## Extended kq-representation and bi-coherent states

# Fabio Bagarello

D.E.I.M., Università di Palermo



Bangalore, June 5-th, 2018



- $oldsymbol{0}$  Standard kq-representation
- 2 ...and its use in the theory of coherent states

- **■** Standard kq-representation
- 2 ...and its use in the theory of coherent states
- **1** Non self-adjoint position and momentum-like operators...

- **■** Standard kq-representation
- 2 ...and its use in the theory of coherent states
- Non self-adjoint position and momentum-like operators...
- …extended kq-representation…

- Standard kq-representation
- 2 ...and its use in the theory of coherent states
- Non self-adjoint position and momentum-like operators...
- ...extended kq-representation...
- ...and bicoherent states...

- Standard kq-representation
- 2 ...and its use in the theory of coherent states
- Non self-adjoint position and momentum-like operators...
- …extended kq-representation…
- ...and bicoherent states...
- ...their relations...

- Standard kq-representation
- 2 ...and its use in the theory of coherent states
- Non self-adjoint position and momentum-like operators...
- …extended kq-representation…
- ...and bicoherent states...
- ...their relations...
- Final comments

- Standard kq-representation
- 2 ...and its use in the theory of coherent states
- **1** Non self-adjoint position and momentum-like operators...
- …extended kq-representation…
- ...and bicoherent states...
- ...their relations...
- Final comments

F.B., JMAA, 2017, and F.B.+others in Proc. Royal Soc. A, 2017



Let  $\hat{q}_0$  and  $\hat{p}_0$  be the self-adjoint operators:

$$\hat{q}_0 \varphi(x) = x \varphi(x), \qquad \hat{p}_0 \varphi(x) = -i\varphi'(x),$$

for all  $\varphi(x)\in\mathcal{S}(\mathbb{R})$ . Notice that  $\mathcal{S}(\mathbb{R})$  is <u>not</u> the maximal domain of these operators, which are

$$D_{max}(\hat{q}_0) = \{ f(x) \in \mathcal{L}^2(\mathbb{R}) : x f(x) \in \mathcal{L}^2(\mathbb{R}) \}, \quad D_{max}(\hat{p}_0) = \{ f(x) \in \mathcal{L}^2(\mathbb{R}) : f'(x) \in \mathcal{L}^2(\mathbb{R}) \}.$$

Of course,  $\mathcal{S}(\mathbb{R}) \subset D_{max}(\hat{q}_0) \cap D_{max}(\hat{p}_0)$ , and is dense in  $\mathcal{L}^2(\mathbb{R})$ .

Let  $\hat{q}_0$  and  $\hat{p}_0$  be the self-adjoint operators:

$$\hat{q}_0 \varphi(x) = x \varphi(x), \qquad \hat{p}_0 \varphi(x) = -i\varphi'(x),$$

for all  $\varphi(x)\in\mathcal{S}(\mathbb{R})$ . Notice that  $\mathcal{S}(\mathbb{R})$  is <u>not</u> the maximal domain of these operators, which are

$$D_{max}(\hat{q}_0) = \{ f(x) \in \mathcal{L}^2(\mathbb{R}) : x f(x) \in \mathcal{L}^2(\mathbb{R}) \}, \quad D_{max}(\hat{p}_0) = \{ f(x) \in \mathcal{L}^2(\mathbb{R}) : f'(x) \in \mathcal{L}^2(\mathbb{R}) \}.$$

Of course,  $\mathcal{S}(\mathbb{R}) \subset D_{max}(\hat{q}_0) \cap D_{max}(\hat{p}_0)$ , and is dense in  $\mathcal{L}^2(\mathbb{R})$ .

Working with  $\mathcal{S}(\mathbb{R})$  is better than  $D_{max}(\hat{q}_0)$  and  $D_{max}(\hat{p}_0)$ , since, in particular,  $\mathcal{S}(\mathbb{R}) \subseteq D^{\infty}(\hat{q}_0) \cap D^{\infty}(\hat{p}_0)$ .

Let  $\hat{q}_0$  and  $\hat{p}_0$  be the self-adjoint operators:

$$\hat{q}_0 \varphi(x) = x \varphi(x), \qquad \hat{p}_0 \varphi(x) = -i\varphi'(x),$$

for all  $\varphi(x)\in\mathcal{S}(\mathbb{R})$ . Notice that  $\mathcal{S}(\mathbb{R})$  is <u>not</u> the maximal domain of these operators, which are

$$D_{max}(\hat{q}_0) = \{ f(x) \in \mathcal{L}^2(\mathbb{R}) : x f(x) \in \mathcal{L}^2(\mathbb{R}) \}, \quad D_{max}(\hat{p}_0) = \{ f(x) \in \mathcal{L}^2(\mathbb{R}) : f'(x) \in \mathcal{L}^2(\mathbb{R}) \}.$$

Of course,  $\mathcal{S}(\mathbb{R}) \subset D_{max}(\hat{q}_0) \cap D_{max}(\hat{p}_0)$ , and is dense in  $\mathcal{L}^2(\mathbb{R})$ .

Working with  $\mathcal{S}(\mathbb{R})$  is better than  $D_{max}(\hat{q}_0)$  and  $D_{max}(\hat{p}_0)$ , since, in particular,  $\mathcal{S}(\mathbb{R}) \subseteq D^{\infty}(\hat{q}_0) \cap D^{\infty}(\hat{p}_0)$ .

Neither  $\hat{q}_0$  nor  $\hat{p}_0$  admit square integrable eigenvectors:

$$\hat{q}_0 \, \xi_{x_0}(x) = x_0 \, \xi_{x_0}(x), \qquad \hat{p}_0 \, \theta_{p_0}(x) = p_0 \, \theta_{p_0}(x),$$

where  $x_0$  and  $p_0$  are real numbers, and

$$\xi_{x_0}(x) = \delta(x - x_0), \qquad \theta_{p_0}(x) = \frac{1}{\sqrt{2\pi}} e^{ip_0 x}.$$

Of course,  $\xi_{x_0}(x), \theta_{p_0}(x) \in \mathcal{S}'(\mathbb{R})$ , the set of tempered distributions.



In literature one usually finds:

$$\langle \xi_{x_0}, \xi_{y_0} \rangle = \delta(x_0 - y_0), \qquad \int_{\mathbb{R}} dx_0 |\xi_{x_0}| \langle \xi_{x_0}| = 1.$$

In literature one usually finds:

$$\langle \xi_{x_0}, \xi_{y_0} \rangle = \delta(x_0 - y_0), \qquad \int_{\mathbb{R}} dx_0 |\xi_{x_0}| \langle \xi_{x_0}| = 1.$$

Question:— Considering that  $\xi_{x_0}(x) \notin \mathcal{L}^2(\mathbb{R})$ , what is the mathematical meaning of these equalities?

In literature one usually finds:

$$\langle \xi_{x_0}, \xi_{y_0} \rangle = \delta(x_0 - y_0), \qquad \int_{\mathbb{R}} dx_0 |\xi_{x_0}| \langle \xi_{x_0}| = 1.$$

Question:— Considering that  $\xi_{x_0}(x) \notin \mathcal{L}^2(\mathbb{R})$ , what is the mathematical meaning of these equalities?

Answer: - Since

$$\langle \varphi, \psi \rangle = \int_{\mathbb{R}} \overline{\varphi(x)} \, \psi(x) \, dx = (\overline{\varphi} * \tilde{\psi})(0)$$

for each  $\varphi(x), \psi(x) \in \mathcal{S}(\mathbb{R})$ , where  $\tilde{\psi}(x) = \psi(-x)$ , we define

$$\langle F, G \rangle = (\overline{F} * \tilde{G})(0),$$

for those  $F,G\in\mathcal{S}'(\mathbb{R})$  for which the RHS makes sense (i.e., for compactly supported distributions).

In literature one usually finds:

$$\langle \xi_{x_0}, \xi_{y_0} \rangle = \delta(x_0 - y_0), \qquad \int_{\mathbb{R}} dx_0 |\xi_{x_0}| \langle \xi_{x_0}| = 1.$$

Question:— Considering that  $\xi_{x_0}(x) \notin \mathcal{L}^2(\mathbb{R})$ , what is the mathematical meaning of these equalities?

Answer: - Since

$$\langle \varphi, \psi \rangle = \int_{\mathbb{R}} \overline{\varphi(x)} \, \psi(x) \, dx = (\overline{\varphi} * \tilde{\psi})(0)$$

for each  $\varphi(x), \psi(x) \in \mathcal{S}(\mathbb{R})$ , where  $\tilde{\psi}(x) = \psi(-x)$ , we define

$$\langle F, G \rangle = (\overline{F} * \tilde{G})(0),$$

for those  $F,G\in\mathcal{S}'(\mathbb{R})$  for which the RHS makes sense (i.e., for compactly supported distributions).

We deduce,  $\forall \varphi(x) \in \mathcal{S}(\mathbb{R})$ , the following equalities

$$\left(\overline{F} * \tilde{G}, \varphi\right) = \int_{\mathbb{R}} \int_{\mathbb{R}} \overline{F(x)} \, \tilde{G}(y) \, \varphi(x+y) \, dx \, dy = \langle F, G * \varphi \rangle \,,$$



Now, if we take  $F=\xi_{x_0}$  and  $G=\xi_{y_0}$  ,

$$\left(\overline{\xi}_{x_0} * \widetilde{\xi}_{y_0}, \varphi\right) = \left\langle \xi_{x_0}, \xi_{y_0} * \varphi \right\rangle = \int_{\mathbb{R}} \xi_{x_0}(x) \varphi(x - y_0) dx = \varphi(x_0 - y_0) = \left(\xi_{t_0}, \varphi\right),$$

where  $t_0 = x_0 - y_0$ , for all  $\varphi(x) \in \mathcal{S}(\mathbb{R})$ .

Hence  $\left(\overline{\xi}_{x_0} * \tilde{\xi}_{y_0}\right)(x) = \xi_{t_0}(x)$ , and therefore

$$\langle \xi_{x_0}, \xi_{y_0} \rangle = \left( \overline{\xi}_{x_0} * \tilde{\xi}_{y_0} \right) (0) = \xi_{t_0}(0) = \delta(x_0 - y_0),$$

which is what we had to show.

Now, if we take  $F=\xi_{x_0}$  and  $G=\xi_{y_0}$ ,

$$\left(\overline{\xi}_{x_0} * \widetilde{\xi}_{y_0}, \varphi\right) = \left\langle \xi_{x_0}, \xi_{y_0} * \varphi \right\rangle = \int_{\mathbb{R}} \xi_{x_0}(x) \varphi(x - y_0) dx = \varphi(x_0 - y_0) = \left(\xi_{t_0}, \varphi\right),$$

where  $t_0 = x_0 - y_0$ , for all  $\varphi(x) \in \mathcal{S}(\mathbb{R})$ .

Hence  $\left(\overline{\xi}_{x_0} * \widetilde{\xi}_{y_0}\right)(x) = \xi_{t_0}(x)$ , and therefore

$$\langle \xi_{x_0}, \xi_{y_0} \rangle = \left( \overline{\xi}_{x_0} * \widetilde{\xi}_{y_0} \right) (0) = \xi_{t_0}(0) = \delta(x_0 - y_0),$$

which is what we had to show.

As for the second property of  $\xi_{x_0}$ , for all  $\varphi(x) \in \mathcal{S}(\mathbb{R})$ ,  $\varphi(x_0) = \langle \xi_{x_0}, \varphi \rangle$ . Then we have

$$\varphi(x) = \int_{\mathbb{R}} \delta(x - x_0) \varphi(x_0) dx_0 = \int_{\mathbb{R}} \xi_{x_0}(x) \langle \xi_{x_0}, \varphi \rangle dx_0,$$

as we had to prove. Hence the resolution of the identity makes sense (at least) on  $\mathcal{S}(\mathbb{R}).$ 

The operators  $\hat{q}_0$  and  $\hat{p}_0$  satisfy

$$[\hat{q}_0, \hat{p}_0]\varphi(x) = i\varphi(x),$$

 $\forall \varphi(x) \in \mathcal{S}(\mathbb{R})$ . We define the unitary operators

$$\tau_1 = e^{i\alpha\hat{q}_0}, \qquad \tau_2 = e^{-i\alpha\hat{p}_0}.$$

Then, if  $\alpha^2=2\pi L$ , for some  $L=1,2,3,\ldots$ ,  $[\tau_1,\tau_2]=0$  (in the sense of bounded operators).

The operators  $\hat{q}_0$  and  $\hat{p}_0$  satisfy

$$[\hat{q}_0, \hat{p}_0]\varphi(x) = i\varphi(x),$$

 $\forall \varphi(x) \in \mathcal{S}(\mathbb{R})$ . We define the unitary operators

$$\tau_1 = e^{i\alpha\hat{q}_0}, \qquad \tau_2 = e^{-i\alpha\hat{p}_0}.$$

Then, if  $\alpha^2=2\pi L$ , for some  $L=1,2,3,\ldots$ ,  $[\tau_1,\tau_2]=0$  (in the sense of bounded operators).

Also, if  $f(x) \in \mathcal{L}^2(\mathbb{R})$ , then

$$\tau_1 f(x) = e^{i\alpha x} f(x), \qquad \tau_2 f(x) = f(x - \alpha).$$

The operators  $\hat{q}_0$  and  $\hat{p}_0$  satisfy

$$[\hat{q}_0, \hat{p}_0]\varphi(x) = i\varphi(x),$$

 $\forall \varphi(x) \in \mathcal{S}(\mathbb{R})$ . We define the unitary operators

$$\tau_1 = e^{i\alpha\hat{q}_0}, \qquad \tau_2 = e^{-i\alpha\hat{p}_0}.$$

Then, if  $\alpha^2=2\pi L$ , for some  $L=1,2,3,\ldots$ ,  $[\tau_1,\tau_2]=0$  (in the sense of bounded operators).

Also, if  $f(x) \in \mathcal{L}^2(\mathbb{R})$ , then

$$\tau_1 f(x) = e^{i\alpha x} f(x), \qquad \tau_2 f(x) = f(x - \alpha).$$

Now, the kq-representation makes use of the fact that, since  $\tau_1$  and  $\tau_2$  commute, they can be diagonalized simultaneously. However, the common eigenstates,

$$\rho_{kq}(x) = \frac{1}{\sqrt{\alpha}} \sum_{x} e^{ikn\alpha} \delta(x - q - n\alpha), \qquad k, q \in [0, \alpha[,$$

are tempered distributions of  $\mathcal{S}'(\mathbb{R})$ : they are *generalized eigenstates* of  $\tau_1$  and  $\tau_2$ , with

$$\tau_1 \rho_{kq}(x) = e^{i\alpha q} \rho_{kq}(x), \qquad \tau_2 \rho_{kq}(x) = e^{-i\alpha k} \rho_{kq}(x),$$

Now, let

$$\square = \{(k, q) \in \mathbb{R}^2 : k, q \in [0, \alpha[\},$$

it is possible to check that

$$\int \int_{\square} \overline{\rho_{kq}(x)} \rho_{kq}(x') dk \, dq = \delta(x - x'),$$

and that

$$\int_{\mathbb{R}} \overline{\rho_{kq}(x)} \rho_{k'q'}(x) dx = \delta(k - k') \delta(q - q').$$

Now, let

$$\square = \{(k,q) \in \mathbb{R}^2 : k, q \in [0,\alpha[\},$$

it is possible to check that

$$\int \int_{\square} \overline{\rho_{kq}(x)} \rho_{kq}(x') dk \, dq = \delta(x - x'),$$

and that

$$\int_{\mathbb{R}} \overline{\rho_{kq}(x)} \rho_{k'q'}(x) dx = \delta(k - k') \delta(q - q').$$

**Remark:**— of course, these and the previous eigenvalue equations should be understood *in the sense of distributions*.

Now, let

$$\square = \{(k, q) \in \mathbb{R}^2 : k, q \in [0, \alpha[\},$$

it is possible to check that

$$\int \int_{\square} \overline{\rho_{kq}(x)} \rho_{kq}(x') dk \, dq = \delta(x - x'),$$

and that

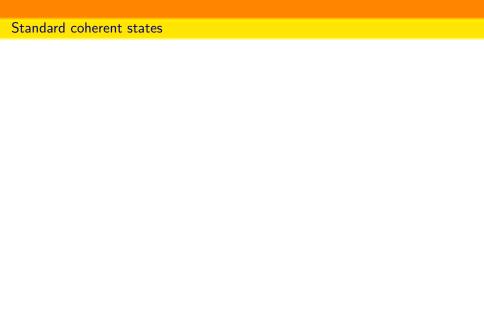
$$\int_{\mathbb{R}} \overline{\rho_{kq}(x)} \rho_{k'q'}(x) dx = \delta(k - k') \delta(q - q').$$

**Remark:**— of course, these and the previous eigenvalue equations should be understood *in the sense of distributions*.

 $ho_{kq}(x)$  can also be used to define a new representation of the wave functions by means of the integral transform  $Z:\mathcal{L}^2(\mathbb{R}) o \mathcal{L}^2(\square)$ , defined as follows:

$$h(k,q) := \langle \rho_{kq}, H \rangle =: (ZH)(k,q),$$

for all functions  $H(x) \in \mathcal{S}(\mathbb{R})$ , and then extended by continuity to all of  $\mathcal{L}^2(\mathbb{R})$ . The result is a function  $h(k,q) \in \mathcal{L}^2(\square)$ .



"Standard" coherent states (SCSs):

#### "Standard" coherent states (SCSs):

Let  $[c, c^{\dagger}] = 1$ ,  $ce_0 = 0$ ,  $e_k = \frac{1}{\sqrt{k!}} c^{\dagger k} e_0$ ,  $k \ge 0$  and

$$W(z) = e^{zc^{\dagger} - \overline{z} c},$$

a standard coherent state is the vector

$$\Phi(z) = W(z)e_0 = e^{-|z|^2/2} \sum_{k=0}^{\infty} \frac{z^k}{\sqrt{k!}} e_k.$$

The vector  $\Phi(z)$  is well defined (i.e., the series converge), and normalized  $\forall\,z\in\mathbb{C}.$  In fact W(z) is unitary (or  $\langle e_k,e_l\rangle=\delta_{k,l}$ ).

#### "Standard" coherent states (SCSs):

Let  $[c,c^{\dagger}]=1$ ,  $ce_0=0$ ,  $e_k=\frac{1}{\sqrt{k!}}c^{\dagger\,k}e_0$ ,  $k\geq 0$  and

$$W(z) = e^{zc^{\dagger} - \overline{z} c},$$

a standard coherent state is the vector

$$\Phi(z) = W(z)e_0 = e^{-|z|^2/2} \sum_{k=0}^{\infty} \frac{z^k}{\sqrt{k!}} e_k.$$

The vector  $\Phi(z)$  is well defined (i.e., the series converge), and normalized  $\forall z \in \mathbb{C}$ . In fact W(z) is unitary (or  $\langle e_k, e_l \rangle = \delta_{k,l}$ ).

Moreover,

$$c\,\Phi(z)=z\Phi(z), \qquad ext{and} \qquad rac{1}{\pi}\int_{\mathbb{C}}d^2z|\Phi(z)\,
angle\langle\,\Phi(z)|=1\!\!1.$$

In particular, the second equality shows that  $\mathcal{C}=\{\Phi(z),\,z\in\mathbb{C}\}$  is complete in  $\mathcal{L}^2(\mathbb{R}).$ 

#### "Standard" coherent states (SCSs):

Let  $[c,c^{\dagger}]=1$ ,  $ce_0=0$ ,  $e_k=\frac{1}{\sqrt{k!}}c^{\dagger\,k}e_0$ ,  $k\geq 0$  and

$$W(z) = e^{zc^{\dagger} - \overline{z} c},$$

a standard coherent state is the vector

$$\Phi(z) = W(z)e_0 = e^{-|z|^2/2} \sum_{k=0}^{\infty} \frac{z^k}{\sqrt{k!}} e_k.$$

The vector  $\Phi(z)$  is well defined (i.e., the series converge), and normalized  $\forall z \in \mathbb{C}$ . In fact W(z) is unitary (or  $\langle e_k, e_l \rangle = \delta_{k,l}$ ).

Moreover,

$$c\,\Phi(z)=z\Phi(z), \qquad ext{and} \qquad rac{1}{\pi}\int_{\mathbb{C}}d^2z|\Phi(z)\,
angle\langle\,\Phi(z)|=1\!\!1.$$

In particular, the second equality shows that  $\mathcal{C}=\{\Phi(z),\,z\in\mathbb{C}\}$  is complete in  $\mathcal{L}^2(\mathbb{R})$ . Actually, this set is overcomplete!

#### "Standard" coherent states (SCSs):

Let  $[c,c^{\dagger}]=1$ ,  $ce_0=0$ ,  $e_k=\frac{1}{\sqrt{k!}}c^{\dagger\,k}e_0$ ,  $k\geq 0$  and

$$W(z) = e^{zc^{\dagger} - \overline{z} c},$$

a standard coherent state is the vector

$$\Phi(z) = W(z)e_0 = e^{-|z|^2/2} \sum_{k=0}^{\infty} \frac{z^k}{\sqrt{k!}} e_k.$$

The vector  $\Phi(z)$  is well defined (i.e., the series converge), and normalized  $\forall z \in \mathbb{C}$ . In fact W(z) is unitary (or  $\langle e_k, e_l \rangle = \delta_{k,l}$ ).

Moreover,

$$c\,\Phi(z)=z\Phi(z), \qquad ext{and} \qquad rac{1}{\pi}\int_{\mathbb{C}}d^2z|\Phi(z)\,
angle\langle\,\Phi(z)|=1\!\!1.$$

In particular, the second equality shows that  $\mathcal{C}=\{\Phi(z),\,z\in\mathbb{C}\}$  is complete in  $\mathcal{L}^2(\mathbb{R})$ . Actually, this set is overcomplete! They are too many!!

#### Standard coherent states

#### "Standard" coherent states (SCSs):

Let  $[c, c^{\dagger}] = 1$ ,  $ce_0 = 0$ ,  $e_k = \frac{1}{\sqrt{k!}} c^{\dagger k} e_0$ ,  $k \ge 0$  and

$$W(z) = e^{zc^{\dagger} - \overline{z} c},$$

a standard coherent state is the vector

$$\Phi(z) = W(z)e_0 = e^{-|z|^2/2} \sum_{k=0}^{\infty} \frac{z^k}{\sqrt{k!}} e_k.$$

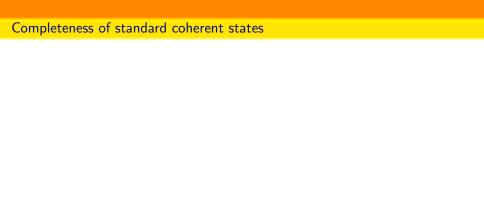
The vector  $\Phi(z)$  is well defined (i.e., the series converge), and normalized  $\forall z \in \mathbb{C}$ . In fact W(z) is unitary (or  $\langle e_k, e_l \rangle = \delta_{k,l}$ ).

Moreover,

$$c\,\Phi(z)=z\Phi(z), \qquad ext{and} \qquad rac{1}{\pi}\int_{\mathbb{C}}d^2z|\Phi(z)\,
angle\langle\,\Phi(z)|=1\!\!1.$$

In particular, the second equality shows that  $\mathcal{C} = \{\Phi(z), z \in \mathbb{C}\}$  is complete in  $\mathcal{L}^2(\mathbb{R})$ . Actually, this set is overcomplete! They are too many!!

It is also well known that  $\Phi(z)$  saturates the Heisenberg uncertainty relation:  $\Delta x \Delta p = \frac{1}{2}.$ 



#### The problem:

Can we extract out of the set  $\mathcal{C}=\{\Phi(z),\,z\in\mathbb{C}\}$  (infinitely) many vectors,  $\Phi(\hat{z}_j)$ ,  $j=1,2,3\ldots$ , getting now a complete set?

#### The problem:

Can we extract out of the set  $\mathcal{C}=\{\Phi(z),\,z\in\mathbb{C}\}$  (infinitely) many vectors,  $\Phi(\hat{z}_j)$ ,  $j=1,2,3\ldots$ , getting now a complete set? Yes.

#### The problem:

Can we extract out of the set  $\mathcal{C}=\{\Phi(z),\,z\in\mathbb{C}\}$  (infinitely) many vectors,  $\Phi(\hat{z}_j)$ ,  $j=1,2,3\ldots$ , getting now a complete set? Yes. Several authors have discussed, with different techniques, how to take a suitable countable subset of  $\mathbb{C}$ ,  $\mathbb{C}_{num}$ , such that the discrete set of coherent states  $\mathcal{C}_{num}=\{\Phi(z_j),\,z_j\in\mathbb{C}_{num}\}$ , is still complete and minimal.

#### The problem:

Can we extract out of the set  $\mathcal{C}=\{\Phi(z),\,z\in\mathbb{C}\}$  (infinitely) many vectors,  $\Phi(\hat{z}_j)$ ,  $j=1,2,3\ldots$ , getting now a complete set? Yes. Several authors have discussed, with different techniques, how to take a suitable countable subset of  $\mathbb{C}$ ,  $\mathbb{C}_{num}$ , such that the discrete set of coherent states  $\mathcal{C}_{num}=\{\Phi(z_j),\,z_j\in\mathbb{C}_{num}\}$ , is still complete and  $\min$ 

Using kq-representation the main steps are the following:

• we discretize  $\mathbb C$  by considering a lattice defined by  $z_{\underline n}=\frac{a}{\sqrt 2}(n_2+in_1),\ n_j\in\mathbb Z.$  Here  $a^2=2\pi L,\ L=1,2,3,\ldots$ ;

#### The problem:

Can we extract out of the set  $\mathcal{C}=\{\Phi(z),\,z\in\mathbb{C}\}$  (infinitely) many vectors,  $\Phi(\hat{z}_j)$ ,  $j=1,2,3\ldots$ , getting now a complete set? Yes. Several authors have discussed, with different techniques, how to take a suitable countable subset of  $\mathbb{C}$ ,  $\mathbb{C}_{num}$ , such that the discrete set of coherent states  $\mathcal{C}_{num}=\{\Phi(z_j),\,z_j\in\mathbb{C}_{num}\}$ , is still complete and minimal.

Using kq-representation the main steps are the following:

- we discretize  $\mathbb C$  by considering a lattice defined by  $z_{\underline n}=\frac{a}{\sqrt 2}(n_2+in_1),\ n_j\in\mathbb Z.$  Here  $a^2=2\pi L,\ L=1,2,3,\ldots$ ;
- ② we consider the unitary operator  $W(z_{\underline{n}})=e^{z_{\underline{n}}c^{\dagger}-\overline{z_{\underline{n}}}\,c}.$  We have

$$W(z_{\underline{n}}) = (-1)^{Ln_1n_2} \tau_1^{n_1} \tau_2^{n_2}, \qquad \tau_1 = e^{i\hat{p}_0 a}, \ \tau_2 = e^{i\hat{q}_0 a};$$

#### The problem:

Can we extract out of the set  $\mathcal{C}=\{\Phi(z),\,z\in\mathbb{C}\}$  (infinitely) many vectors,  $\Phi(\hat{z}_j)$ ,  $j=1,2,3\ldots$ , getting now a complete set? Yes. Several authors have discussed, with different techniques, how to take a suitable countable subset of  $\mathbb{C}$ ,  $\mathbb{C}_{num}$ , such that the discrete set of coherent states  $\mathcal{C}_{num}=\{\Phi(z_j),\,z_j\in\mathbb{C}_{num}\}$ , is still complete and minimal.

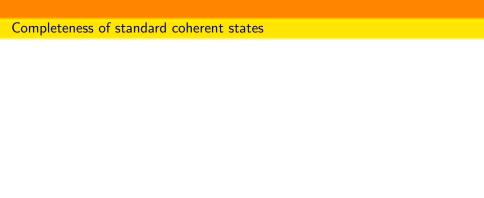
Using kq-representation the main steps are the following:

- we discretize  $\mathbb C$  by considering a lattice defined by  $z_{\underline n}=\frac{a}{\sqrt 2}(n_2+in_1),\ n_j\in\mathbb Z.$  Here  $a^2=2\pi L,\ L=1,2,3,\ldots$ ;
- ② we consider the unitary operator  $W(z_{\underline{n}})=e^{z_{\underline{n}}c^{\dagger}-\overline{z_{\underline{n}}}\,c}.$  We have

$$W(z_{\underline{n}}) = (-1)^{Ln_1n_2} \tau_1^{n_1} \tau_2^{n_2}, \qquad \tau_1 = e^{i\hat{p}_0 a}, \ \tau_2 = e^{i\hat{q}_0 a};$$

**1** Next we take the vectors in  $C_{num}$  as follows:

$$\Phi(z_{\underline{n}}) = W(z_{\underline{n}})e_0$$



#### Sketch of the proof:

Let  $f \in \mathcal{L}^2(\mathbb{R})$  be orthogonal to all the  $\Phi(z_{\underline{n}})$ :

$$\langle f, \Phi(z_{\underline{n}}) \rangle = \int_{\mathbb{R}} \overline{f(x)} \, \Phi(z_{\underline{n}}, x) \, dx = 0, \qquad \forall n_1, n_2 \in \mathbb{Z}.$$

#### Sketch of the proof:

Let  $f \in \mathcal{L}^2(\mathbb{R})$  be orthogonal to all the  $\Phi(z_{\underline{n}})$ :

$$\langle f, \Phi(z_{\underline{n}}) \rangle = \int_{\mathbb{R}} \overline{f(x)} \, \Phi(z_{\underline{n}}, x) \, dx = 0, \quad \forall n_1, n_2 \in \mathbb{Z}.$$

By means of the kq-representation we can rewrite this equality as

$$\int \int_{\square} \langle f, \rho_{kq} \rangle \langle \rho_{kq}, e_0 \rangle e^{ikn_1 a + iqn_2 a} dk dq = 0$$

for all  $n_1, n_2 \in \mathbb{Z}$ .

#### Sketch of the proof:

Let  $f \in \mathcal{L}^2(\mathbb{R})$  be orthogonal to all the  $\Phi(z_{\underline{n}})$ :

$$\langle f, \Phi(z_{\underline{n}}) \rangle = \int_{\mathbb{R}} \overline{f(x)} \, \Phi(z_{\underline{n}}, x) \, dx = 0, \quad \forall n_1, n_2 \in \mathbb{Z}.$$

By means of the kq-representation we can rewrite this equality as

$$\int \int_{\square} \left\langle f, \rho_{kq} \right\rangle \left\langle \rho_{kq}, e_0 \right\rangle \, e^{ikn_1 a + iqn_2 a} \, dk \, dq = 0$$

for all  $n_1, n_2 \in \mathbb{Z}$ .

The set  $\{e^{ikn_1a+iqn_2a}, n_j \in \mathbb{Z}\}$  is complete in  $\mathcal{L}^2(\square)$ , if L=1. Hence

$$\langle f, \rho_{kq} \rangle \langle \rho_{kq}, e_0 \rangle = 0$$

a.e. in  $\square$ . But  $\left\langle \rho_{kq},e_{0}\right\rangle \neq0$  in  $\square$ . Hence  $\left\langle f,\rho_{kq}\right\rangle =0$  a.e., and then f=0.

So far we have worked with  $\hat{q}_0 = \hat{q}_0^\dagger$  and  $\hat{p}_0 = \hat{p}_0^\dagger.$ 

So far we have worked with  $\hat{q}_0=\hat{q}_0^\dagger$  and  $\hat{p}_0=\hat{p}_0^\dagger.$  But,

So far we have worked with  $\hat{q}_0=\hat{q}_0^\dagger$  and  $\hat{p}_0=\hat{p}_0^\dagger.$  But,

• is it possible to "deform" these operators keeping unchanged the commutation rule, but loosing self-adjointness?

So far we have worked with  $\hat{q}_0 = \hat{q}_0^\dagger$  and  $\hat{p}_0 = \hat{p}_0^\dagger$ . But,

- is it possible to "deform" these operators keeping unchanged the commutation rule, but loosing self-adjointness?
- 4 how?...

So far we have worked with  $\hat{q}_0 = \hat{q}_0^\dagger$  and  $\hat{p}_0 = \hat{p}_0^\dagger$ . But,

- is it possible to "deform" these operators keeping unchanged the commutation rule, but loosing self-adjointness?
- o how?...
- ...and, possibly more important, why?

So far we have worked with  $\hat{q}_0 = \hat{q}_0^{\dagger}$  and  $\hat{p}_0 = \hat{p}_0^{\dagger}$ . But,

- is it possible to "deform" these operators keeping unchanged the commutation rule, but loosing self-adjointness?
- a how?...
- ...and, possibly more important, why?

Because of its possible relevance for *PT*- (or *Pseudo, Cripto, Quasi-Hermitian*) Quantum Mechanics, where Hamiltonians need not being self-adjoint, but have real eigenvalues:

$$H_C = \hat{p}_0^2 + i\hat{q}_0^3,$$

So far we have worked with  $\hat{q}_0 = \hat{q}_0^\dagger$  and  $\hat{p}_0 = \hat{p}_0^\dagger$ . But,

- is it possible to "deform" these operators keeping unchanged the commutation rule, but loosing self-adjointness?
- a how?...
- ...and, possibly more important, why?

Because of its possible relevance for *PT*- (or *Pseudo, Cripto, Quasi-Hermitian*) Quantum Mechanics, where Hamiltonians need not being self-adjoint, but have real eigenvalues:

$$H_C = \hat{p}_0^2 + i\hat{q}_0^3,$$

$$H_{Sw} = \frac{1}{2} (\hat{p}_0^2 + \hat{q}_0^2) - \frac{i}{2} \tan(2\theta) (\hat{p}_0^2 - \hat{q}_0^2),$$

So far we have worked with  $\hat{q}_0 = \hat{q}_0^\dagger$  and  $\hat{p}_0 = \hat{p}_0^\dagger$ . But,

- is it possible to "deform" these operators keeping unchanged the commutation rule, but loosing self-adjointness?
- a how?...
- ...and, possibly more important, why?

Because of its possible relevance for *PT*- (or *Pseudo, Cripto, Quasi-Hermitian*) Quantum Mechanics, where Hamiltonians need not being self-adjoint, but have real eigenvalues:

$$\begin{split} H_C &= \hat{p}_0^2 + i \hat{q}_0^3, \\ H_{Sw} &= \frac{1}{2} \left( \hat{p}_0^2 + \hat{q}_0^2 \right) - \frac{i}{2} \, \tan(2\theta) \left( \hat{p}_0^2 - \hat{q}_0^2 \right), \\ H_{BS} &= -\frac{1}{2} \sigma^2 \frac{d^2}{dx^2} + \left( \frac{\sigma^2}{2} - r \right) \frac{d}{dx} + r \, 1\!\!1, \end{split}$$

So far we have worked with  $\hat{q}_0 = \hat{q}_0^\dagger$  and  $\hat{p}_0 = \hat{p}_0^\dagger$ . But,

- is it possible to "deform" these operators keeping unchanged the commutation rule, but loosing self-adjointness?
- @ how?...
- ...and, possibly more important, why?

Because of its possible relevance for *PT*- (or *Pseudo, Cripto, Quasi-Hermitian*) Quantum Mechanics, where Hamiltonians need not being self-adjoint, but have real eigenvalues:

$$\begin{split} H_C &= \hat{p}_0^2 + i \hat{q}_0^3, \\ H_{Sw} &= \frac{1}{2} \left( \hat{p}_0^2 + \hat{q}_0^2 \right) - \frac{i}{2} \, \tan(2\theta) \left( \hat{p}_0^2 - \hat{q}_0^2 \right), \\ H_{BS} &= -\frac{1}{2} \sigma^2 \frac{d^2}{dx^2} + \left( \frac{\sigma^2}{2} - r \right) \frac{d}{dx} + r \, \mathbbm{1}, \end{split}$$

and many others. By the way...

So far we have worked with  $\hat{q}_0 = \hat{q}_0^\dagger$  and  $\hat{p}_0 = \hat{p}_0^\dagger$ . But,

- is it possible to "deform" these operators keeping unchanged the commutation rule, but loosing self-adjointness?
- a how?...
- ...and, possibly more important, why?

Because of its possible relevance for *PT*- (or *Pseudo, Cripto, Quasi-Hermitian*) Quantum Mechanics, where Hamiltonians need not being self-adjoint, but have real eigenvalues:

$$\begin{split} H_C &= \hat{p}_0^2 + i\hat{q}_0^3, \\ H_{Sw} &= \frac{1}{2} \left( \hat{p}_0^2 + \hat{q}_0^2 \right) - \frac{i}{2} \, \tan(2\theta) \left( \hat{p}_0^2 - \hat{q}_0^2 \right), \\ H_{BS} &= -\frac{1}{2} \sigma^2 \frac{d^2}{dx^2} + \left( \frac{\sigma^2}{2} - r \right) \frac{d}{dx} + r \, \mathbbm{1}, \end{split}$$

and many others. By the way... ...motivations are not really needed for this audience!

In some situations,  $H 
eq H^\dagger$  is similar to some  $H_0 = H_0^\dagger.$  Formally we have:

$$H = SH_0S^{-1},$$

for some (bounded or not) invertible operator S, with  $S^{-1}$  bounded or not.

In some situations,  $H \neq H^{\dagger}$  is similar to some  $H_0 = H_0^{\dagger}$ . Formally we have:

$$H = SH_0S^{-1},$$

for some (bounded or not) invertible operator S, with  $S^{-1}$  bounded or not.

In other situations, no such a similarity can be established. This is the case, for instance, if the eigenvalues of  $\cal H$  are complex.

In some situations,  $H \neq H^{\dagger}$  is similar to some  $H_0 = H_0^{\dagger}.$  Formally we have:

$$H = SH_0S^{-1},$$

for some (bounded or not) invertible operator  ${\cal S}$ , with  ${\cal S}^{-1}$  bounded or not.

In other situations, no such a similarity can be established. This is the case, for instance, if the eigenvalues of  $\cal H$  are complex.

In some situations,  $H \neq H^{\dagger}$  is similar to some  $H_0 = H_0^{\dagger}$ . Formally we have:

$$H = SH_0S^{-1},$$

for some (bounded or not) invertible operator S, with  $S^{-1}$  bounded or not.

In other situations, no such a similarity can be established. This is the case, for instance, if the eigenvalues of  $\cal H$  are complex.

In what follow we will restrict to the first case. The project is:

**①** construct a non self-adjoint version of  $\hat{q}_0$  and  $\hat{p}_0$ ,  $\hat{q}$  and  $\hat{p}_i$ ;

In some situations,  $H \neq H^{\dagger}$  is similar to some  $H_0 = H_0^{\dagger}$ . Formally we have:

$$H = SH_0S^{-1},$$

for some (bounded or not) invertible operator S, with  $S^{-1}$  bounded or not.

In other situations, no such a similarity can be established. This is the case, for instance, if the eigenvalues of  $\cal H$  are complex.

- **①** construct a non self-adjoint version of  $\hat{q}_0$  and  $\hat{p}_0$ ,  $\hat{q}$  and  $\hat{p}_i$ ;
- introduce bi-coherent states;

In some situations,  $H \neq H^{\dagger}$  is similar to some  $H_0 = H_0^{\dagger}$ . Formally we have:

$$H = SH_0S^{-1},$$

for some (bounded or not) invertible operator S, with  $S^{-1}$  bounded or not.

In other situations, no such a similarity can be established. This is the case, for instance, if the eigenvalues of  $\cal H$  are complex.

- **①** construct a non self-adjoint version of  $\hat{q}_0$  and  $\hat{p}_0$ ,  $\hat{q}$  and  $\hat{p}_i$ ;
- introduce bi-coherent states;
- **1** introduce a generalized kq-representation for  $\hat{q}$  and  $\hat{p}$ ;

In some situations,  $H \neq H^{\dagger}$  is similar to some  $H_0 = H_0^{\dagger}$ . Formally we have:

$$H = SH_0S^{-1},$$

for some (bounded or not) invertible operator S, with  $S^{-1}$  bounded or not.

In other situations, no such a similarity can be established. This is the case, for instance, if the eigenvalues of  $\cal H$  are complex.

- **①** construct a non self-adjoint version of  $\hat{q}_0$  and  $\hat{p}_0$ ,  $\hat{q}$  and  $\hat{p}_i$ ;
- introduce bi-coherent states;
- **3** introduce a generalized kq-representation for  $\hat{q}$  and  $\hat{p}$ ;
- $oldsymbol{oldsymbol{eta}}$  use the generalized kq-representation to prove completeness of (a discrete subset of) bi-coherent states.

Let us now consider an operator T, not necessarily bounded, with domain  $D(T)\supseteq \mathcal{S}(\mathbb{R}).$  Then:

Let us now consider an operator T, not necessarily bounded, with domain  $D(T)\supseteq \mathcal{S}(\mathbb{R}).$  Then:

#### **Definition:**– T is $\mathcal{S}(\mathbb{R})$ -stable if:

- (i) T is invertible and if
- (ii) T,  $T^{-1}$ ,  $T^\dagger$  and  $(T^{-1})^\dagger=(T^\dagger)^{-1}$  all map  $\mathcal{S}(\mathbb{R})$  in  $\mathcal{S}(\mathbb{R})$ .

Let us now consider an operator T, not necessarily bounded, with domain  $D(T)\supseteq \mathcal{S}(\mathbb{R}).$  Then:

#### **Definition:**– T is $\mathcal{S}(\mathbb{R})$ -stable if:

- (i) T is invertible and if
- (ii) T,  $T^{-1}$ ,  $T^\dagger$  and  $(T^{-1})^\dagger=(T^\dagger)^{-1}$  all map  $\mathcal{S}(\mathbb{R})$  in  $\mathcal{S}(\mathbb{R})$ .

Moreover, an  $\mathcal{S}(\mathbb{R})$ -stable operator T is called fully  $\mathcal{S}(\mathbb{R})$ -stable if  $T^\dagger$  and  $T^{-1}$  map  $\mathcal{S}(\mathbb{R})$  into itself continuously.

Let us now consider an operator T, not necessarily bounded, with domain  $D(T)\supseteq \mathcal{S}(\mathbb{R}).$  Then:

#### **Definition:** T is $\mathcal{S}(\mathbb{R})$ -stable if:

- (i) T is invertible and if
- (ii) T,  $T^{-1}$ ,  $T^\dagger$  and  $(T^{-1})^\dagger=(T^\dagger)^{-1}$  all map  $\mathcal{S}(\mathbb{R})$  in  $\mathcal{S}(\mathbb{R})$ .

Moreover, an  $\mathcal{S}(\mathbb{R})$ -stable operator T is called fully  $\mathcal{S}(\mathbb{R})$ -stable if  $T^\dagger$  and  $T^{-1}$  map  $\mathcal{S}(\mathbb{R})$  into itself continuously.

**Remark 1:**— This in particular means that, if  $\{\varphi_n(x)\}$  is a sequence in  $\mathcal{S}(\mathbb{R})$   $\tau_{\mathcal{S}}$ -converging to  $\varphi(x)$ , then both  $\{T^{-1}\varphi_n(x)\}$  and  $\{T^{\dagger}\varphi_n(x)\}$  converge in the same topology.

Let us now consider an operator T, not necessarily bounded, with domain  $D(T)\supseteq \mathcal{S}(\mathbb{R}).$  Then:

#### **Definition:** T is $S(\mathbb{R})$ -stable if:

- (i) T is invertible and if
- (ii) T,  $T^{-1}$ ,  $T^\dagger$  and  $(T^{-1})^\dagger=(T^\dagger)^{-1}$  all map  $\mathcal{S}(\mathbb{R})$  in  $\mathcal{S}(\mathbb{R})$ .

Moreover, an  $\mathcal{S}(\mathbb{R})$ -stable operator T is called fully  $\mathcal{S}(\mathbb{R})$ -stable if  $T^\dagger$  and  $T^{-1}$  map  $\mathcal{S}(\mathbb{R})$  into itself continuously.

**Remark 1:**— This in particular means that, if  $\{\varphi_n(x)\}$  is a sequence in  $\mathcal{S}(\mathbb{R})$   $\tau_{\mathcal{S}}$ -converging to  $\varphi(x)$ , then both  $\{T^{-1}\varphi_n(x)\}$  and  $\{T^{\dagger}\varphi_n(x)\}$  converge in the same topology.

**Remark 2:-**  $\mathcal{S}(\mathbb{R})$ -stable operators will be used to deform  $\hat{q}_0$  and  $\hat{p}_0$ , as shown after.

Example 1: Let  $u, v \in \mathcal{S}(\mathbb{R})$  be such that  $\langle u, v \rangle = 1$ . We define

$$P_{u,v}f := \langle u, f \rangle v.$$

Consider  $\alpha,\beta\in\mathbb{C}$  satisfying  $\alpha+\beta+\alpha\beta=0.$  Then the operator

$$T = 1 + \alpha P_{u,v}$$

is invertible, with  $T^{-1}=\mathbb{1}+\beta P_{u,v}.$  Unless u=v and  $\alpha\in\mathbb{R},$  T is neither Hermitian, nor unitary. We have  $T^\dagger=\mathbb{1}+\overline{\alpha}P_{v,u}\neq T^{-1}.$  Then  $(T^{-1})^\dagger=\mathbb{1}+\overline{\beta}P_{v,u}=(T^\dagger)^{-1}.$ 

Example 1: Let  $u, v \in \mathcal{S}(\mathbb{R})$  be such that  $\langle u, v \rangle = 1$ . We define

$$P_{u,v}f := \langle u, f \rangle v.$$

Consider  $\alpha,\beta\in\mathbb{C}$  satisfying  $\alpha+\beta+\alpha\beta=0.$  Then the operator

$$T = 1 + \alpha P_{u,v}$$

is invertible, with  $T^{-1}=\mathbb{1}+\beta P_{u,v}$ . Unless u=v and  $\alpha\in\mathbb{R}$ , T is neither Hermitian, nor unitary. We have  $T^\dagger=\mathbb{1}+\overline{\alpha}P_{v,u}\neq T^{-1}$ . Then  $(T^{-1})^\dagger=\mathbb{1}+\overline{\beta}P_{v,u}=(T^\dagger)^{-1}$ .

Since  $u, v \in \mathcal{S}(\mathbb{R})$ , it is evident that  $T, T^{-1}, T^{\dagger}, (T^{-1})^{\dagger}$  all map  $\mathcal{S}(\mathbb{R})$  in  $\mathcal{S}(\mathbb{R})$ .

Example 1: Let  $u, v \in \mathcal{S}(\mathbb{R})$  be such that  $\langle u, v \rangle = 1$ . We define

$$P_{u,v}f := \langle u, f \rangle v.$$

Consider  $\alpha, \beta \in \mathbb{C}$  satisfying  $\alpha + \beta + \alpha \beta = 0$ . Then the operator

$$T = 1 + \alpha P_{u,v}$$

is invertible, with  $T^{-1}=\mathbb{1}+\beta P_{u,v}$ . Unless u=v and  $\alpha\in\mathbb{R}$ , T is neither Hermitian, nor unitary. We have  $T^\dagger=\mathbb{1}+\overline{\alpha}P_{v,u}\neq T^{-1}$ . Then  $(T^{-1})^\dagger=\mathbb{1}+\overline{\beta}P_{v,u}=(T^\dagger)^{-1}$ .

Since  $u, v \in \mathcal{S}(\mathbb{R})$ , it is evident that  $T, T^{-1}, T^{\dagger}, (T^{-1})^{\dagger}$  all map  $\mathcal{S}(\mathbb{R})$  in  $\mathcal{S}(\mathbb{R})$ .

Moreover, if  $\{\varphi_n \in \mathcal{S}(\mathbb{R})\}\ \tau_{\mathcal{S}}$ -converges to  $\varphi \in \mathcal{S}(\mathbb{R})$  then, for each  $F \in \mathcal{S}'(\mathbb{R})$ ,

$$\left\langle F,T^{\dagger}\varphi_{n}\right\rangle =\left\langle F,\varphi_{n}+\overline{\alpha}\left\langle v,\varphi_{n}\right\rangle u\right\rangle =\left\langle F,\varphi_{n}\right\rangle +\overline{\alpha}\left\langle v,\varphi_{n}\right\rangle \left\langle F,u\right\rangle \longrightarrow$$

$$\left\langle F,\varphi\right\rangle +\overline{\alpha}\left\langle v,\varphi\right\rangle \left\langle F,u\right\rangle =\left\langle F,\varphi+\overline{\alpha}\left\langle v,\varphi\right\rangle u\right\rangle =\left\langle F,T^{\dagger}\varphi\right\rangle .$$

Similarly,  $\langle F, T^{-1}\varphi_n \rangle \to \langle F, T^{-1}\varphi \rangle$ , and therefore both  $T^\dagger$  and  $T^{-1}$  map  $\mathcal{S}(\mathbb{R})$  into itself with continuity:  $\Rightarrow T$  is fully  $\mathcal{S}(\mathbb{R})$ -stable.

Example 2: For convenience we introduce what we call  $T^{-1}$ :

$$T^{-1} = 1 - i(\hat{p}_0)^2,$$

whose domain contains  $\mathcal{S}(\mathbb{R})$ . Its inverse can be obtained computing first the Green function for  $T^{-1}$ ,  $(T^{-1}G)(x)=\delta(x)$ . We get

$$T(\varphi(x)) = \frac{i}{\sqrt{2}(1+i)} \int_{\mathbb{R}} \varphi(x-s)e^{-|s|\frac{\sqrt{2}}{2}(1+i)} ds,$$

for all  $\varphi(x) \in \mathcal{S}(\mathbb{R})$ .

Example 2: For convenience we introduce what we call  $T^{-1}$ :

$$T^{-1} = 1 - i(\hat{p}_0)^2,$$

whose domain contains  $\mathcal{S}(\mathbb{R})$ . Its inverse can be obtained computing first the Green function for  $T^{-1}$ ,  $(T^{-1}G)(x)=\delta(x)$ . We get

$$T(\varphi(x)) = \frac{i}{\sqrt{2}(1+i)} \int_{\mathbb{R}} \varphi(x-s)e^{-|s|\frac{\sqrt{2}}{2}(1+i)} ds,$$

for all  $\varphi(x) \in \mathcal{S}(\mathbb{R})$ .

It is clear that  $T^{-1}$  and its adjoint map  $\mathcal{S}(\mathbb{R})$  into  $\mathcal{S}(\mathbb{R})$ . It is not so evident, but can be proved, that T and  $T^\dagger$  do the same. Hence T is  $\mathcal{S}(\mathbb{R})$ -stable.

Example 2: For convenience we introduce what we call  $T^{-1}$ :

$$T^{-1} = 1 - i(\hat{p}_0)^2,$$

whose domain contains  $\mathcal{S}(\mathbb{R})$ . Its inverse can be obtained computing first the Green function for  $T^{-1}$ ,  $(T^{-1}G)(x)=\delta(x)$ . We get

$$T(\varphi(x)) = \frac{i}{\sqrt{2}(1+i)} \int_{\mathbb{R}} \varphi(x-s)e^{-|s|\frac{\sqrt{2}}{2}(1+i)} ds,$$

for all  $\varphi(x) \in \mathcal{S}(\mathbb{R})$ .

It is clear that  $T^{-1}$  and its adjoint map  $\mathcal{S}(\mathbb{R})$  into  $\mathcal{S}(\mathbb{R})$ . It is not so evident, but can be proved, that T and  $T^{\dagger}$  do the same. Hence T is  $\mathcal{S}(\mathbb{R})$ -stable.

In fact, using the Dominated Convergence Lebesgue Theorem, one can check that T is fully  $\mathcal{S}(\mathbb{R})$ -stable.

Example 2: For convenience we introduce what we call  $T^{-1}$ :

$$T^{-1} = 1 - i(\hat{p}_0)^2,$$

whose domain contains  $\mathcal{S}(\mathbb{R})$ . Its inverse can be obtained computing first the Green function for  $T^{-1}$ ,  $(T^{-1}G)(x)=\delta(x)$ . We get

$$T(\varphi(x)) = \frac{i}{\sqrt{2}(1+i)} \int_{\mathbb{R}} \varphi(x-s)e^{-|s|\frac{\sqrt{2}}{2}(1+i)} ds,$$

for all  $\varphi(x) \in \mathcal{S}(\mathbb{R})$ .

It is clear that  $T^{-1}$  and its adjoint map  $\mathcal{S}(\mathbb{R})$  into  $\mathcal{S}(\mathbb{R})$ . It is not so evident, but can be proved, that T and  $T^{\dagger}$  do the same. Hence T is  $\mathcal{S}(\mathbb{R})$ -stable.

In fact, using the *Dominated Convergence Lebesgue Theorem*, one can check that T is fully  $\mathcal{S}(\mathbb{R})$ -stable.

Remark:– Then we have bounded and unbounded examples of fully  $\mathcal{S}(\mathbb{R})$ -stable operators....

Example 2: For convenience we introduce what we call  $T^{-1}$ :

$$T^{-1} = 1 - i(\hat{p}_0)^2,$$

whose domain contains  $\mathcal{S}(\mathbb{R})$ . Its inverse can be obtained computing first the Green function for  $T^{-1}$ ,  $(T^{-1}G)(x)=\delta(x)$ . We get

$$T(\varphi(x)) = \frac{i}{\sqrt{2}(1+i)} \int_{\mathbb{R}} \varphi(x-s)e^{-|s|\frac{\sqrt{2}}{2}(1+i)} ds,$$

for all  $\varphi(x) \in \mathcal{S}(\mathbb{R})$ .

It is clear that  $T^{-1}$  and its adjoint map  $\mathcal{S}(\mathbb{R})$  into  $\mathcal{S}(\mathbb{R})$ . It is not so evident, but can be proved, that T and  $T^{\dagger}$  do the same. Hence T is  $\mathcal{S}(\mathbb{R})$ -stable.

In fact, using the *Dominated Convergence Lebesgue Theorem*, one can check that T is fully  $\mathcal{S}(\mathbb{R})$ -stable.

**Remark:**– Then we have bounded and unbounded examples of fully  $\mathcal{S}(\mathbb{R})$ -stable operators....for what?

let T be a  $\mathcal{S}(\mathbb{R})$ -stable operator, and let us consider the operators

$$\hat{q}\,\varphi = T\hat{q}_0T^{-1}\varphi, \qquad \hat{p}\,\varphi = T\hat{p}_0T^{-1}\varphi,$$

for all  $\varphi(x) \in \mathcal{S}(\mathbb{R})$ . Of course,  $\hat{q}$  and  $\hat{p}$  map  $\mathcal{S}(\mathbb{R})$  in  $\mathcal{S}(\mathbb{R})$ , so that they are, in particular, densely defined.

let T be a  $\mathcal{S}(\mathbb{R})$ -stable operator, and let us consider the operators

$$\hat{q}\,\varphi = T\hat{q}_0T^{-1}\varphi, \qquad \hat{p}\,\varphi = T\hat{p}_0T^{-1}\varphi,$$

for all  $\varphi(x) \in \mathcal{S}(\mathbb{R})$ . Of course,  $\hat{q}$  and  $\hat{p}$  map  $\mathcal{S}(\mathbb{R})$  in  $\mathcal{S}(\mathbb{R})$ , so that they are, in particular, densely defined.

It is possible to check that their adjoints satisfy the following:

$$\hat{q}^{\dagger}\varphi = (T^{-1})^{\dagger}\hat{q}_{0}T^{\dagger}\varphi, \qquad \hat{p}^{\dagger}\varphi = (T^{-1})^{\dagger}\hat{p}_{0}T^{\dagger}\varphi,$$

for all  $\varphi(x)\in\mathcal{S}(\mathbb{R}).$  Hence, also  $\hat{q}^\dagger,\hat{p}^\dagger$  leave  $\mathcal{S}(\mathbb{R})$  stable.

let T be a  $\mathcal{S}(\mathbb{R})$ -stable operator, and let us consider the operators

$$\hat{q}\,\varphi = T\hat{q}_0T^{-1}\varphi, \qquad \hat{p}\,\varphi = T\hat{p}_0T^{-1}\varphi,$$

for all  $\varphi(x) \in \mathcal{S}(\mathbb{R})$ . Of course,  $\hat{q}$  and  $\hat{p}$  map  $\mathcal{S}(\mathbb{R})$  in  $\mathcal{S}(\mathbb{R})$ , so that they are, in particular, densely defined.

It is possible to check that their adjoints satisfy the following:

$$\hat{q}^{\dagger}\varphi = (T^{-1})^{\dagger}\hat{q}_{0}T^{\dagger}\varphi, \qquad \hat{p}^{\dagger}\varphi = (T^{-1})^{\dagger}\hat{p}_{0}T^{\dagger}\varphi,$$

for all  $\varphi(x) \in \mathcal{S}(\mathbb{R})$ . Hence, also  $\hat{q}^\dagger, \hat{p}^\dagger$  leave  $\mathcal{S}(\mathbb{R})$  stable.

It is clear that, in general,  $\hat{q}\neq\hat{q}^{\dagger}$  and  $\hat{p}\neq\hat{p}^{\dagger}.$  It is also clear that

$$[\hat{q}, \hat{p}]\varphi(x) = i\varphi(x),$$

for all  $\varphi(x) \in \mathcal{S}(\mathbb{R})$ .

let T be a  $\mathcal{S}(\mathbb{R})$ -stable operator, and let us consider the operators

$$\hat{q}\,\varphi = T\hat{q}_0T^{-1}\varphi, \qquad \hat{p}\,\varphi = T\hat{p}_0T^{-1}\varphi,$$

for all  $\varphi(x) \in \mathcal{S}(\mathbb{R})$ . Of course,  $\hat{q}$  and  $\hat{p}$  map  $\mathcal{S}(\mathbb{R})$  in  $\mathcal{S}(\mathbb{R})$ , so that they are, in particular, densely defined.

It is possible to check that their adjoints satisfy the following:

$$\hat{q}^{\dagger}\varphi = (T^{-1})^{\dagger}\hat{q}_{0}T^{\dagger}\varphi, \qquad \hat{p}^{\dagger}\varphi = (T^{-1})^{\dagger}\hat{p}_{0}T^{\dagger}\varphi,$$

for all  $\varphi(x)\in\mathcal{S}(\mathbb{R})$ . Hence, also  $\hat{q}^\dagger,\hat{p}^\dagger$  leave  $\mathcal{S}(\mathbb{R})$  stable.

It is clear that, in general,  $\hat{q}\neq\hat{q}^{\dagger}$  and  $\hat{p}\neq\hat{p}^{\dagger}.$  It is also clear that

$$[\hat{q}, \hat{p}]\varphi(x) = i\varphi(x),$$

for all  $\varphi(x) \in \mathcal{S}(\mathbb{R})$ .

That's why we call them non self-adjoint momentum and position operators.

Given a tempered distribution  $\eta_{x_0}(x)\in\mathcal{S}'(\mathbb{R})$ , and its set  $\mathcal{F}_\eta=\{\eta_{x_0}(x),\,x_0\in\mathbb{R}\}$ , then

**Definition:**–  $\mathcal{F}_{\eta}$  is called *well-behaved* if:

Given a tempered distribution  $\eta_{x_0}(x)\in\mathcal{S}'(\mathbb{R})$ , and its set  $\mathcal{F}_\eta=\{\eta_{x_0}(x),\,x_0\in\mathbb{R}\}$ , then

**Definition:**–  $\mathcal{F}_{\eta}$  is called *well-behaved* if:

1. each  $\eta_{x_0}(x)$  is a generalized eigenstate of  $\hat{q}$ :

$$\hat{q} \, \eta_{x_0}(x) = x_0 \, \eta_{x_0}(x),$$

for all  $x_0 \in \mathbb{R}$ ;

Given a tempered distribution  $\eta_{x_0}(x) \in \mathcal{S}'(\mathbb{R})$ , and its set  $\mathcal{F}_{\eta} = \{\eta_{x_0}(x), \, x_0 \in \mathbb{R}\}$ , then

**Definition:**–  $\mathcal{F}_{\eta}$  is called *well-behaved* if:

1. each  $\eta_{x_0}(x)$  is a generalized eigenstate of  $\hat{q}$ :

$$\hat{q} \, \eta_{x_0}(x) = x_0 \, \eta_{x_0}(x),$$

for all  $x_0 \in \mathbb{R}$ ;

2. a second family of generalized vectors  $\mathcal{F}^{\eta}=\{\eta^{x_0}(x)\in\mathcal{S}'(\mathbb{R}),\,x_0\in\mathbb{R}\}$  exists such that

$$\langle \eta_{x_0}, \eta^{y_0} \rangle = \delta(x_0 - y_0), \quad \int_{\mathbb{R}} dx_0 |\eta_{x_0}\rangle \langle \eta^{x_0}| = \int_{\mathbb{R}} dx_0 |\eta^{x_0}\rangle \langle \eta_{x_0}| = 1,$$

at least on  $\mathcal{S}(\mathbb{R})$ .

Given a tempered distribution  $\eta_{x_0}(x) \in \mathcal{S}'(\mathbb{R})$ , and its set  $\mathcal{F}_{\eta} = \{\eta_{x_0}(x), \, x_0 \in \mathbb{R}\}$ , then

**Definition:**–  $\mathcal{F}_{\eta}$  is called *well-behaved* if:

1. each  $\eta_{x_0}(x)$  is a generalized eigenstate of  $\hat{q}$ :

$$\hat{q} \, \eta_{x_0}(x) = x_0 \, \eta_{x_0}(x),$$

for all  $x_0 \in \mathbb{R}$ ;

2. a second family of generalized vectors  $\mathcal{F}^{\eta}=\{\eta^{x_0}(x)\in\mathcal{S}'(\mathbb{R}),\,x_0\in\mathbb{R}\}$  exists such that

$$\langle \eta_{x_0}, \eta^{y_0} \rangle = \delta(x_0 - y_0), \quad \int_{\mathbb{R}} dx_0 |\eta_{x_0}\rangle \langle \eta^{x_0}| = \int_{\mathbb{R}} dx_0 |\eta^{x_0}\rangle \langle \eta_{x_0}| = 1,$$

at least on  $\mathcal{S}(\mathbb{R})$ .

**Remarks:**– (1) These properties extend those for  $\xi_{x_0}(x)$ ;

(2) A similar definition can be introduced for  $\hat{p}$ , and its generalized eigenstates.

Fully  $\mathcal{S}(\mathbb{R})$ -stable operators and well-behaved sets of tempered distributions are connected.

Fully  $\mathcal{S}(\mathbb{R})$ -stable operators and well-behaved sets of tempered distributions are connected. How?

Fully  $\mathcal{S}(\mathbb{R})$ -stable operators and well-behaved sets of tempered distributions are connected. How?

**Step 1.** Any  $\mathcal{S}(\mathbb{R})$ -stable operator T can be extended to  $\mathcal{S}'(\mathbb{R})$ , by duality:

$$\langle TF, \varphi \rangle = \left\langle F, T^{\dagger} \varphi \right\rangle, \qquad \left\langle (T^{-1})^{\dagger} F, \varphi \right\rangle = \left\langle F, T^{-1} \varphi \right\rangle,$$

for all  $F \in \mathcal{S}'(\mathbb{R})$  and  $\varphi \in \mathcal{S}(\mathbb{R})$ .

Fully  $\mathcal{S}(\mathbb{R})$ -stable operators and well-behaved sets of tempered distributions are connected. How?

**Step 1.** Any  $\mathcal{S}(\mathbb{R})$ -stable operator T can be extended to  $\mathcal{S}'(\mathbb{R})$ , by duality:

$$\langle TF, \varphi \rangle = \langle F, T^{\dagger} \varphi \rangle, \qquad \langle (T^{-1})^{\dagger} F, \varphi \rangle = \langle F, T^{-1} \varphi \rangle,$$

for all  $F \in \mathcal{S}'(\mathbb{R})$  and  $\varphi \in \mathcal{S}(\mathbb{R})$ .

Recall that  $T^\dagger \varphi, T^{-1} \varphi \in \mathcal{S}(\mathbb{R})$ . Here  $\langle .,. \rangle$  is the form which puts in duality  $\mathcal{S}(\mathbb{R})$  and  $\mathcal{S}'(\mathbb{R})$ , which extends the standard scalar product in  $\mathcal{L}^2(\mathbb{R})$ , and can be defined via convolution of distributions.

Fully  $\mathcal{S}(\mathbb{R})$ -stable operators and well-behaved sets of tempered distributions are connected. How?

**Step 1.** Any  $\mathcal{S}(\mathbb{R})$ -stable operator T can be extended to  $\mathcal{S}'(\mathbb{R})$ , by duality:

$$\langle TF, \varphi \rangle = \langle F, T^{\dagger} \varphi \rangle, \qquad \langle (T^{-1})^{\dagger} F, \varphi \rangle = \langle F, T^{-1} \varphi \rangle,$$

for all  $F \in \mathcal{S}'(\mathbb{R})$  and  $\varphi \in \mathcal{S}(\mathbb{R})$ .

Recall that  $T^\dagger \varphi, T^{-1} \varphi \in \mathcal{S}(\mathbb{R})$ . Here  $\langle .,. \rangle$  is the form which puts in duality  $\mathcal{S}(\mathbb{R})$  and  $\mathcal{S}'(\mathbb{R})$ , which extends the standard scalar product in  $\mathcal{L}^2(\mathbb{R})$ , and can be defined via convolution of distributions. TF and  $(T^{-1})F$  are linear functionals on  $\mathcal{S}(\mathbb{R})$ .

Fully  $\mathcal{S}(\mathbb{R})$ -stable operators and well-behaved sets of tempered distributions are connected. How?

**Step 1.** Any  $\mathcal{S}(\mathbb{R})$ -stable operator T can be extended to  $\mathcal{S}'(\mathbb{R})$ , by duality:

$$\left\langle TF,\varphi\right\rangle = \left\langle F,T^{\dagger}\varphi\right\rangle, \qquad \left\langle (T^{-1})^{\dagger}F,\varphi\right\rangle = \left\langle F,T^{-1}\varphi\right\rangle,$$

for all  $F \in \mathcal{S}'(\mathbb{R})$  and  $\varphi \in \mathcal{S}(\mathbb{R})$ .

Recall that  $T^{\dagger}\varphi, T^{-1}\varphi \in \mathcal{S}(\mathbb{R})$ . Here  $\langle .,. \rangle$  is the form which puts in duality  $\mathcal{S}(\mathbb{R})$  and  $\mathcal{S}'(\mathbb{R})$ , which extends the standard scalar product in  $\mathcal{L}^2(\mathbb{R})$ , and can be defined via convolution of distributions. TF and  $(T^{-1})F$  are linear functionals on  $\mathcal{S}(\mathbb{R})$ . Are they elements of  $\mathcal{S}'(\mathbb{R})$ ?

Fully  $\mathcal{S}(\mathbb{R})$ -stable operators and well-behaved sets of tempered distributions are connected. How?

**Step 1.** Any  $\mathcal{S}(\mathbb{R})$ -stable operator T can be extended to  $\mathcal{S}'(\mathbb{R})$ , by duality:

$$\langle TF, \varphi \rangle = \langle F, T^{\dagger} \varphi \rangle, \qquad \langle (T^{-1})^{\dagger} F, \varphi \rangle = \langle F, T^{-1} \varphi \rangle,$$

for all  $F \in \mathcal{S}'(\mathbb{R})$  and  $\varphi \in \mathcal{S}(\mathbb{R})$ .

Recall that  $T^{\dagger}\varphi, T^{-1}\varphi\in\mathcal{S}(\mathbb{R})$ . Here  $\langle.,.
angle$  is the form which puts in duality  $\mathcal{S}(\mathbb{R})$  and  $\mathcal{S}'(\mathbb{R})$ , which extends the standard scalar product in  $\mathcal{L}^2(\mathbb{R})$ , and can be defined via convolution of distributions. TF and  $(T^{-1})F$  are linear functionals on  $\mathcal{S}(\mathbb{R})$ . Are they elements of  $\mathcal{S}'(\mathbb{R})$ ?

**Step 2.** If T is fully  $\mathcal{S}(\mathbb{R})$ -stable, then  $TF, (T^{-1})F \in \mathcal{S}'(\mathbb{R})$ :

Fully  $\mathcal{S}(\mathbb{R})$ -stable operators and well-behaved sets of tempered distributions are connected. How?

**Step 1.** Any  $\mathcal{S}(\mathbb{R})$ -stable operator T can be extended to  $\mathcal{S}'(\mathbb{R})$ , by duality:

$$\langle TF, \varphi \rangle = \langle F, T^{\dagger} \varphi \rangle, \qquad \langle (T^{-1})^{\dagger} F, \varphi \rangle = \langle F, T^{-1} \varphi \rangle,$$

for all  $F \in \mathcal{S}'(\mathbb{R})$  and  $\varphi \in \mathcal{S}(\mathbb{R})$ .

Recall that  $T^{\dagger}\varphi, T^{-1}\varphi \in \mathcal{S}(\mathbb{R})$ . Here  $\langle .,. \rangle$  is the form which puts in duality  $\mathcal{S}(\mathbb{R})$  and  $\mathcal{S}'(\mathbb{R})$ , which extends the standard scalar product in  $\mathcal{L}^2(\mathbb{R})$ , and can be defined via convolution of distributions. TF and  $(T^{-1})F$  are linear functionals on  $\mathcal{S}(\mathbb{R})$ . Are they elements of  $\mathcal{S}'(\mathbb{R})$ ?

**Step 2.** If T is fully  $\mathcal{S}(\mathbb{R})$ -stable, then  $TF, (T^{-1})F \in \mathcal{S}'(\mathbb{R})$ :

let  $\{\varphi_n(x)\in\mathcal{S}(\mathbb{R})\}\to\varphi(x)\in\mathcal{S}(\mathbb{R})$  in  $\tau_{\mathcal{S}}$ . Then, for instance,

$$\langle TF, \varphi_n \rangle = \langle F, T^{\dagger} \varphi_n \rangle \rightarrow \langle F, T^{\dagger} \varphi \rangle = \langle TF, \varphi \rangle,$$

since, if  $\varphi_n(x)$   $\tau_S$ -converges, then  $(T^\dagger \varphi_n)(x)$  converges as well, in the same topology. Hence TF is continuous.

In particular we have:

In particular we have:

**Corollary:**— Let T be a fully  $\mathcal{S}(\mathbb{R})$ -stable operator. Then

$$\eta_{x_0}(x) = (T\xi_{x_0})(x), \qquad \eta^{x_0}(x) = ((T^{-1})^{\dagger}\xi_{x_0})(x),$$

are tempered distributions. Moreover,  $\eta_{x_0}(x)\in D(\hat{q})$  and  $\eta^{x_0}(x)\in D(\hat{q}^\dagger)$ , and we have:

$$(\hat{q} \eta_{x_0})(x) = x_0 \eta_{x_0}(x), \qquad (\hat{q}^{\dagger} \eta^{x_0})(x) = x_0 \eta^{x_0}(x)$$

In particular we have:

Corollary:– Let T be a fully  $\mathcal{S}(\mathbb{R})$ -stable operator. Then

$$\eta_{x_0}(x) = (T\xi_{x_0})(x), \qquad \eta^{x_0}(x) = ((T^{-1})^{\dagger}\xi_{x_0})(x),$$

are tempered distributions. Moreover,  $\eta_{x_0}(x)\in D(\hat{q})$  and  $\eta^{x_0}(x)\in D(\hat{q}^\dagger)$ , and we have:

$$(\hat{q} \eta_{x_0})(x) = x_0 \eta_{x_0}(x), \qquad (\hat{q}^{\dagger} \eta^{x_0})(x) = x_0 \eta^{x_0}(x)$$

Remarks:- (1) Here  $D(\hat{q})$  and  $D(\hat{q}^{\dagger})$  should be understood as *generalized domains*:  $D(\hat{q}) = \{F \in \mathcal{S}'(\mathbb{R}) : \hat{q}F \in \mathcal{S}'(\mathbb{R})\}, D(\hat{q}^{\dagger}) = \{F \in \mathcal{S}'(\mathbb{R}) : \hat{q}^{\dagger}F \in \mathcal{S}'(\mathbb{R})\}.$ 

In particular we have:

**Corollary:**– Let T be a fully  $\mathcal{S}(\mathbb{R})$ -stable operator. Then

$$\eta_{x_0}(x) = (T\xi_{x_0})(x), \qquad \eta^{x_0}(x) = ((T^{-1})^{\dagger}\xi_{x_0})(x),$$

are tempered distributions. Moreover,  $\eta_{x_0}(x)\in D(\hat{q})$  and  $\eta^{x_0}(x)\in D(\hat{q}^\dagger)$ , and we have:

$$(\hat{q} \eta_{x_0})(x) = x_0 \eta_{x_0}(x), \qquad (\hat{q}^{\dagger} \eta^{x_0})(x) = x_0 \eta^{x_0}(x)$$

Remarks:- (1) Here  $D(\hat{q})$  and  $D(\hat{q}^{\dagger})$  should be understood as *generalized domains*:  $D(\hat{q}) = \{F \in \mathcal{S}'(\mathbb{R}) : \hat{q}F \in \mathcal{S}'(\mathbb{R})\}, D(\hat{q}^{\dagger}) = \{F \in \mathcal{S}'(\mathbb{R}) : \hat{q}^{\dagger}F \in \mathcal{S}'(\mathbb{R})\}.$ 

(2) Even if  $\hat{q}$  is not self-adjoint, its eigenvalues are real!

In particular we have:

**Corollary:**— Let T be a fully  $\mathcal{S}(\mathbb{R})$ -stable operator. Then

$$\eta_{x_0}(x) = (T\xi_{x_0})(x), \qquad \eta^{x_0}(x) = ((T^{-1})^{\dagger}\xi_{x_0})(x),$$

are tempered distributions. Moreover,  $\eta_{x_0}(x)\in D(\hat{q})$  and  $\eta^{x_0}(x)\in D(\hat{q}^\dagger)$ , and we have:

$$(\hat{q} \eta_{x_0})(x) = x_0 \eta_{x_0}(x), \qquad (\hat{q}^{\dagger} \eta^{x_0})(x) = x_0 \eta^{x_0}(x)$$

Remarks:- (1) Here  $D(\hat{q})$  and  $D(\hat{q}^{\dagger})$  should be understood as *generalized domains*:  $D(\hat{q}) = \{F \in \mathcal{S}'(\mathbb{R}) : \hat{q}F \in \mathcal{S}'(\mathbb{R})\}, D(\hat{q}^{\dagger}) = \{F \in \mathcal{S}'(\mathbb{R}) : \hat{q}^{\dagger}F \in \mathcal{S}'(\mathbb{R})\}.$ 

(2) Even if  $\hat{q}$  is not self-adjoint, its eigenvalues are real!

Introducing, as before, the sets  $\mathcal{F}_\eta$  and  $\mathcal{F}^\eta$  we can prove that (under some technical assumption)

In particular we have:

**Corollary:**— Let T be a fully  $\mathcal{S}(\mathbb{R})$ -stable operator. Then

$$\eta_{x_0}(x) = (T\xi_{x_0})(x), \qquad \eta^{x_0}(x) = ((T^{-1})^{\dagger}\xi_{x_0})(x),$$

are tempered distributions. Moreover,  $\eta_{x_0}(x)\in D(\hat{q})$  and  $\eta^{x_0}(x)\in D(\hat{q}^\dagger)$ , and we have:

$$(\hat{q} \eta_{x_0})(x) = x_0 \eta_{x_0}(x), \qquad (\hat{q}^{\dagger} \eta^{x_0})(x) = x_0 \eta^{x_0}(x)$$

Remarks:- (1) Here  $D(\hat{q})$  and  $D(\hat{q}^{\dagger})$  should be understood as *generalized domains*:  $D(\hat{q}) = \{F \in \mathcal{S}'(\mathbb{R}) : \hat{q}F \in \mathcal{S}'(\mathbb{R})\}, D(\hat{q}^{\dagger}) = \{F \in \mathcal{S}'(\mathbb{R}) : \hat{q}^{\dagger}F \in \mathcal{S}'(\mathbb{R})\}.$ 

(2) Even if  $\hat{q}$  is not self-adjoint, its eigenvalues are real!

Introducing, as before, the sets  $\mathcal{F}_\eta$  and  $\mathcal{F}^\eta$  we can prove that (under some technical assumption)

the set  $\mathcal{F}_{\eta}$  is well behaved, (with  $\mathcal{F}^{\eta}$  as its dual set).

In particular we have:

**Corollary:**— Let T be a fully  $\mathcal{S}(\mathbb{R})$ -stable operator. Then

$$\eta_{x_0}(x) = (T\xi_{x_0})(x), \qquad \eta^{x_0}(x) = ((T^{-1})^{\dagger}\xi_{x_0})(x),$$

are tempered distributions. Moreover,  $\eta_{x_0}(x)\in D(\hat{q})$  and  $\eta^{x_0}(x)\in D(\hat{q}^\dagger)$ , and we have:

$$(\hat{q} \eta_{x_0})(x) = x_0 \eta_{x_0}(x), \qquad (\hat{q}^{\dagger} \eta^{x_0})(x) = x_0 \eta^{x_0}(x)$$

Remarks:- (1) Here  $D(\hat{q})$  and  $D(\hat{q}^{\dagger})$  should be understood as *generalized domains*:  $D(\hat{q}) = \{F \in \mathcal{S}'(\mathbb{R}) : \hat{q}F \in \mathcal{S}'(\mathbb{R})\}, D(\hat{q}^{\dagger}) = \{F \in \mathcal{S}'(\mathbb{R}) : \hat{q}^{\dagger}F \in \mathcal{S}'(\mathbb{R})\}.$ 

(2) Even if  $\hat{q}$  is not self-adjoint, its eigenvalues are real!

Introducing, as before, the sets  $\mathcal{F}_\eta$  and  $\mathcal{F}^\eta$  we can prove that (under some technical assumption)

the set  $\mathcal{F}_{\eta}$  is well behaved, (with  $\mathcal{F}^{\eta}$  as its dual set).

A similar construction can be repeated for  $\hat{p}$ .

How do these families look like?

How do these families look like?

Back to Example 1  $[T = 1 + \alpha P_{u,v}]$ :

How do these families look like?

Back to Example 1  $[T = 1 + \alpha P_{u,v}]$ :

$$\eta_{x_0}(x) = (T\xi_{x_0})(x) = \xi_{x_0}(x) + \alpha \langle u, \xi_{x_0} \rangle v(x) = \xi_{x_0}(x) + \alpha \overline{u(x_0)} v(x),$$

and

$$\eta^{x_0}(x) = \left( (T^{-1})^{\dagger} \xi_{x_0} \right)(x) = \xi_{x_0}(x) + \overline{\beta \, v(x_0)} \, u(x)$$

How do these families look like?

Back to Example 1  $[T = 1 + \alpha P_{u,v}]$ :

$$\eta_{x_0}(x) = (T\xi_{x_0})(x) = \xi_{x_0}(x) + \alpha \langle u, \xi_{x_0} \rangle v(x) = \xi_{x_0}(x) + \alpha \overline{u(x_0)} v(x),$$

and

$$\eta^{x_0}(x) = ((T^{-1})^{\dagger} \xi_{x_0})(x) = \xi_{x_0}(x) + \overline{\beta v(x_0)} u(x)$$

Back to Example 2  $[T^{-1} := 1 - i(\hat{p}_0)^2]$ :

How do these families look like?

Back to Example 1  $[T = 1 + \alpha P_{u,v}]$ :

$$\eta_{x_0}(x) = (T\xi_{x_0})(x) = \xi_{x_0}(x) + \alpha \langle u, \xi_{x_0} \rangle v(x) = \xi_{x_0}(x) + \alpha \overline{u(x_0)} v(x),$$

and

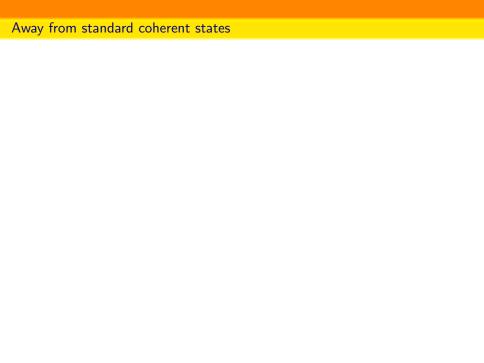
$$\eta^{x_0}(x) = \left( (T^{-1})^{\dagger} \xi_{x_0} \right)(x) = \xi_{x_0}(x) + \overline{\beta \, v(x_0)} \, u(x)$$

Back to Example 2  $[T^{-1} := 1 - i(\hat{p}_0)^2]$ :

$$\begin{split} \eta_{x_0}(x) &= (T\xi_{x_0})(x) = \frac{i}{\sqrt{2}(1+i)} \int_{\mathbb{R}} e^{-|s|\frac{\sqrt{2}}{2}(1+i)} \delta(x-x_0-s) ds = \\ &= \frac{i}{\sqrt{2}(1+i)} e^{-|x-x_0|\frac{\sqrt{2}}{2}(1+i)}, \end{split}$$

and

$$\eta^{x_0}(x) = ((T^{-1})^{\dagger} \xi_{x_0})(x) = \xi_{x_0}(x) - i \xi_{x_0}''(x).$$



We are now interested in replacing  $[c,c^{\dagger}]=1\!\!1$  with  $[a,b]=1\!\!1...$ 

We are now interested in replacing  $[c,c^{\dagger}]=1$  with [a,b]=1...

...where

$$a = \frac{\hat{q} + i\hat{p}}{\sqrt{2}}, \qquad b = \frac{\hat{q} - i\hat{p}}{\sqrt{2}}$$

We are now interested in replacing  $[c, c^{\dagger}] = 1$  with [a, b] = 1...

...where

$$a = \frac{\hat{q} + i\hat{p}}{\sqrt{2}}, \qquad b = \frac{\hat{q} - i\hat{p}}{\sqrt{2}}$$

then (a,b) are  $\mathcal{S}(\mathbb{R})$  pseudo-bosonic operators:

We are now interested in replacing  $[c, c^{\dagger}] = 1$  with [a, b] = 1...

...where

$$a = \frac{\hat{q} + i\hat{p}}{\sqrt{2}}, \qquad b = \frac{\hat{q} - i\hat{p}}{\sqrt{2}}$$

then (a,b) are  $\mathcal{S}(\mathbb{R})$  pseudo-bosonic operators:

Let a and b be two operators on  $\mathcal{H}$ ,  $a^{\dagger}$  and  $b^{\dagger}$  their adjoint, and let  $\mathcal{D}$ , dense in  $\mathcal{H}$ , be such that  $a^{\sharp}\mathcal{D}\subseteq\mathcal{D}$  and  $b^{\sharp}\mathcal{D}\subseteq\mathcal{D}$ ,  $(x^{\sharp}=x,x^{\dagger})$ . In general  $\mathcal{D}\subseteq D(a^{\sharp})$  and  $\mathcal{D}\subseteq D(b^{\sharp})$ .

We are now interested in replacing  $[c, c^{\dagger}] = 1$  with [a, b] = 1...

...where

$$a = \frac{\hat{q} + i\hat{p}}{\sqrt{2}}, \qquad b = \frac{\hat{q} - i\hat{p}}{\sqrt{2}}$$

then (a,b) are  $\mathcal{S}(\mathbb{R})$  pseudo-bosonic operators:

Let a and b be two operators on  $\mathcal{H}$ ,  $a^{\dagger}$  and  $b^{\dagger}$  their adjoint, and let  $\mathcal{D}$ , dense in  $\mathcal{H}$ , be such that  $a^{\sharp}\mathcal{D}\subseteq\mathcal{D}$  and  $b^{\sharp}\mathcal{D}\subseteq\mathcal{D}$ ,  $(x^{\sharp}=x,x^{\dagger})$ . In general  $\mathcal{D}\subseteq D(a^{\sharp})$  and  $\mathcal{D}\subseteq D(b^{\sharp})$ .

#### Definition 1:

The operators (a,b) are  $\mathcal{D}$ -pseudo bosonic  $(\mathcal{D}$ -pb) if, for all  $f \in \mathcal{D}$ , we have

$$a b f - b a f = f. (1)$$

We are now interested in replacing  $[c, c^{\dagger}] = 1$  with [a, b] = 1...

...where

$$a = \frac{\hat{q} + i\hat{p}}{\sqrt{2}}, \qquad b = \frac{\hat{q} - i\hat{p}}{\sqrt{2}}$$

then (a,b) are  $\mathcal{S}(\mathbb{R})$  pseudo-bosonic operators:

Let a and b be two operators on  $\mathcal{H}$ ,  $a^{\dagger}$  and  $b^{\dagger}$  their adjoint, and let  $\mathcal{D}$ , dense in  $\mathcal{H}$ , be such that  $a^{\sharp}\mathcal{D}\subseteq\mathcal{D}$  and  $b^{\sharp}\mathcal{D}\subseteq\mathcal{D}$ ,  $(x^{\sharp}=x,x^{\dagger})$ . In general  $\mathcal{D}\subseteq D(a^{\sharp})$  and  $\mathcal{D}\subseteq D(b^{\sharp})$ .

#### Definition 1:

The operators (a,b) are  $\mathcal{D}$ -pseudo bosonic  $(\mathcal{D}$ -pb) if, for all  $f \in \mathcal{D}$ , we have

$$a b f - b a f = f. (1)$$

Of course, if  $b=a^{\dagger}$  we recover ordinary bosons.

Working assumptions:

Working assumptions:

**Assumption**  $\mathcal{D}\text{-pb}$  1.– there exists a non-zero  $\varphi_0\in\mathcal{D}$  such that  $a\varphi_0=0.$ 

Working assumptions:

**Assumption**  $\mathcal{D}$ -**pb** 1.– there exists a non-zero  $\varphi_0 \in \mathcal{D}$  such that  $a\varphi_0 = 0$ .

**Assumption**  $\mathcal{D}$ -pb 2.– there exists a non-zero  $\Psi_0 \in \mathcal{D}$  such that  $b^{\dagger}\Psi_0 = 0$ .

Working assumptions:

**Assumption**  $\mathcal{D}$ -pb 1.– there exists a non-zero  $\varphi_0 \in \mathcal{D}$  such that  $a\varphi_0 = 0$ .

**Assumption**  $\mathcal{D}$ -pb 2.– there exists a non-zero  $\Psi_0 \in \mathcal{D}$  such that  $b^\dagger \Psi_0 = 0$ .

Now, if (a,b) satisfy Definition 1, then  $\varphi_0 \in D^{\infty}(b)$  and  $\Psi_0 \in D^{\infty}(a^{\dagger})$ . Hence...

$$\varphi_n := \frac{1}{\sqrt{n!}} b^n \varphi_0, \qquad \Psi_n := \frac{1}{\sqrt{n!}} a^{\dagger n} \Psi_0, \tag{2}$$

 $n\geq 0$ , can be defined and they all belong to  $\mathcal D.$  We introduce  $\mathcal F_\Psi=\{\Psi_n,\,n\geq 0\}$  and  $\mathcal F_\varphi=\{\varphi_n,\,n\geq 0\}.$  Once again, since  $\mathcal D$  is stable under the action of  $a^\sharp$  and  $b^\sharp$ , we deduce that both  $\varphi_n$  and  $\Psi_n$  belong to the domains of  $a^\sharp$ ,  $b^\sharp$  and  $N^\sharp$  (here N=ba).

Working assumptions:

**Assumption**  $\mathcal{D}$ -pb 1.– there exists a non-zero  $\varphi_0 \in \mathcal{D}$  such that  $a\varphi_0 = 0$ .

**Assumption**  $\mathcal{D}$ -**pb 2.**– there exists a non-zero  $\Psi_0 \in \mathcal{D}$  such that  $b^\dagger \Psi_0 = 0$ .

Now, if (a,b) satisfy Definition 1, then  $\varphi_0 \in D^{\infty}(b)$  and  $\Psi_0 \in D^{\infty}(a^{\dagger})$ . Hence...

$$\varphi_n := \frac{1}{\sqrt{n!}} b^n \varphi_0, \qquad \Psi_n := \frac{1}{\sqrt{n!}} a^{\dagger n} \Psi_0, \tag{2}$$

 $n\geq 0$ , can be defined and they all belong to  $\mathcal{D}.$  We introduce  $\mathcal{F}_{\Psi}=\{\Psi_n,\,n\geq 0\}$  and  $\mathcal{F}_{\varphi}=\{\varphi_n,\,n\geq 0\}.$  Once again, since  $\mathcal{D}$  is stable under the action of  $a^{\sharp}$  and  $b^{\sharp}$ , we deduce that both  $\varphi_n$  and  $\Psi_n$  belong to the domains of  $a^{\sharp}$ ,  $b^{\sharp}$  and  $N^{\sharp}$  (here N=ba).

The following lowering and raising relations hold:

$$\begin{cases}
 b \varphi_{n} = \sqrt{n+1}\varphi_{n+1}, & n \geq 0, \\
 a \varphi_{0} = 0, & a\varphi_{n} = \sqrt{n}\varphi_{n-1}, & n \geq 1, \\
 a^{\dagger}\Psi_{n} = \sqrt{n+1}\Psi_{n+1}, & n \geq 0, \\
 b^{\dagger}\Psi_{0} = 0, & b^{\dagger}\Psi_{n} = \sqrt{n}\Psi_{n-1}, & n \geq 1,
\end{cases}$$
(3)

as well as the following eigenvalue equations:

$$N\varphi_n = n\varphi_n, \quad N^{\dagger}\Psi_n = n\Psi_n, \quad n \ge 0.$$

$$\langle \varphi_n, \Psi_m \rangle = \delta_{n,m},\tag{4}$$

 $\text{ for all } n,m\geq 0.$ 

$$\langle \varphi_n, \Psi_m \rangle = \delta_{n,m},\tag{4}$$

for all  $n, m \geq 0$ .

Assumption  $\mathcal{D}\text{-pb}$  3.–  $\mathcal{F}_{\varphi}$  is a basis for  $\mathcal{H}$ . (iff  $\mathcal{F}_{\Psi}$  is a basis for  $\mathcal{H}$ )

$$\langle \varphi_n, \Psi_m \rangle = \delta_{n,m},\tag{4}$$

for all  $n, m \geq 0$ .

Assumption  $\mathcal{D}\text{-pb}$  3.–  $\mathcal{F}_{\varphi}$  is a basis for  $\mathcal{H}$ . (iff  $\mathcal{F}_{\Psi}$  is a basis for  $\mathcal{H}$ )

Remark:- If  $b=a^\dagger$  (i.e. for CCR) all assumptions are satisfied. Also,  $\mathcal{F}_{\varphi}=\mathcal{F}_{\Psi}.$ 

Sometimes (i.e. in concrete physical models) it is more convenient to check the following

$$\langle \varphi_n, \Psi_m \rangle = \delta_{n,m},\tag{4}$$

for all  $n, m \geq 0$ .

**Assumption**  $\mathcal{D}$ -**pb** 3.–  $\mathcal{F}_{\varphi}$  is a basis for  $\mathcal{H}$ . (iff  $\mathcal{F}_{\Psi}$  is a basis for  $\mathcal{H}$ )

Remark:- If  $b=a^\dagger$  (i.e. for CCR) all assumptions are satisfied. Also,  $\mathcal{F}_{\varphi}=\mathcal{F}_{\Psi}.$ 

Sometimes (i.e. in concrete physical models) it is more convenient to check the following

**Assumption**  $\mathcal{D}$ -**pbw 3.–**  $\mathcal{F}_{\varphi}$  and  $\mathcal{F}_{\Psi}$  are  $\mathcal{D}$ -quasi bases for  $\mathcal{H}$ .

$$\langle \varphi_n, \Psi_m \rangle = \delta_{n,m},\tag{4}$$

for all  $n, m \geq 0$ .

Assumption  $\mathcal{D}$ -pb 3.–  $\mathcal{F}_{\varphi}$  is a basis for  $\mathcal{H}$ . (iff  $\mathcal{F}_{\Psi}$  is a basis for  $\mathcal{H}$ )

Remark:- If  $b=a^\dagger$  (i.e. for CCR) all assumptions are satisfied. Also,  $\mathcal{F}_{\varphi}=\mathcal{F}_{\Psi}.$ 

Sometimes (i.e. in concrete physical models) it is more convenient to check the following

**Assumption**  $\mathcal{D}$ -pbw 3.–  $\mathcal{F}_{\varphi}$  and  $\mathcal{F}_{\Psi}$  are  $\mathcal{D}$ -quasi bases for  $\mathcal{H}$ .

This means that,  $\forall f, g \in \mathcal{D}$ ,

$$\sum \left\langle f,\varphi_{n}\right\rangle \left\langle \Psi_{n},g\right\rangle =\sum \left\langle f,\Psi_{n}\right\rangle \left\langle \varphi_{n},g\right\rangle =\left\langle f,g\right\rangle .$$

$$\langle \varphi_n, \Psi_m \rangle = \delta_{n,m},\tag{4}$$

for all  $n, m \geq 0$ .

Assumption  $\mathcal{D}$ -pb 3.–  $\mathcal{F}_{\varphi}$  is a basis for  $\mathcal{H}$ . (iff  $\mathcal{F}_{\Psi}$  is a basis for  $\mathcal{H}$ )

Remark:- If  $b=a^\dagger$  (i.e. for CCR) all assumptions are satisfied. Also,  $\mathcal{F}_{\varphi}=\mathcal{F}_{\Psi}.$ 

Sometimes (i.e. in concrete physical models) it is more convenient to check the following

**Assumption**  $\mathcal{D}$ -**pbw 3.–**  $\mathcal{F}_{\varphi}$  and  $\mathcal{F}_{\Psi}$  are  $\mathcal{D}$ -quasi bases for  $\mathcal{H}$ .

This means that,  $\forall f, g \in \mathcal{D}$ ,

$$\sum \left\langle f,\varphi_{n}\right\rangle \left\langle \Psi_{n},g\right\rangle =\sum \left\langle f,\Psi_{n}\right\rangle \left\langle \varphi_{n},g\right\rangle =\left\langle f,g\right\rangle .$$

In other (lucky) models the following is satisfied:

$$\langle \varphi_n, \Psi_m \rangle = \delta_{n,m},\tag{4}$$

for all  $n, m \geq 0$ .

**Assumption**  $\mathcal{D}$ -**pb** 3.–  $\mathcal{F}_{\varphi}$  is a basis for  $\mathcal{H}$ . (iff  $\mathcal{F}_{\Psi}$  is a basis for  $\mathcal{H}$ )

Remark:- If  $b=a^\dagger$  (i.e. for CCR) all assumptions are satisfied. Also,  $\mathcal{F}_\varphi=\mathcal{F}_\Psi$ .

Sometimes (i.e. in concrete physical models) it is more convenient to check the following

**Assumption**  $\mathcal{D}$ -**pbw** 3.–  $\mathcal{F}_{\varphi}$  and  $\mathcal{F}_{\Psi}$  are  $\mathcal{D}$ -quasi bases for  $\mathcal{H}$ .

This means that,  $\forall f, g \in \mathcal{D}$ ,

$$\sum \left\langle f,\varphi_{n}\right\rangle \left\langle \Psi_{n},g\right\rangle =\sum \left\langle f,\Psi_{n}\right\rangle \left\langle \varphi_{n},g\right\rangle =\left\langle f,g\right\rangle .$$

In other (lucky) models the following is satisfied:

**Assumption**  $\mathcal{D}$ -pbs 3.–  $\mathcal{F}_{\varphi}$  and  $\mathcal{F}_{\Psi}$  are Riesz bases for  $\mathcal{H}$ .

Then  $c \longrightarrow a, \ c^\dagger \longrightarrow b$ , and therefore

Then  $c \longrightarrow a, c^{\dagger} \longrightarrow b$ , and therefore

$$W(z) = e^{zc^{\dagger} - \overline{z} c} \longrightarrow U(z) = e^{z b - \overline{z} a}$$

Then  $c \longrightarrow a$ ,  $c^{\dagger} \longrightarrow b$ , and therefore

$$W(z) = e^{zc^{\dagger} - \overline{z} c} \longrightarrow U(z) = e^{z b - \overline{z} a}$$

But, while W(z) is unitary (and ||W(z)|| = 1:  $W(z) \in B(\mathcal{H})$ ), U(z) is not, in general. In particular, it could easily be unbounded, at least for some  $z \in \mathbb{C}$ .

Then  $c \longrightarrow a$ ,  $c^{\dagger} \longrightarrow b$ , and therefore

$$W(z) = e^{zc^{\dagger} - \overline{z} c} \longrightarrow U(z) = e^{z b - \overline{z} a}$$

But, while W(z) is unitary (and  $\|W(z)\|=1$ :  $W(z)\in B(\mathcal{H})$ ), U(z) is not, in general. In particular, it could easily be unbounded, at least for some  $z\in\mathbb{C}$ .

Moreover: (a, b) used in U(z) are, respectively, a lowering and a raising operator. But they are **not** the only ones:

Then  $c \longrightarrow a$ ,  $c^{\dagger} \longrightarrow b$ , and therefore

$$W(z) = e^{zc^{\dagger} - \overline{z} c} \longrightarrow U(z) = e^{z b - \overline{z} a}$$

But, while W(z) is unitary (and  $\|W(z)\|=1$ :  $W(z)\in B(\mathcal{H})$ ), U(z) is not, in general. In particular, it could easily be unbounded, at least for some  $z\in\mathbb{C}$ .

Moreover: (a,b) used in U(z) are, respectively, a lowering and a raising operator. But they are **not** the only ones: another such pair is  $(b^{\dagger},a^{\dagger})$ . Therefore, instead of U(z) we can introduce a different operator, V(z),

$$W(z) = e^{zc^{\dagger} - \overline{z} c} \longrightarrow V(z) = e^{z a^{\dagger} - \overline{z} b^{\dagger}}.$$

Then  $c \longrightarrow a$ ,  $c^{\dagger} \longrightarrow b$ , and therefore

$$W(z) = e^{zc^{\dagger} - \overline{z} c} \longrightarrow U(z) = e^{z b - \overline{z} a}$$

But, while W(z) is unitary (and  $\|W(z)\|=1$ :  $W(z)\in B(\mathcal{H})$ ), U(z) is not, in general. In particular, it could easily be unbounded, at least for some  $z\in\mathbb{C}$ .

Moreover: (a,b) used in U(z) are, respectively, a lowering and a raising operator. But they are **not** the only ones: another such pair is  $(b^{\dagger},a^{\dagger})$ . Therefore, instead of U(z) we can introduce a different operator, V(z),

$$W(z) = e^{zc^{\dagger} - \overline{z} c} \longrightarrow V(z) = e^{z a^{\dagger} - \overline{z} b^{\dagger}}.$$

Notice that

$$V(z) = \left(U^{-1}(z)\right)^{\dagger}.$$

Then  $c \longrightarrow a$ ,  $c^{\dagger} \longrightarrow b$ , and therefore

$$W(z) = e^{zc^{\dagger} - \overline{z} c} \longrightarrow U(z) = e^{z b - \overline{z} a}$$

But, while W(z) is unitary (and  $\|W(z)\|=1$ :  $W(z)\in B(\mathcal{H})$ ), U(z) is not, in general. In particular, it could easily be unbounded, at least for some  $z\in\mathbb{C}$ .

Moreover: (a,b) used in U(z) are, respectively, a lowering and a raising operator. But they are **not** the only ones: another such pair is  $(b^{\dagger},a^{\dagger})$ . Therefore, instead of U(z) we can introduce a different operator, V(z),

$$W(z) = e^{zc^{\dagger} - \overline{z} c} \longrightarrow V(z) = e^{z a^{\dagger} - \overline{z} b^{\dagger}}.$$

Notice that

$$V(z) = \left(U^{-1}(z)\right)^{\dagger}.$$

But sometimes... these are formal equalities and definitions. In fact:



 $\mbox{\bf 0}$  Are U(z) and V(z) bounded in some cases? And...

- $\begin{tabular}{ll} \blacksquare & \end{tabular} \begin{tabular}{ll} \blacksquare & \end{$
- ${f 2}$  ...what does it happen if U(z) and V(z) are unbounded?

- lacksquare Are U(z) and V(z) bounded in some cases? And...
- ${f Q}$  ...what does it happen if U(z) and V(z) are unbounded?
- Are they densely defined, in this case? Or, at least,....

- ${f 2}$  ...what does it happen if U(z) and V(z) are unbounded?
- Are they densely defined, in this case? Or, at least,....
- ... do they have an interesting domain?

- ${f Q}$  ...what does it happen if U(z) and V(z) are unbounded?
- Are they densely defined, in this case? Or, at least,....
- ... do they have an interesting domain?
- O bo they produce extended coherent states? And, when this happens,...

- lacksquare Are U(z) and V(z) bounded in some cases? And...
- $oldsymbol{0}$  ...what does it happen if U(z) and V(z) are unbounded?
- Are they densely defined, in this case? Or, at least,....
- ... do they have an interesting domain?
- **10** Do they produce *extended* coherent states? And, when this happens,...
- ...with what properties?



Then, summarizing, the general question is:

Then, summarizing, the general question is: is it possible to construct coherent states attached to a and b, if [a,b]=1?

Then, summarizing, the general question is: is it possible to construct coherent states attached to a and b, if [a,b]=1?

**Answer:**- yes, but it could be not entirely trivial, except if Assumption  $\mathcal{D}-pbs3$  holds:

Then, summarizing, the general question is: is it possible to construct coherent states attached to a and b, if [a,b]=1?

**Answer:-** yes, but it could be not entirely trivial, except if Assumption  $\mathcal{D}-pbs3$  holds:

**Assumption**  $\mathcal{D}$ -pbs 3.–  $\mathcal{F}_{\varphi}$  is a Riesz basis for  $\mathcal{H}$ .

Then, summarizing, the general question is: is it possible to construct coherent states attached to a and b, if [a,b]=1?

**Answer:-** yes, but it could be not entirely trivial, except if Assumption  $\mathcal{D}-pbs3$  holds:

**Assumption**  $\mathcal{D}$ -pbs 3.–  $\mathcal{F}_{\varphi}$  is a Riesz basis for  $\mathcal{H}$ .

Then a pair  $(S, \mathcal{F}_e = \{e_n, \, n \geq 0\})$  exists, with  $S, S^{-1} \in B(\mathcal{H})$ , such that  $\varphi_n = Se_n$ .  $\mathcal{F}_\Psi$  is also a Riesz basis for  $\mathcal{H}$ , and  $\Psi_n = (S^{-1})^\dagger e_n$ .

In this case U(z) and V(z) are bounded. In fact:

In this case U(z) and V(z) are bounded. In fact:

$$U(z)f = SW(z)S^{-1}f, \qquad \text{and} \qquad V(z)f = (S^{-1})^\dagger W(z)S^\dagger f$$

for all  $f\in\mathcal{H}.$  (Remember that  $S,S^{-1}\in B(\mathcal{H}),$  while W(z) is unitary.)

In this case U(z) and V(z) are bounded. In fact:

$$U(z)f = SW(z)S^{-1}f, \qquad \text{and} \qquad V(z)f = (S^{-1})^{\dagger}W(z)S^{\dagger}f$$

for all  $f \in \mathcal{H}$ . (Remember that  $S, S^{-1} \in B(\mathcal{H})$ , while W(z) is unitary.)

In this case, calling

$$\varphi(z) = U(z)\varphi_0, \qquad \Psi(z) = V(z)\Psi_0,$$

they are both well defined for all  $z\in\mathbb{C}.$  (Here  $aarphi_0=b^\dagger\Psi_0=0.$ )

In this case U(z) and V(z) are bounded. In fact:

$$U(z)f = SW(z)S^{-1}f, \qquad \text{and} \qquad V(z)f = (S^{-1})^{\dagger}W(z)S^{\dagger}f$$

for all  $f \in \mathcal{H}$ . (Remember that  $S, S^{-1} \in B(\mathcal{H})$ , while W(z) is unitary.)

In this case, calling

$$\varphi(z) = U(z)\varphi_0, \qquad \Psi(z) = V(z)\Psi_0,$$

they are both well defined for all  $z\in\mathbb{C}.$  (Here  $a\varphi_0=b^\dagger\Psi_0=0.$ )

These are our *Riesz bi-coherent states*.

In this case U(z) and V(z) are bounded. In fact:

$$U(z)f = SW(z)S^{-1}f, \qquad \text{and} \qquad V(z)f = (S^{-1})^{\dagger}W(z)S^{\dagger}f$$

for all  $f \in \mathcal{H}$ . (Remember that  $S, S^{-1} \in B(\mathcal{H})$ , while W(z) is unitary.)

In this case, calling

$$\varphi(z) = U(z)\varphi_0, \qquad \Psi(z) = V(z)\Psi_0,$$

they are both well defined for all  $z\in\mathbb{C}.$  (Here  $a\varphi_0=b^\dagger\Psi_0=0.$ )

These are our Riesz bi-coherent states.

RBCSs are related to CSs as Riesz bases are related to orthonormal bases:

In this case U(z) and V(z) are bounded. In fact:

$$U(z)f = SW(z)S^{-1}f, \qquad \text{and} \qquad V(z)f = (S^{-1})^{\dagger}W(z)S^{\dagger}f$$

for all  $f \in \mathcal{H}$ . (Remember that  $S, S^{-1} \in B(\mathcal{H})$ , while W(z) is unitary.)

In this case, calling

$$\varphi(z) = U(z)\varphi_0, \qquad \Psi(z) = V(z)\Psi_0,$$

they are both well defined for all  $z\in\mathbb{C}.$  (Here  $a\varphi_0=b^\dagger\Psi_0=0.$ )

These are our Riesz bi-coherent states.

 $\underline{\mathsf{RBCSs}}$  are related to CSs as Riesz bases are related to orthonormal bases:

In fact:

In this case U(z) and V(z) are bounded. In fact:

$$U(z)f = SW(z)S^{-1}f, \qquad \text{and} \qquad V(z)f = (S^{-1})^{\dagger}W(z)S^{\dagger}f$$

for all  $f \in \mathcal{H}$ . (Remember that  $S, S^{-1} \in B(\mathcal{H})$ , while W(z) is unitary.)

In this case, calling

$$\varphi(z) = U(z)\varphi_0, \qquad \Psi(z) = V(z)\,\Psi_0,$$

they are both well defined for all  $z\in\mathbb{C}.$  (Here  $a\varphi_0=b^\dagger\Psi_0=0.$ )

These are our Riesz bi-coherent states.

### RBCSs are related to CSs as Riesz bases are related to orthonormal bases:

In fact:

$$\varphi(z) = U(z)\varphi_0 = S\Phi(z), \qquad \Psi(z) = V(z)\Psi_0 = (S^{-1})^{\dagger}\Phi(z),$$

for all  $z \in \mathbb{C}$ .

This suggests the following general definition:

This suggests the following general definition:

#### Definition:

A pair of vectors  $(\eta(z),\xi(z))$ ,  $z\in\mathbb{C}$ , are called Riesz bi-coherent states (RBCSs) if there exist a standard coherent state  $\Phi(z)$ ,  $z\in\mathbb{C}$ , and a bounded operator T with bounded inverse  $T^{-1}$  such that

$$\eta(z) = T\Phi(z), \qquad \xi(z) = (T^{-1})^\dagger \Phi(z).$$



Then  $(\varphi(z), \Psi(z))$  are RBCSs

Then  $(\varphi(z), \Psi(z))$  are RBCSs

RBCSs have a series of nice properties, which follow easily from similar properties of  $\Phi(z)$ :

Then  $(\varphi(z), \Psi(z))$  are RBCSs

RBCSs have a series of nice properties, which follow easily from similar properties of  $\Phi(z)\colon$ 

Let  $(\eta(z),\xi(z)),\,z\in\mathbb{C},$  be a pair of RBCSs. Then:

Then  $(\varphi(z), \Psi(z))$  are RBCSs

RBCSs have a series of nice properties, which follow easily from similar properties of  $\Phi(z)\colon$ 

Let  $(\eta(z), \xi(z))$ ,  $z \in \mathbb{C}$ , be a pair of RBCSs. Then:

$$\langle \eta(z), \xi(z) \rangle = 1,$$

$$\forall\,z\in\mathbb{C}.$$

Then  $(\varphi(z), \Psi(z))$  are RBCSs

RBCSs have a series of nice properties, which follow easily from similar properties of  $\Phi(z)$ :

Let  $(\eta(z), \xi(z))$ ,  $z \in \mathbb{C}$ , be a pair of RBCSs. Then:

(1) 
$$\langle \eta(z), \xi(z) \rangle = 1,$$

 $\forall\,z\in\mathbb{C}.$ 

(2) For all  $f,g \in \mathcal{H}$  the following equality (resolution of the identity) holds:

$$\langle f, g \rangle = \frac{1}{\pi} \int_{\mathbb{C}} d^2 z \, \langle f, \eta(z) \rangle \, \langle \xi(z), g \rangle$$

Then  $(\varphi(z), \Psi(z))$  are RBCSs

RBCSs have a series of nice properties, which follow easily from similar properties of  $\Phi(z)$ :

Let  $(\eta(z), \xi(z))$ ,  $z \in \mathbb{C}$ , be a pair of RBCSs. Then:

$$\langle \eta(z), \xi(z) \rangle = 1,$$

 $\forall z \in \mathbb{C}.$ 

(2) For all  $f,g \in \mathcal{H}$  the following equality (resolution of the identity) holds:

$$\langle f, g \rangle = \frac{1}{\pi} \int_{\mathbb{C}} d^2 z \, \langle f, \eta(z) \rangle \, \langle \xi(z), g \rangle$$

(3) If a subset  $\mathcal{D}\subset\mathcal{H}$  exists, dense in  $\mathcal{H}$  and invariant under the action of  $T^{\sharp}$ ,  $(T^{-1})^{\sharp}$  and  $c^{\sharp}$ , and if the standard coherent state  $\Phi(z)$  belongs to  $\mathcal{D}$ , then two operators a and b exist, leaving  $\mathcal{D}$  stable, satisfying  $[a,b]=\mathbbm{1}$ , such that

$$a \eta(z) = z \eta(z), \qquad b^{\dagger} \xi(z) = z \xi(z)$$

Bi-coherent states, with nice properties, can also be introduced also if  $\mathcal{F}_{\varphi}$  and  $\mathcal{F}_{\Psi}$  are not Riesz bases, at least under very mild assumptions on the growth of  $\|\varphi_n\|$  and  $\|\Psi_n\|$ .

Bi-coherent states, with nice properties, can also be introduced also if  $\mathcal{F}_{\varphi}$  and  $\mathcal{F}_{\Psi}$  are not Riesz bases, at least under very mild assumptions on the growth of  $\|\varphi_n\|$  and  $\|\Psi_n\|$ .

The following rather general result can be deduced:

Bi-coherent states, with nice properties, can also be introduced also if  $\mathcal{F}_{\varphi}$  and  $\mathcal{F}_{\Psi}$  are not Riesz bases, at least under very mild assumptions on the growth of  $\|\varphi_n\|$  and  $\|\Psi_n\|$ .

The following rather general result can be deduced:

Let  $\mathcal{F}_{\varphi}=\{\varphi_n,\,n\geq 0\}$  and  $\mathcal{F}_{\Psi}=\{\Psi_n,\,n\geq 0\}$  be biorthogonal  $\mathcal{D}$ -quasi bases for some dense subspace  $\mathcal{D}$  of  $\mathcal{H}$ . Let  $\{\alpha_n\}$  be a sequence satisfying the inequalities

$$0 = \alpha_0 < \alpha_1 < \alpha_2 < \dots,$$

and  $\overline{\alpha}=\lim_{n,\infty}\alpha_n$ , with  $\overline{\alpha}\leq\infty$ . We further consider two operators, a and  $b^\dagger$ , which act as lowering operators respectively on  $\mathcal{F}_{\varphi}$  and  $\mathcal{F}_{\Psi}$  in the following way:

$$a \varphi_n = \alpha_n \varphi_{n-1}, \qquad b^{\dagger} \Psi_n = \alpha_n \Psi_{n-1},$$

for all  $n \geq 1$ , with  $a \varphi_0 = b^\dagger \Psi_0 = 0$ .

Bi-coherent states, with nice properties, can also be introduced also if  $\mathcal{F}_{\varphi}$  and  $\mathcal{F}_{\Psi}$  are not Riesz bases, at least under very mild assumptions on the growth of  $\|\varphi_n\|$  and  $\|\Psi_n\|$ .

The following rather general result can be deduced:

Let  $\mathcal{F}_{\varphi}=\{\varphi_n,\,n\geq 0\}$  and  $\mathcal{F}_{\Psi}=\{\Psi_n,\,n\geq 0\}$  be biorthogonal  $\mathcal{D}$ -quasi bases for some dense subspace  $\mathcal{D}$  of  $\mathcal{H}$ . Let  $\{\alpha_n\}$  be a sequence satisfying the inequalities

$$0 = \alpha_0 < \alpha_1 < \alpha_2 < \dots,$$

and  $\overline{\alpha}=\lim_{n,\infty}\alpha_n$ , with  $\overline{\alpha}\leq\infty$ . We further consider two operators, a and  $b^\dagger$ , which act as lowering operators respectively on  $\mathcal{F}_{\varphi}$  and  $\mathcal{F}_{\Psi}$  in the following way:

$$a \varphi_n = \alpha_n \varphi_{n-1}, \qquad b^{\dagger} \Psi_n = \alpha_n \Psi_{n-1},$$

for all  $n\geq 1$ , with  $a\, \varphi_0=b^\dagger\, \Psi_0=0.$ 

**Remark:**– Of course, pseudo-bosonic operators fit these requirements, with  $\alpha_n=\sqrt{n}$ . In this case  $\overline{\alpha}=\infty$ .

Bi-coherent states, with nice properties, can also be introduced also if  $\mathcal{F}_{\varphi}$  and  $\mathcal{F}_{\Psi}$  are not Riesz bases, at least under very mild assumptions on the growth of  $\|\varphi_n\|$  and  $\|\Psi_n\|$ .

The following rather general result can be deduced:

Let  $\mathcal{F}_{\varphi}=\{\varphi_n,\,n\geq 0\}$  and  $\mathcal{F}_{\Psi}=\{\Psi_n,\,n\geq 0\}$  be biorthogonal  $\mathcal{D}$ -quasi bases for some dense subspace  $\mathcal{D}$  of  $\mathcal{H}$ . Let  $\{\alpha_n\}$  be a sequence satisfying the inequalities

$$0 = \alpha_0 < \alpha_1 < \alpha_2 < \dots,$$

and  $\overline{\alpha}=\lim_{n,\infty}\alpha_n$ , with  $\overline{\alpha}\leq\infty$ . We further consider two operators, a and  $b^\dagger$ , which act as lowering operators respectively on  $\mathcal{F}_{\varphi}$  and  $\mathcal{F}_{\Psi}$  in the following way:

$$a \varphi_n = \alpha_n \varphi_{n-1}, \qquad b^{\dagger} \Psi_n = \alpha_n \Psi_{n-1},$$

for all  $n \geq 1$ , with  $a \varphi_0 = b^\dagger \Psi_0 = 0$ .

Remark:– Of course, pseudo-bosonic operators fit these requirements, with  $\alpha_n=\sqrt{n}.$  In this case  $\overline{\alpha}=\infty.$ 

Then the following holds:

Assume that four strictly positive constants  $A_{\varphi}$ ,  $A_{\Psi}$ ,  $r_{\varphi}$  and  $r_{\Psi}$  exist, together with two strictly positive sequences  $M_n(\varphi)$  and  $M_n(\Psi)$  for which

$$\lim_{n\to\infty}\frac{M_n(\varphi)}{M_{n+1}(\varphi)}=M(\varphi), \qquad \qquad \lim_{n\to\infty}\frac{M_n(\Psi)}{M_{n+1}(\Psi)}=M(\Psi),$$

where  $M(\varphi)$  and  $M(\Psi)$  could be infinity, such that, for all  $n \geq 0$ ,

$$\|\varphi_n\| \le A_{\varphi} r_{\varphi}^n M_n(\varphi), \qquad \|\Psi_n\| \le A_{\Psi} r_{\Psi}^n M_n(\Psi).$$

Assume that four strictly positive constants  $A_{\varphi}$ ,  $A_{\Psi}$ ,  $r_{\varphi}$  and  $r_{\Psi}$  exist, together with two strictly positive sequences  $M_n(\varphi)$  and  $M_n(\Psi)$  for which

$$\lim_{n\to\infty}\frac{M_n(\varphi)}{M_{n+1}(\varphi)}=M(\varphi), \qquad \qquad \lim_{n\to\infty}\frac{M_n(\Psi)}{M_{n+1}(\Psi)}=M(\Psi),$$

where  $M(\varphi)$  and  $M(\Psi)$  could be infinity, such that, for all  $n \geq 0$ ,

$$\|\varphi_n\| \le A_{\varphi} r_{\varphi}^n M_n(\varphi), \qquad \|\Psi_n\| \le A_{\Psi} r_{\Psi}^n M_n(\Psi).$$

Then the following series:

$$\begin{split} N(|z|) &= \left(\sum_{k=0}^{\infty} \frac{|z|^{2k}}{(\alpha_k!)^2}\right)^{-1/2},\\ \varphi(z) &= N(|z|) \sum_{k=0}^{\infty} \frac{z^k}{\alpha_k!} \varphi_k, \qquad \Psi(z) = N(|z|) \sum_{k=0}^{\infty} \frac{z^k}{\alpha_k!} \Psi_k, \end{split}$$

are all convergent inside the circle  $C_{\rho}(0)$  centered in the origin of the complex plane and of radius  $\rho=\overline{\alpha}\min\left(1,\frac{M(\varphi)}{r_{i\alpha}},\frac{M(\Psi)}{r_{i\Psi}}\right)$ .

Moreover, for all 
$$z\in C_{\rho}(0)$$
,

$$\langle \varphi(z), \Psi(z) \rangle = 1,$$

Moreover, for all 
$$z\in C_{
ho}(0)$$
, 
$$\langle \varphi(z),\Psi(z)\rangle=1,$$
 
$$a\varphi(z)=z\varphi(z), \qquad \qquad b^\dagger\Psi(z)=z\Psi(z).$$

Moreover, for all  $z \in C_{\rho}(0)$ ,

$$\langle \varphi(z), \Psi(z) \rangle = 1,$$

$$a\varphi(z)=z\varphi(z), \qquad \qquad b^{\dagger}\Psi(z)=z\Psi(z).$$

Suppose further that a measure  $d\lambda(r)$  does exist such that

$$\int_0^\rho d\lambda(r)r^{2k} = \frac{(\alpha_k!)^2}{2\pi},$$

for all  $k\geq 0$ . Then, for all  $f,g\in \mathcal{D}$ , calling  $d\nu(z,\overline{z})=d\lambda(r)d\theta$ , we have

$$\int_{C_{\rho}(0)} N(|z|)^{-2} \left\langle f, \Psi(z) \right\rangle \left\langle \varphi(z), g \right\rangle d\nu(z, \overline{z}) = \int_{C_{\rho}(0)} N(|z|)^{-2} \left\langle f, \varphi(z) \right\rangle \left\langle \Psi(z), g \right\rangle d\nu(z, \overline{z}) = \left\langle f, g \right\rangle$$

Moreover, for all  $z \in C_{\rho}(0)$ ,

$$\langle \varphi(z), \Psi(z) \rangle = 1,$$

$$a\varphi(z) = z\varphi(z),$$
  $b^{\dagger}\Psi(z) = z\Psi(z).$ 

Suppose further that a measure  $d\lambda(r)$  does exist such that

$$\int_0^\rho d\lambda(r)r^{2k} = \frac{(\alpha_k!)^2}{2\pi},$$

for all  $k \geq 0$ . Then, for all  $f,g \in \mathcal{D}$ , calling  $d\nu(z,\overline{z}) = d\lambda(r)d\theta$ , we have

$$\int_{C_{P}\left(0\right)} N(|z|)^{-2} \left\langle f, \Psi(z) \right\rangle \left\langle \varphi(z), g \right\rangle d\nu(z, \overline{z}) = \int_{C_{P}\left(0\right)} N(|z|)^{-2} \left\langle f, \varphi(z) \right\rangle \left\langle \Psi(z), g \right\rangle d\nu(z, \overline{z}) = \left\langle f, g \right\rangle$$

**Remark:**— We can apply the above result also to *deformed quons*, i.e. to operators a and b satisfying, in particular, the following q-mutation rule:

$$[a,b]_q f = abf - qbaf = f,$$

for  $f \in \mathcal{D}$  and  $q \in [-1, 1]$ .

Starting point:

$$\hat{q} = \frac{1}{\sqrt{2}}(a+b) = T\hat{q}_0T^{-1}, \qquad \hat{p} = \frac{1}{\sqrt{2}i}(a-b) = T\hat{p}_0T^{-1},$$

where T is fully  $\mathcal{S}(\mathbb{R})$ -stable.

Starting point:

$$\hat{q} = \frac{1}{\sqrt{2}}(a+b) = T\hat{q}_0T^{-1}, \qquad \hat{p} = \frac{1}{\sqrt{2}i}(a-b) = T\hat{p}_0T^{-1},$$

where T is fully  $\mathcal{S}(\mathbb{R})$ -stable.

Then, recalling that  $au_1=e^{i\alpha\hat{q}_0}$  and  $au_2=e^{-i\alpha\hat{p}_0}$ , we define

$$T_j = T\tau_j T^{-1}, \qquad j = 1, 2.$$

Starting point:

$$\hat{q} = \frac{1}{\sqrt{2}}(a+b) = T\hat{q}_0T^{-1}, \qquad \hat{p} = \frac{1}{\sqrt{2}i}(a-b) = T\hat{p}_0T^{-1},$$

where T is fully  $\mathcal{S}(\mathbb{R})$ -stable.

Then, recalling that  $au_1=e^{i\alpha\hat{q}_0}$  and  $au_2=e^{-i\alpha\hat{p}_0}$ , we define

$$T_j = T\tau_j T^{-1}, \qquad j = 1, 2.$$

Starting point:

$$\hat{q} = \frac{1}{\sqrt{2}}(a+b) = T\hat{q}_0T^{-1}, \qquad \hat{p} = \frac{1}{\sqrt{2}i}(a-b) = T\hat{p}_0T^{-1},$$

where T is fully  $\mathcal{S}(\mathbb{R})$ -stable.

Then, recalling that  $au_1=e^{ilpha\hat{q}_0}$  and  $au_2=e^{-ilpha\hat{p}_0}$ , we define

$$T_j = T\tau_j T^{-1}, \qquad j = 1, 2.$$

Starting point:

$$\hat{q} = \frac{1}{\sqrt{2}}(a+b) = T\hat{q}_0T^{-1}, \qquad \hat{p} = \frac{1}{\sqrt{2}i}(a-b) = T\hat{p}_0T^{-1},$$

where T is fully  $\mathcal{S}(\mathbb{R})$ -stable.

Then, recalling that  $au_1=e^{i\alpha\hat{q}_0}$  and  $au_2=e^{-i\alpha\hat{p}_0}$ , we define

$$T_j = T\tau_j T^{-1}, \qquad j = 1, 2.$$

- $D(T_j) \supseteq \mathcal{S}(\mathbb{R});$

Starting point:

$$\hat{q} = \frac{1}{\sqrt{2}}(a+b) = T\hat{q}_0T^{-1}, \qquad \hat{p} = \frac{1}{\sqrt{2}i}(a-b) = T\hat{p}_0T^{-1},$$

where T is fully  $\mathcal{S}(\mathbb{R})$ -stable.

Then, recalling that  $au_1=e^{i\alpha\hat{q}_0}$  and  $au_2=e^{-i\alpha\hat{p}_0}$ , we define

$$T_j = T\tau_j T^{-1}, \qquad j = 1, 2.$$

- $D(T_j) \supseteq \mathcal{S}(\mathbb{R});$

Starting point:

$$\hat{q} = \frac{1}{\sqrt{2}}(a+b) = T\hat{q}_0T^{-1}, \qquad \hat{p} = \frac{1}{\sqrt{2}i}(a-b) = T\hat{p}_0T^{-1},$$

where T is fully  $\mathcal{S}(\mathbb{R})$ -stable.

Then, recalling that  $au_1=e^{i\alpha\hat{q}_0}$  and  $au_2=e^{-i\alpha\hat{p}_0}$ , we define

$$T_j = T\tau_j T^{-1}, \qquad j = 1, 2.$$

- $D(T_j) \supseteq \mathcal{S}(\mathbb{R});$
- $[T_1,T_2]\varphi(x)=0, \text{ for all } \varphi(x)\in\mathcal{S}(\mathbb{R}), \text{ if } \alpha^2=2\pi L;$
- $\textcircled{0} \ T_j \ \text{can be extended to} \ \mathcal{S}'(\mathbb{R}), \ \text{by duality, and} \ T_j F \in \mathcal{S}'(\mathbb{R}) \ \text{for all} \ F \in \mathcal{S}'(\mathbb{R}).$

Hence we can define

$$\varphi_{kq}(x) = T\rho_{kq}(x) \in \mathcal{S}'(\mathbb{R}), \qquad \Psi_{kq}(x) = (T^{\dagger})^{-1}\rho_{kq}(x) \in \mathcal{S}'(\mathbb{R})$$

Hence we can define

$$\varphi_{kq}(x) = T\rho_{kq}(x) \in \mathcal{S}'(\mathbb{R}), \qquad \Psi_{kq}(x) = (T^{\dagger})^{-1}\rho_{kq}(x) \in \mathcal{S}'(\mathbb{R})$$

Then

$$T_1 \varphi_{kq}(x) = e^{i\alpha q} \varphi_{kq}(x), \qquad T_2 \varphi_{kq}(x) = e^{-i\alpha k} \varphi_{kq}(x)$$

Hence we can define

$$\varphi_{kq}(x) = T\rho_{kq}(x) \in \mathcal{S}'(\mathbb{R}), \qquad \Psi_{kq}(x) = (T^{\dagger})^{-1}\rho_{kq}(x) \in \mathcal{S}'(\mathbb{R})$$

Then

$$T_1 \varphi_{kq}(x) = e^{i\alpha q} \varphi_{kq}(x), \qquad T_2 \varphi_{kq}(x) = e^{-i\alpha k} \varphi_{kq}(x)$$

and, for all  $f,g\in\mathcal{S}(\mathbb{R})$ ,

$$\int \int_{\square} \langle f, \varphi_{kq} \rangle \langle \Psi_{kq}, g \rangle \, dk \, dq = \langle f, g \rangle. \tag{5}$$

Hence we can define

$$\varphi_{kq}(x) = T\rho_{kq}(x) \in \mathcal{S}'(\mathbb{R}), \qquad \Psi_{kq}(x) = (T^{\dagger})^{-1}\rho_{kq}(x) \in \mathcal{S}'(\mathbb{R})$$

Then

$$T_1 \varphi_{kq}(x) = e^{i\alpha q} \varphi_{kq}(x), \qquad T_2 \varphi_{kq}(x) = e^{-i\alpha k} \varphi_{kq}(x)$$

and, for all  $f,g \in \mathcal{S}(\mathbb{R})$ ,

$$\int \int_{\square} \langle f, \varphi_{kq} \rangle \langle \Psi_{kq}, g \rangle \, dk \, dq = \langle f, g \rangle \,. \tag{5}$$

In analogy with the standard situation, we introduce the vacuum of a,  $\varphi_0$ , and define

$$\varphi_{\underline{n}}(x) = T_1^{n_1} T^{n_2} \varphi_0(x).$$

Hence we can define

$$\varphi_{kq}(x) = T\rho_{kq}(x) \in \mathcal{S}'(\mathbb{R}), \qquad \Psi_{kq}(x) = (T^{\dagger})^{-1}\rho_{kq}(x) \in \mathcal{S}'(\mathbb{R})$$

Then

$$T_1 \varphi_{kq}(x) = e^{i\alpha q} \varphi_{kq}(x), \qquad T_2 \varphi_{kq}(x) = e^{-i\alpha k} \varphi_{kq}(x)$$

and, for all  $f, g \in \mathcal{S}(\mathbb{R})$ ,

$$\int \int_{\square} \langle f, \varphi_{kq} \rangle \langle \Psi_{kq}, g \rangle \, dk \, dq = \langle f, g \rangle. \tag{5}$$

In analogy with the standard situation, we introduce the vacuum of a,  $\varphi_0$ , and define

$$\varphi_{\underline{n}}(x) = T_1^{n_1} T^{n_2} \varphi_0(x).$$

**Remarks:**– (1) The dependence of  $\varphi_{\underline{n}}(x)$  on z is all through  $\underline{n}$ .

- (2) A similar construction can be repeated for the companion coherent state,  $\Psi_n(x)$ .
- (3) Since  $\varphi_0(x)=Te_0(x),\ e_0(x)\in\mathcal{S}(\mathbb{R})$  and  $ce_0=0$  ( $[c,c^\dagger]=1$ ),  $\varphi_{\underline{n}}(x)\in\mathcal{S}(\mathbb{R})$  for all  $\underline{n}$ . Hence, using formula (5), we conclude that...

...if  $f(x) \in \mathcal{S}(\mathbb{R})$  is orthogonal to all the  $\varphi_{\underline{n}}(x)$ , then f(x) = 0.

...if  $f(x) \in \mathcal{S}(\mathbb{R})$  is orthogonal to all the  $\varphi_{\underline{n}}(x)$ , then f(x) = 0.

$$\begin{split} 0 &= \left\langle f, \varphi_{\underline{n}} \right\rangle = \int \int_{\square} \left\langle f, \varphi_{kq} \right\rangle \left\langle \Psi_{kq}, \varphi_{\underline{n}} \right\rangle \, dk \, dq = \\ &= \int \int_{\square} \left\langle f, \varphi_{kq} \right\rangle \left\langle \Psi_{kq}, \varphi_{0} \right\rangle \, e^{ikn_{1}a - iqn_{2}a} \, dk \, dq, \end{split}$$

for all  $n_1, n_2 \in \mathbb{Z}$ . Hence, if  $a^2 = 2\pi$ ,

$$\left\langle f,\varphi_{kq}\right\rangle \left\langle \Psi_{kq},\varphi_{0}\right\rangle =0\quad \Rightarrow\quad \left\langle f,\varphi_{kq}\right\rangle =0,$$

a.e. in  $\square$ . Hence

$$f = 0.$$

### Open points:-

lacktriangle Is it possible to extend this result to  $\mathcal{L}^2(\mathbb{R})$ ?

### Open points:-

 ${\bf 0}$  Is it possible to extend this result to  $\mathcal{L}^2(\mathbb{R})$ ? Yes, under stronger conditions.

- $\textbf{0} \ \text{Is it possible to extend this result to } \mathcal{L}^2(\mathbb{R}) \text{? Yes, under stronger conditions.}$
- ② Do  $T_1$  coincide with  $e^{i\alpha\hat{q}}$  and  $T_2$  with  $e^{-i\alpha\hat{p}}$ ?

- **(**) Is it possible to extend this result to  $\mathcal{L}^2(\mathbb{R})$ ? Yes, under stronger conditions.
- ② Do  $T_1$  coincide with  $e^{i\alpha\hat{q}}$  and  $T_2$  with  $e^{-i\alpha\hat{p}}$ ? And how these RHS should be defined, first? There are some results on this line, but there is still work to do.

- **(**) Is it possible to extend this result to  $\mathcal{L}^2(\mathbb{R})$ ? Yes, under stronger conditions.
- ② Do  $T_1$  coincide with  $e^{i\alpha\hat{q}}$  and  $T_2$  with  $e^{-i\alpha\hat{p}}$ ? And how these RHS should be defined, first? There are some results on this line, but there is still work to do.
- Applications of bi-coherent states to physical systems are welcome!

- **(**) Is it possible to extend this result to  $\mathcal{L}^2(\mathbb{R})$ ? Yes, under stronger conditions.
- ② Do  $T_1$  coincide with  $e^{i\alpha\hat{q}}$  and  $T_2$  with  $e^{-i\alpha\hat{p}}$ ? And how these RHS should be defined, first? There are some results on this line, but there is still work to do.
- Applications of bi-coherent states to physical systems are welcome!
- 4 Analysis of bi-squeezed states...

- **(**) Is it possible to extend this result to  $\mathcal{L}^2(\mathbb{R})$ ? Yes, under stronger conditions.
- ② Do  $T_1$  coincide with  $e^{i\alpha\hat{q}}$  and  $T_2$  with  $e^{-i\alpha\hat{p}}$ ? And how these RHS should be defined, first? There are some results on this line, but there is still work to do.
- Applications of bi-coherent states to physical systems are welcome!
- Analysis of bi-squeezed states...
- ....

