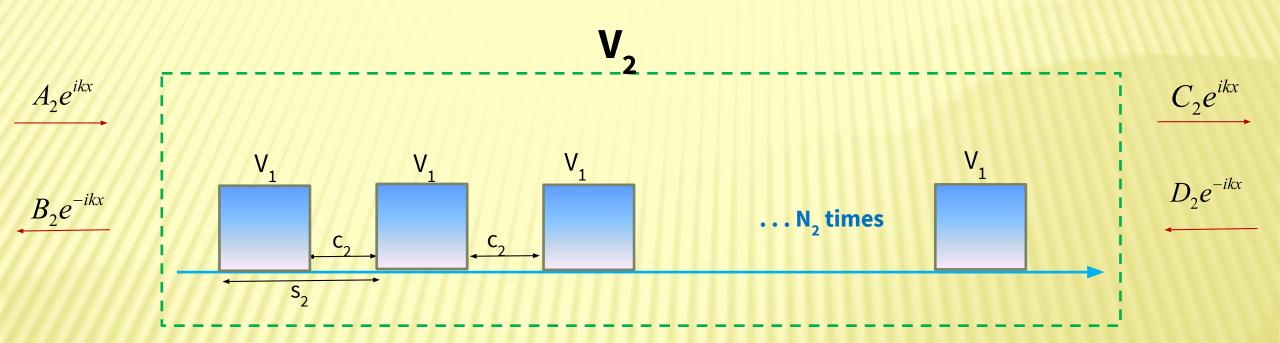
Next→ Transfer matrix elements
Next → Tunneling probability

S



Super Periodic Potential: Concepts

Next→ Transfer matrix elements
Next → Tunneling probability

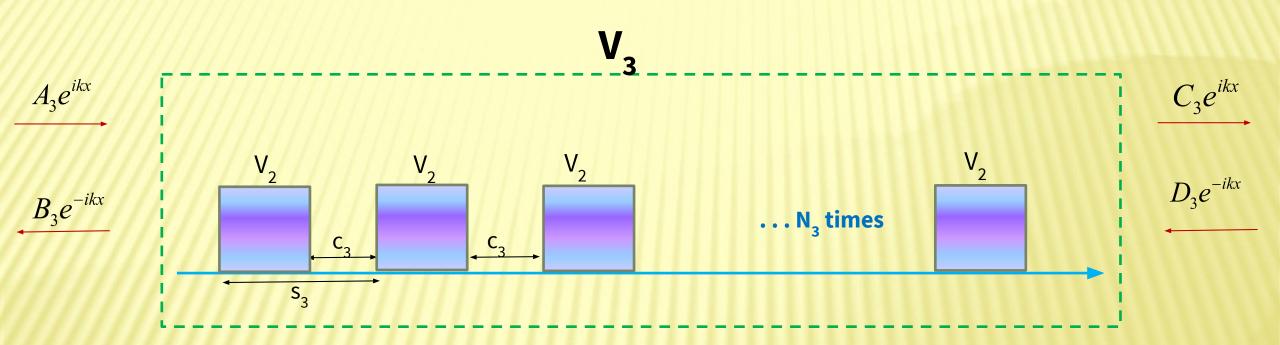


Transfer matrix

$$\begin{bmatrix} A_2 \\ B_2 \end{bmatrix} = \begin{bmatrix} (m_{11})_2 & (m_{12})_2 \\ (m_{21})_2 & (m_{22})_2 \end{bmatrix} \begin{bmatrix} C_2 \\ D_2 \end{bmatrix}$$

Super Periodic Potential: Concepts

Next→ Transfer matrix elements
Next → Tunneling probability

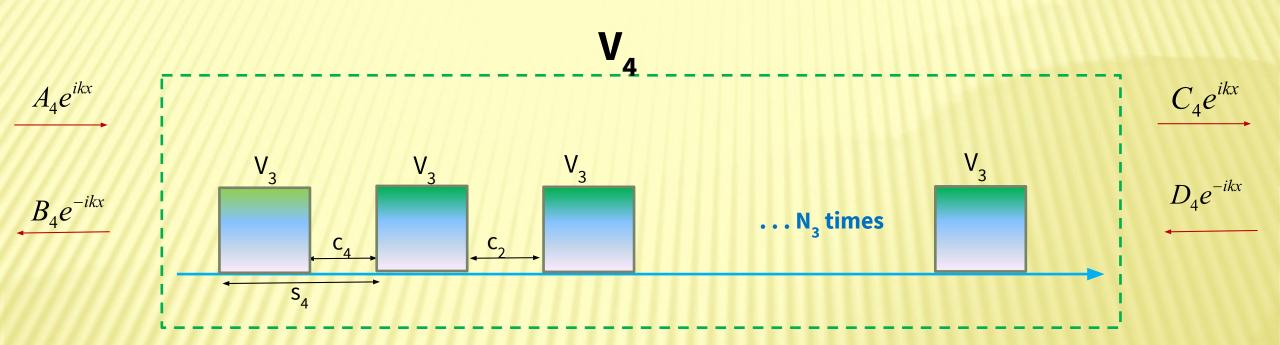


Transfer matrix

$$\begin{bmatrix} A_3 \\ B_3 \end{bmatrix} = \begin{bmatrix} (m_{11})_3 & (m_{12})_3 \\ (m_{21})_3 & (m_{22})_3 \end{bmatrix} \begin{bmatrix} C_3 \\ D_3 \end{bmatrix}$$

Super Periodic Potential: Concepts

Next→ Transfer matrix elements
Next → Tunneling probability

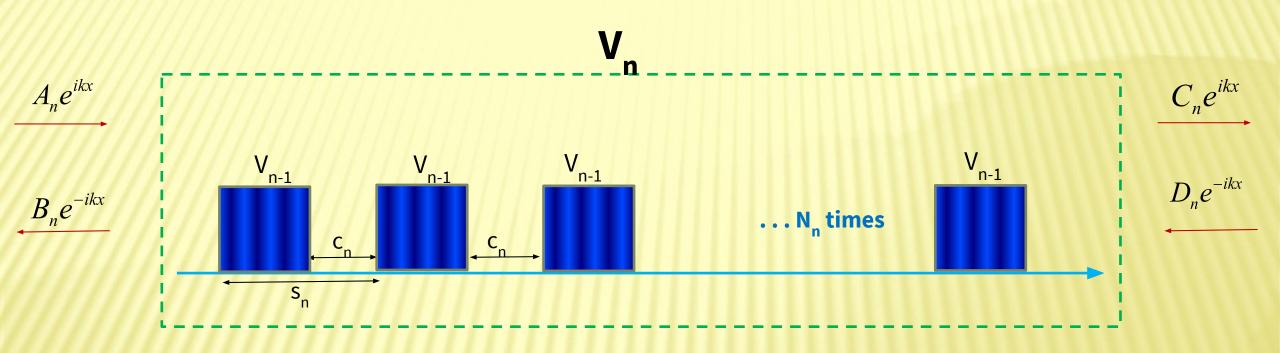


Transfer matrix

$$\begin{bmatrix} A_4 \\ B_4 \end{bmatrix} = \begin{bmatrix} (m_{11})_4 & (m_{12})_4 \\ (m_{21})_4 & (m_{22})_4 \end{bmatrix} \begin{bmatrix} C_4 \\ D_4 \end{bmatrix}$$

Super Periodic Potential: Concepts

Next→ Transfer matrix elements
Next → Tunneling probability



Transfer matrix

$$\begin{bmatrix} A_n \\ B_n \end{bmatrix} = \begin{bmatrix} (m_{11})_n & (m_{12})_n \\ (m_{21})_n & (m_{22})_n \end{bmatrix} \begin{bmatrix} C_n \\ D_n \end{bmatrix}$$

The generated *potential V_n* is the super periodic potential of order 'n'

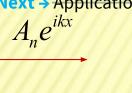
Transfer matrix elements

Super Periodic Potential: Transfer Matrix

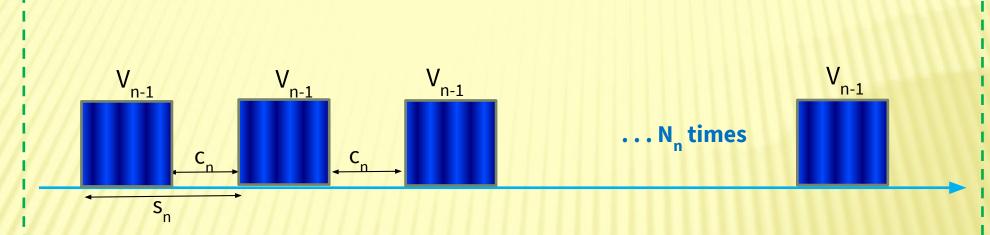
Next→ probability

Tunneling

Next → Applications _



$$B_n e^{-ikx}$$



Transfer matrix

$$\begin{bmatrix} A_n \\ B_n \end{bmatrix} = \begin{bmatrix} (m_{11})_n & (m_{12})_n \\ (m_{21})_n & (m_{22})_n \end{bmatrix} \begin{bmatrix} C_n \\ D_n \end{bmatrix}$$

$$(m_{22})_n = (m_{11})_n^*$$
, $(m_{21})_n = (m_{12})_n^*$

$$(m_{11})_n = m_{11}e^{ik\sum_{p=1}^n (N_p-1)s_p} \prod_{p=1}^n U_{N_p-1}(\xi_p) - U_{N_n-2}(\xi_n)e^{ikN_ns_n} - \sum_{r=1}^{n-1}G_r$$

$$G_{r} = e^{ik\left(\sum_{p=1}^{n} N_{p} s_{p} - \sum_{p=1}^{r} N_{p-1} s_{p-1} - \sum_{p=r+1}^{n} s_{p}\right)} U_{N_{r}-2}(\xi_{r}) \prod_{p=r+1}^{n} U_{N_{p}-1}(\xi_{p}) ; \qquad N_{0} = 0 , s_{0} = 0$$

$$(m_{12})_n = m_{12}e^{-ik\sum_{p=1}^n (N_p-1)s_p} \prod_{p=1}^n U_{N_p-1}(\xi_p)$$

M. Hasan, B.P. Mandal, Annals of Physics, 391 (2018), 240-262.

 $C_n e^{ikx}$

 $D_n e^{-ikx}$

Transfer matrix elements

Tunneling

Super Periodic Potential: Transfer Matrix Elements

Next→ probability

Next → Applications

$$\xi_n = |m_{22}| \cos \left[\alpha - k\left\{\sum_{p=1}^{n-1} (N_p - 1)s_p - s_n\right\}\right] \prod_{p=1}^{n-1} U_{N_p - 1}(\xi_p) - \sum_{r=1}^{n-1} H_r$$
$$- U_{N_{n-1} - 2}(\xi_{n-1}) \cos k(N_{n-1}s_{n-1} - s_n)$$

Where,

$$H_r = \cos\left[k\left(\sum_{p=r}^{n-1} N_p s_p - \sum_{p=r+1}^n s_p\right)\right] U_{N_r - 2}(\xi_r) \prod_{p=r+1}^{n-1} U_{N_p - 1}(\xi_p)$$

&
$$\alpha$$
= Arg (m₂₂)

Super Periodic Potential: Tunneling Probability

Turneting Probability
Next→ Applications,
Next→ General features

Super Periodic Potential	Tunneling	g probability
$V_1(N_1)$	$T(N_1; k) = \frac{1}{1 + (m_{12} U_{N_1 - 1}(\xi_1))^2}$; $\xi_1 = m_{22} \cos(\alpha + k.s_1)$

Next→ General features

Super Periodic Potential: Tunneling Probability

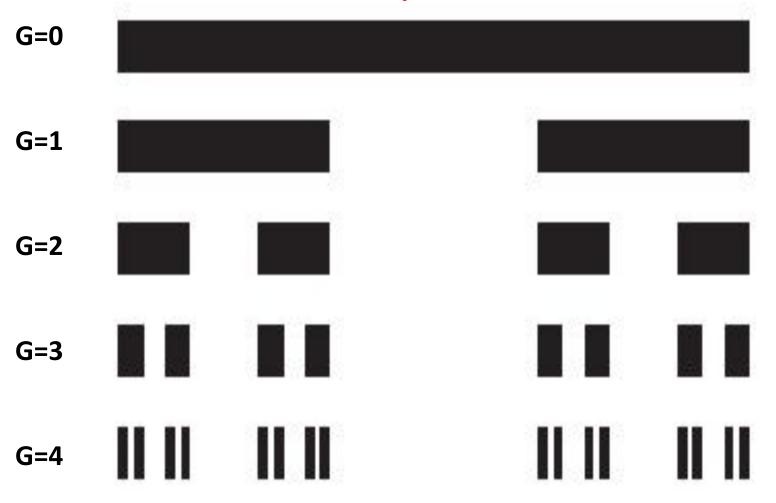
Super Periodic Potential	Tunneling probability
$V_1(N_1)$	$T(N_1;k) = \frac{1}{1 + (m_{12} U_{N_1-1}(\xi_1))^2} \qquad ; \xi_1 = m_{22} \cos(\alpha + k.s_1)$
$V_2(N_1,N_2)$	$T(N_1, N_2; k) = \frac{1}{1 + (m_{12} U_{N_1 - 1}(\xi_1) U_{N_2 - 1}(\xi_2))^2}$

Super Periodic Potential: Tunneling Probability

Super Periodic Potential	Tunneling probability	
$V_1(N_1)$	$T(N_1;k) = \frac{1}{1 + (m_{12} U_{N_1-1}(\xi_1))^2} ; \xi_1 = m_{22} \cos(\alpha + k.s_1)$	
$V_2(N_1,N_2)$	$T(N_1, N_2; k) = \frac{1}{1 + \left(m_{12} U_{N_1 - 1}(\xi_1) U_{N_2 - 1}(\xi_2) \right)^2}$	
$V_3(N_1, N_2, N_3)$	$T(N_1, N_2, N_3; k) = \frac{1}{1 + \left(m_{12} U_{N_1 - 1}(\xi_1) U_{N_2 - 1}(\xi_2) U_{N_3 - 1}(\xi_3) \right)^2}$	
$V_n(N_1, N_2, N_3,, N_n)$	$T(N_1, N_2, N_3,, N_n; k) = \frac{1}{1 + \left(m_{12} \prod_{i=1}^n U_{N_i - 1}(\xi_i) \right)^2}$	

Next→ General features Next→ Conclusions

Super Periodic Potential: Applications



Cantor 1/3 potential:

- •One-third of the segment from the middle is removed at each stage G.
- •The height of black region is the potential height.
- •The black region is rectangular barrier potential.

Next→ General features Next→ Conclusions

Super Periodic Potential: Applications

Rectangular SPP of order 0

G=4

Next→ General features **Next**→ Conclusions

Super Periodic Potential: Applications

Rectangular SPP of order 1, N₁=2

G=4

Next→ General features **Next**→ Conclusions

Super Periodic Potential: Applications

Rectangular SPP of order 2, N₂=2

Next→ General features **Next**→ Conclusions

Super Periodic Potential: Applications

Rectangular SPP of order 3, $N_3=2$

Next→ General features **Next**→ Conclusions

Super Periodic Potential: Applications

Rectangular SPP of order 4, $N_a = 2$

Super Periodic Potential: Applications

Next→ General features **Next**→ Conclusions

> A (general) Cantor fractal potential of stage G is a rectangular super periodic potential of order G.

Rectangular SPP of order 4, $N_a = 2$

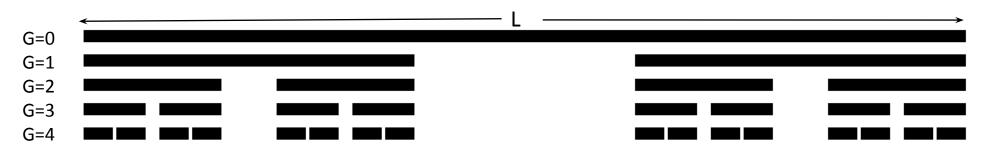
Super Periodic Potential: Applications

- ✓ Our observations suggest that in general, symmetric self-similarity in 1D is the special case of super periodicity in 1D (yet to be proven mathematically).
- ✓ By using SPP formalism we have derived the close form expressions of transmission amplitude for general Cantor potential and standard Smith-Volterra-Cantor (SVC-4) potential (M. Hasan, B.P. Mandal, Annals of Physics, 391 (2018), 240-262.).

Next→ General features Next→ Conclusions

Super Periodic Potential: Applications

Tunneling amplitude for standard Smith-Volterra-Cantor (SVC-4) potential of arbitrary stage G

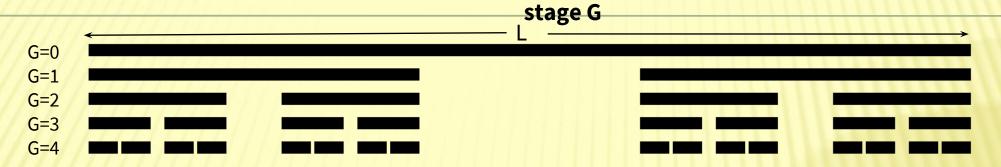


1/4^G fraction from the middle is taken out at stage G in SVC fractal.

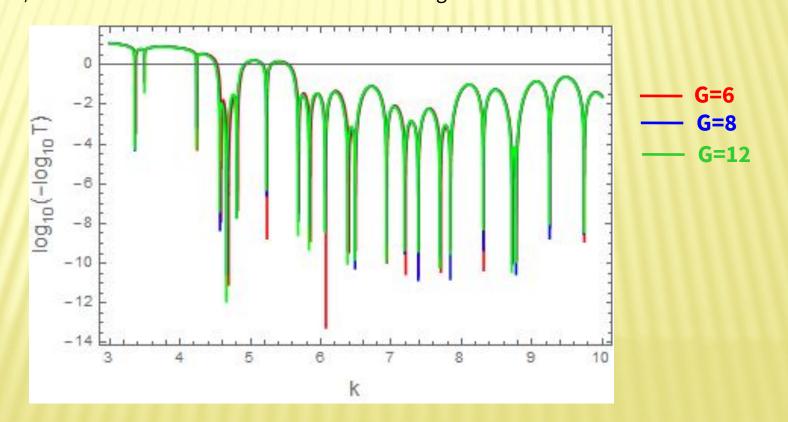
Next→ General features
Next→ Conclusions

Super Periodic Potential: Applications

Tunneling amplitude for standard Smith-Volterra-Cantor (SVC-4) potential of arbitrary



1/4^G fraction from the middle is taken out at stage G in SVC fractal.

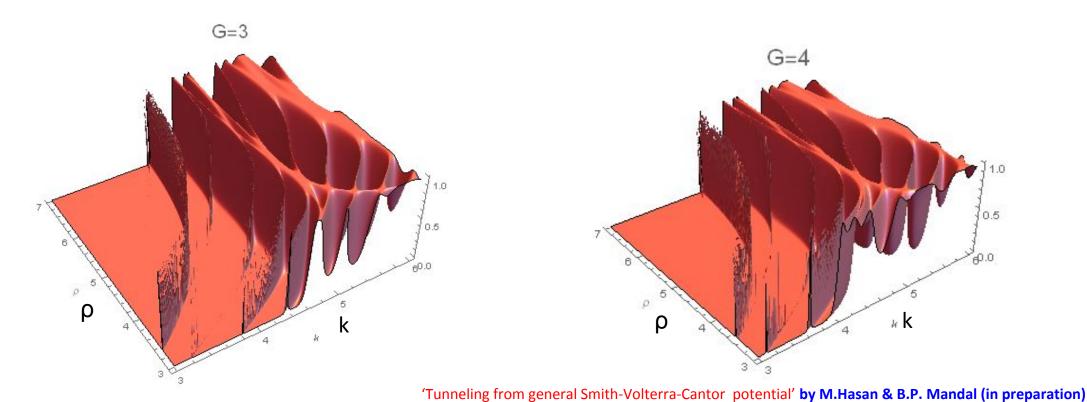


Next→ General features Next→ Conclusions

Super Periodic Potential: Applications

Tunneling amplitude for general Smith-Volterra-Cantor (SVC-ρ) potential of arbitrary stage G

 $1/\rho^G$ fraction from the middle is taken out at stage G in general SVC fractal.

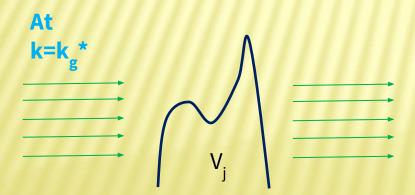


$$T(N_{1}, N_{2},, N_{n}; k) = \frac{1}{1 + \left(|m_{12}| U_{N_{1}-1}(\xi_{1}) U_{N_{2}-1}(\xi_{2}) [U_{N_{g}-1}\{\xi_{g}(k = k_{g}^{*})\} = 0 \right] U_{N_{j}-1}(\xi_{j}) U_{N_{n}-1}(\xi_{n}) \right)^{2}}$$

- ✓ This implies that the transmission peaks of SPP of order 'g', is also the transmission peak of SPP of order 'j' for any j> g.
- ✓ True for SPP of any unit cell with order j such that j >g, {j,g} ∈ I⁺.

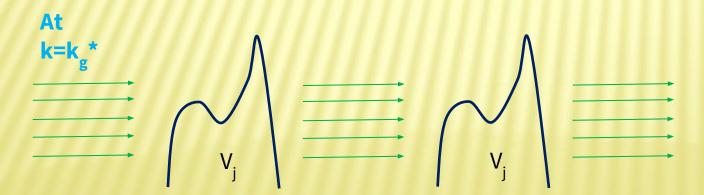
$$T(N_{1}, N_{2},, N_{n}; k) = \frac{1}{1 + \left(|m_{12}| U_{N_{1}-1}(\xi_{1}) U_{N_{2}-1}(\xi_{2}) [U_{N_{g}-1}\{\xi_{g}(k = k_{g}^{*})\} = 0] U_{N_{j}-1}(\xi_{j}) U_{N_{n}-1}(\xi_{n}) \right)^{2}}$$

- ✓ This implies that the transmission peaks of SPP of order 'g', is also the transmission peak of SPP of order 'j' for any j> g.
- ✓ True for SPP of any unit cell with order j such that j >g, {j,g} ∈ I⁺.



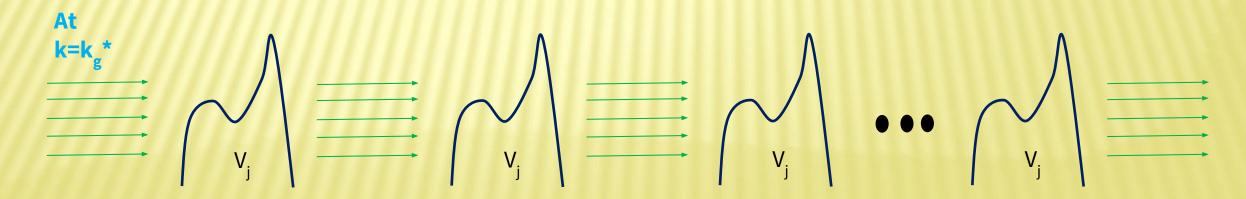
$$T(N_{1}, N_{2},, N_{n}; k) = \frac{1}{1 + \left(| m_{12} | U_{N_{1}-1}(\xi_{1})U_{N_{2}-1}(\xi_{2}).....[U_{N_{g}-1}\{\xi_{g}(k = k_{g}^{*})\} = 0]....U_{N_{j}-1}(\xi_{j})....U_{N_{n}-1}(\xi_{n}) \right)^{2}}$$

- ✓ This implies that the transmission peaks of SPP of order 'g', is also the transmission peak of SPP of order 'j' for any j> g.
- ✓ True for SPP of any unit cell with order j such that j >g, {j,g} ∈ I⁺.



$$T(N_{1}, N_{2},, N_{n}; k) = \frac{1}{1 + \left(|m_{12}| U_{N_{1}-1}(\xi_{1}) U_{N_{2}-1}(\xi_{2}) [U_{N_{g}-1}\{\xi_{g}(k = k_{g}^{*})\} = 0] U_{N_{j}-1}(\xi_{j}) U_{N_{n}-1}(\xi_{n}) \right)^{2}}$$

- ✓ This implies that the transmission peaks of SPP of order 'g', is also the transmission peak of SPP of order 'j' for any j> g.
- ✓ True for SPP of any unit cell with order j such that j >g, {j,g} ∈ I⁺.



Splitting of transmission peaks

3.060

3.065

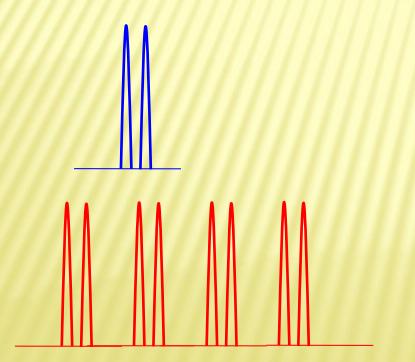
3.070

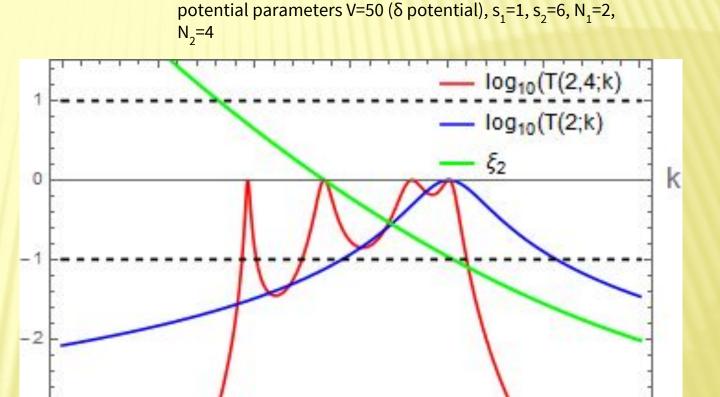
$$T(N_1, N_2; k) = \frac{1}{1 + \left(|m_{12}| U_{N_1 - 1}(\xi_1) U_{N_2 - 1}(\xi_2) \right)^2}$$

$$m_{12} = i\beta , \beta = \frac{V_0}{k}$$

$$\xi_1 = \cos ks_1 + \beta \sin ks_1$$

$$\xi_2 = \sqrt{1 + \beta^2} U_{N_1 - 1}(\xi_1) \cos f(k, V_0) - U_{N_1 - 2}(\xi_1) \cos k(N_1 s_1 - s_2)$$





3.075

3.080

3.085

3.090

Splitting of transmission peaks

$$T(N_1, N_2; k) = \frac{1}{1 + \left(|m_{12}| U_{N_1 - 1}(\xi_1) U_{N_2 - 1}(\xi_2) \right)^2}$$

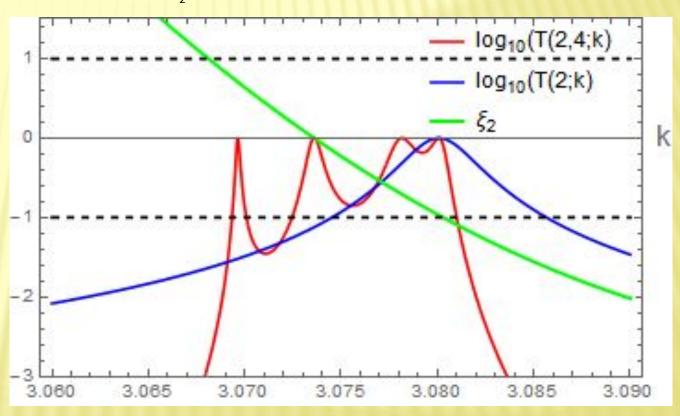
$$m_{12} = i\beta , \beta = \frac{V_0}{k}$$

$$\xi_1 = \cos ks_1 + \beta \sin ks_1$$

$$\xi_2 = \sqrt{1 + \beta^2} U_{N_1 - 1}(\xi_1) \cos f(k, V_0) - U_{N_1 - 2}(\xi_1) \cos k(N_1 s_1 - s_2)$$

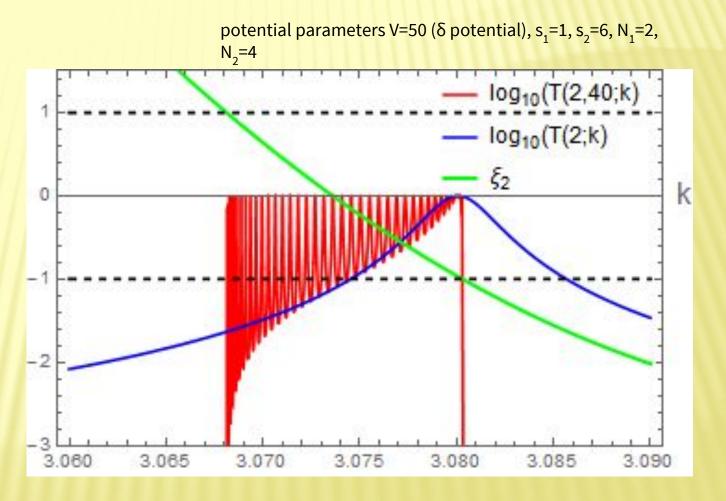
- ✓At transmission peak, $k=k^*$ of $T(N_1)$, $U_{N_1-1}(\xi_1^*)=0$
- ✓ Near $k=k^*$, ξ_2 changes sign due to cosine term with k.
- ✓ U_{N2-1} has N_2 -1 simple roots when ξ_2 ϵ [-1,1]. This results in N_2 -1 transmission peaks near k=k*.
- ✓ The overall result is the (N₂-1)+1=N₂ transmission peaks due to super periodicity.

potential parameters V=50 (δ potential), s_1 =1, s_2 =6, N_1 =2, N_2 =4

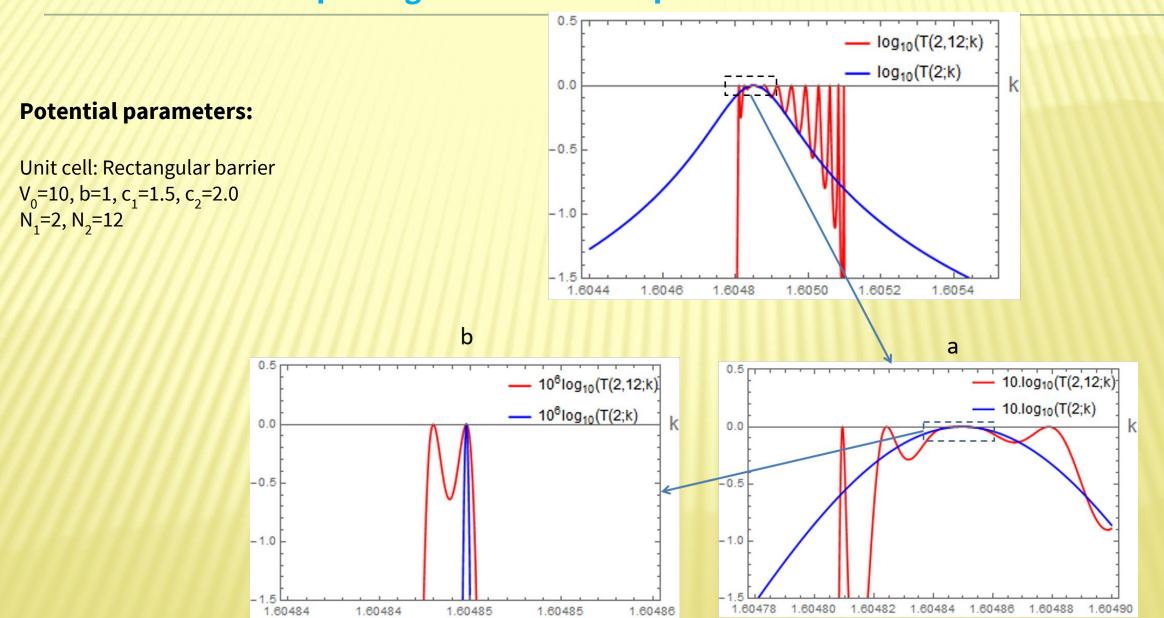


Splitting of transmission peaks: Resonance band

 The transmission peaks arising out of periodicity of the system splits into transmission peaks due to super periodicity.



Splitting of transmission peaks: Resonance band



CONCLUSIONS AND FUTURE PLANS

- > Starting with a unit cell, super periodicity is the most general form of periodicity.
- Our observations suggest that in general, symmetric self-similarity (in 1D) is the special case of super periodicity (in 1D). This is yet to be proven mathematically.

CONCLUSIONS AND FUTURE PLANS

- > Starting with a unit cell, super periodicity is the most general form of periodicity.
- Our observations suggest that in general, symmetric self-similarity (in 1D) is the special case of super periodicity (in 1D). This is yet to be proven mathematically.

- ✓ By using SPP formalism we have derived the expression for tunneling amplitude for (general) Cantor and SVC potential.
- ✓ Super periodicity modifies the band structure through allowed energy in the forbidden zone.
- ✓ Transmission peaks that arises due to periodicity splits due to super periodicity.

CONCLUSIONS AND FUTURE PLANS

- > Starting with a unit cell, super periodicity is the most general form of periodicity.
- Our observations suggest that in general, symmetric self-similarity (in 1D) is the special case of super periodicity (in 1D). This is yet to be proven mathematically.

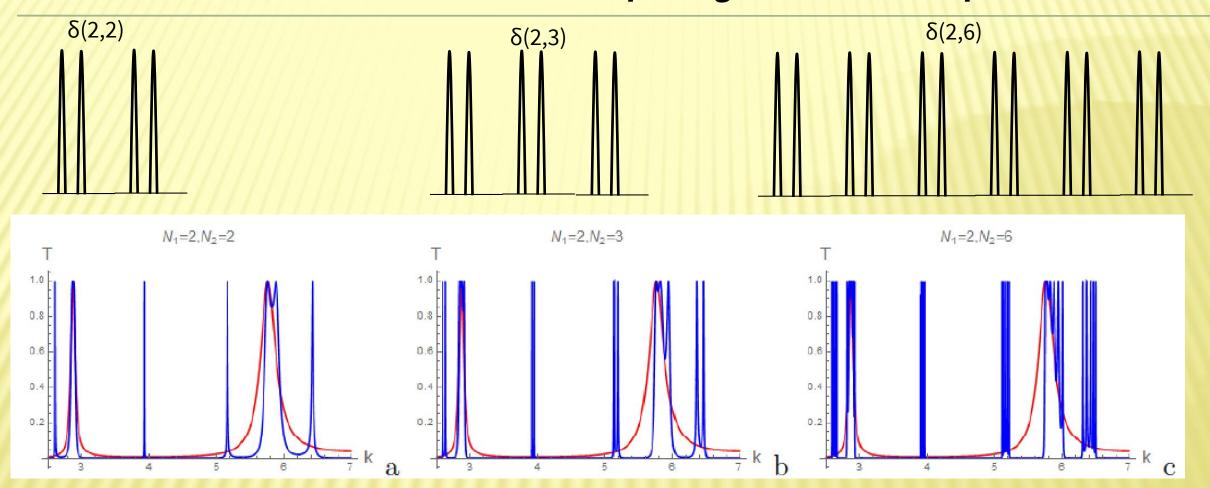
- ✓ By using SPP formalism we have derived the expression for tunneling amplitude for (general) Cantor and SVC potential.
- ✓ Super periodicity modifies the band structure through allowed energy in the forbidden zone.
- ✓ Transmission peaks that arises due to periodicity splits due to super periodicity.

Future plans:

- Extension of SPP to non-Hermitian potentials.
- •Relation between the distribution of CPA points and SPP structure.
- •Extension of SPP to fractional quantum mechanics

Thank you

Super Periodic δ Potential: Modulation of band structure and splitting of transmission peaks



- Red curve is transmission probability for double delta potential.
- Blue curve is the transmission probability for the case when double delta potential as a whole repeats.

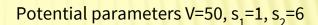
Super periodic δ potential of order 2: Resonance band

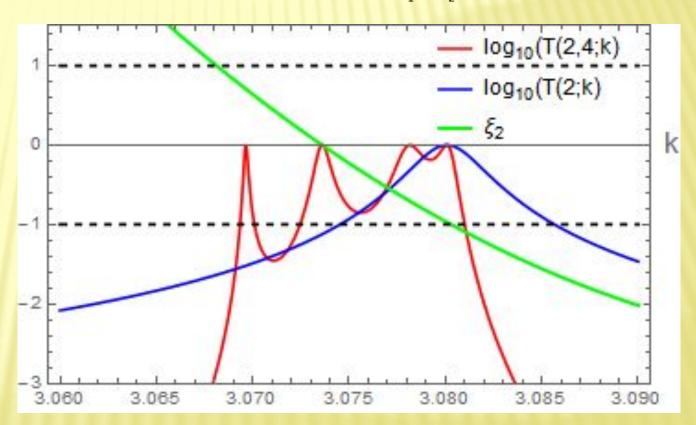
Transmission probability:
$$T(N_1, N_2; k) = \frac{1}{1 + \left(|m_{12}| |U_{N_1-1}(\xi_1)U_{N_2-1}(\xi_2) \right)^2}$$

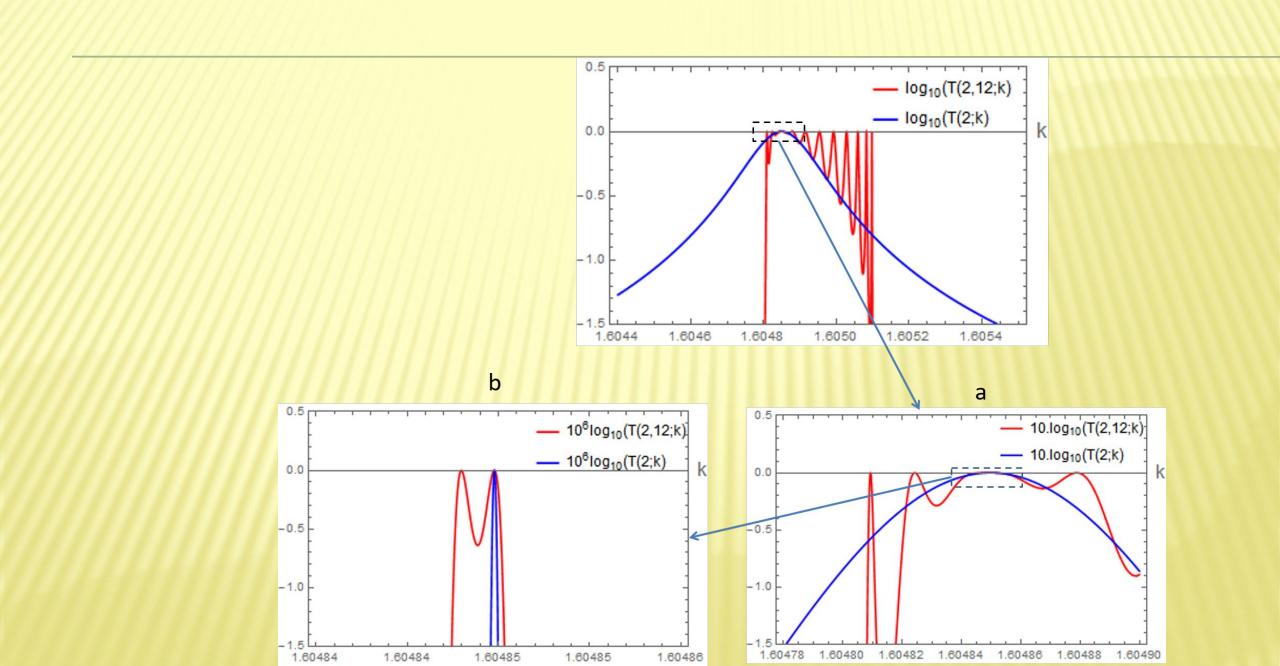
✓ If k=k* is a transmission peaks of Dirac comb then at k=k*,

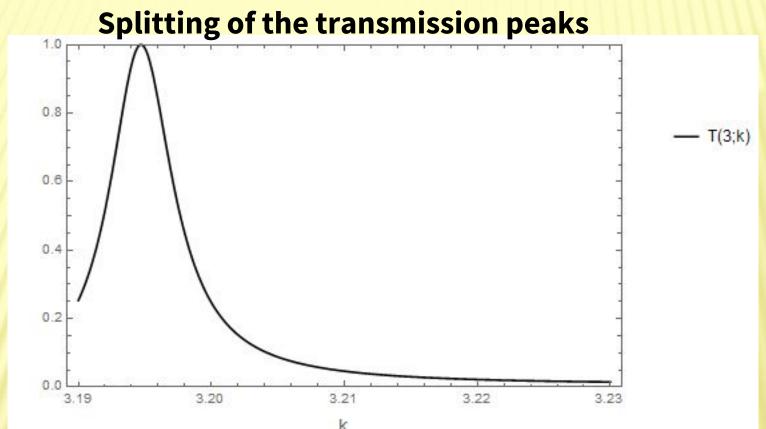
$$\xi_2^* = -U_{N_1-2}(\xi_1^*)\cos[k^*(N_1s_1 - s_2)]$$

- ✓ Near k=k*, ξ2 changes sign due to cosine term with k.
- ✓ The overall results is (N₂-1)+1=N₂
 transmission peaks due to super periodicity.



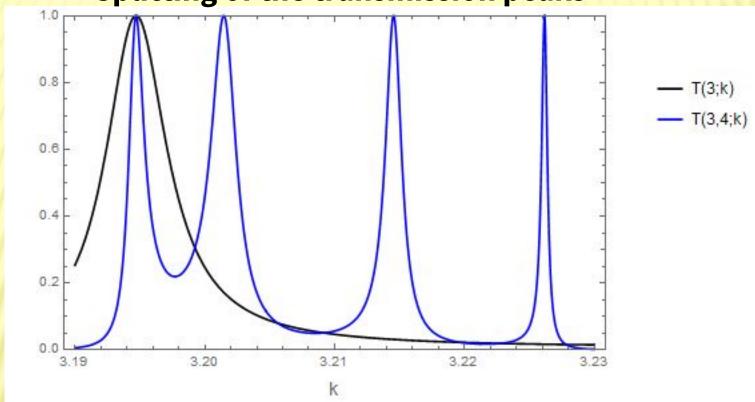




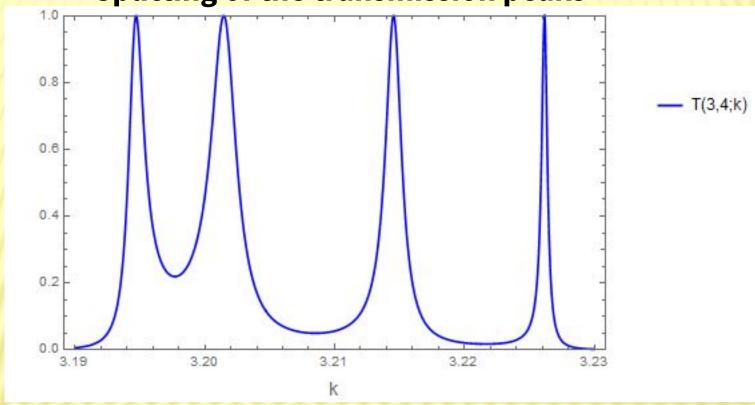


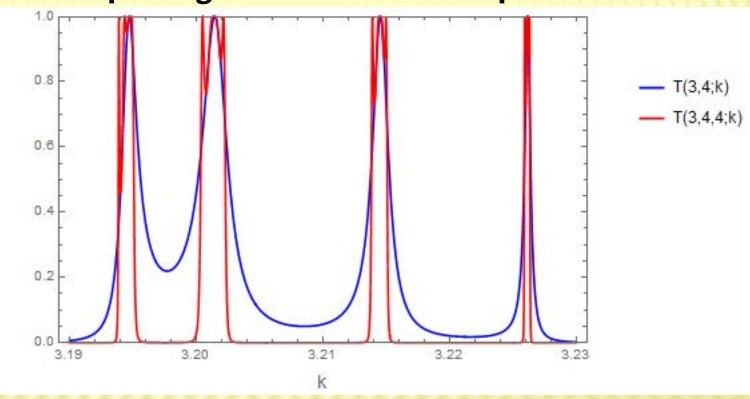
3:

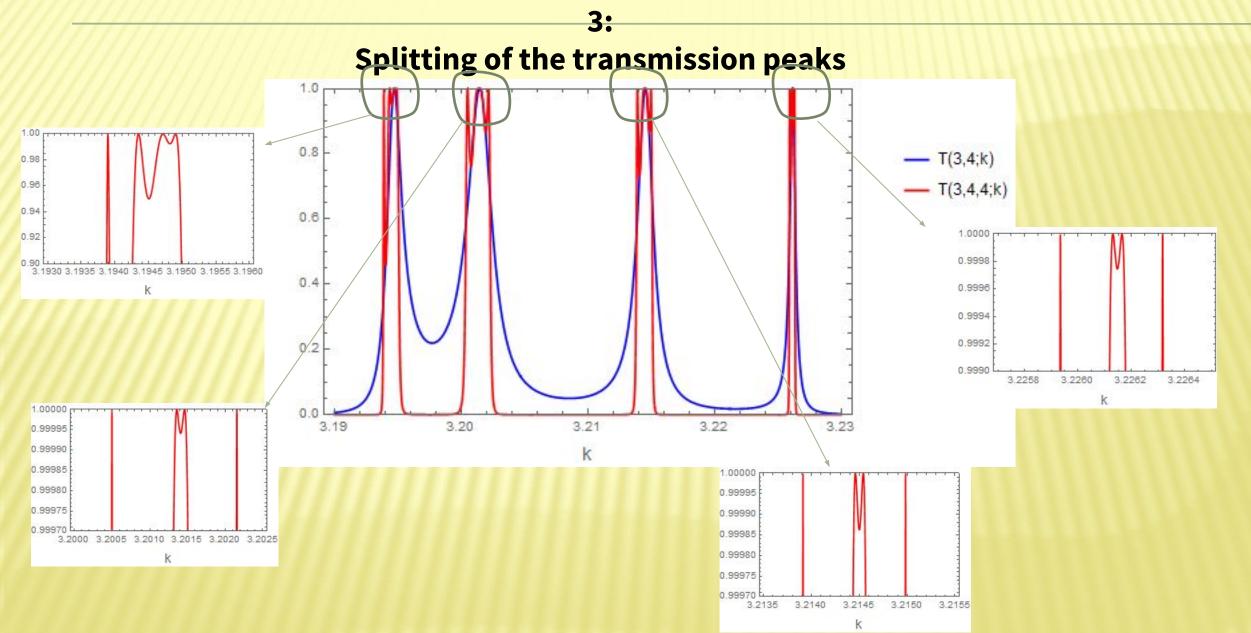
Splitting of the transmission peaks

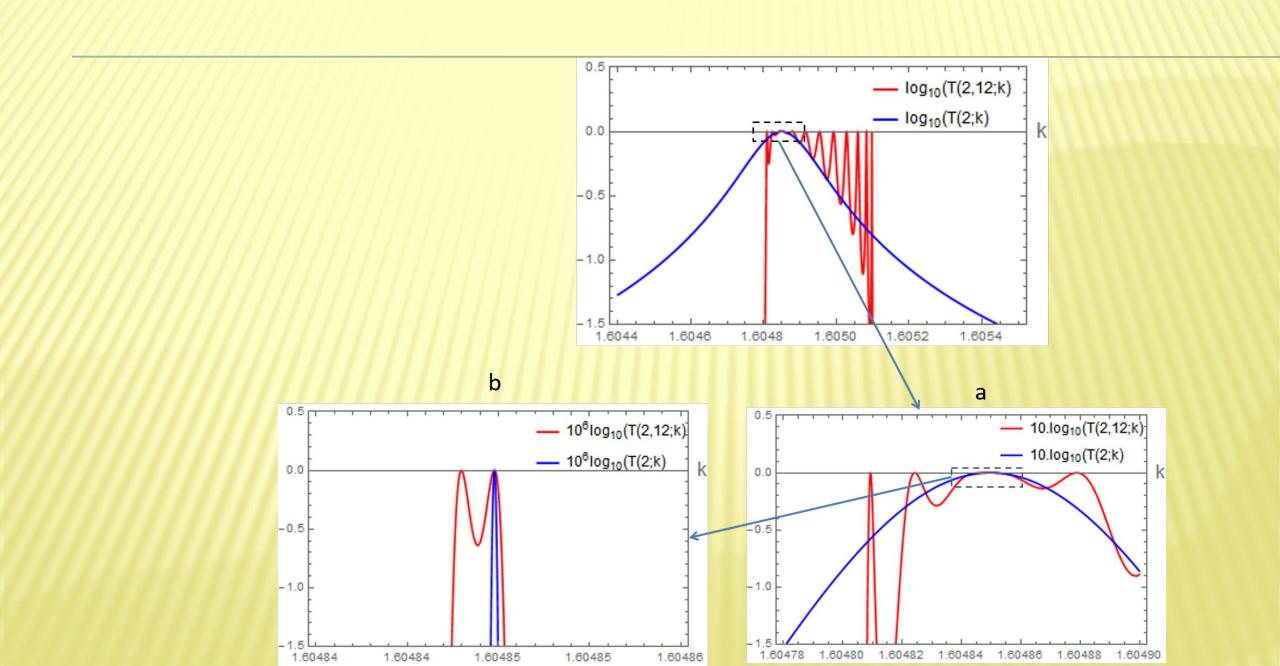


3:









Thanking You