What can we do to improve our understanding and prediction monsoon

J.Srinivasan Divecha Centre for Climate Change Indian Institute of Science Bengaluru

Monsoon Temporal and spatial scales

Temporal: diurnal, daily, sub-seasonal, seasonal, interannual, decadal, centennial and millennial

Spatial: bacteria, aerosols, cloud drops, ice particles, cumulus, mesoscale, inter-tropical convergence zones

Cloud parameterization approximates everything not resolved by the model

Characteristic Length Scale

2002 (690)

MODELS

SIMPLE, DYNAMICAL AND STATISTICAL

Statistician R.A.Fisher 1922

"no new meteorological fact had been discovered by means of

correlation coefficients; certainly up to the present no practical

forecasts had been obtained from correlation coefficients"

Verification of the seasonal mean Indian monsoon rainfall forecast by linear regression for the period 1924 to 1987 indicated that it was correct about 63% of the time If we assumed that there will be no droughts during this period, we would have been right 77% of the time!

DYNAMICAL MODELS

Can laws of physics predict monsoon better than statistical models?

Monsoon rainfall predictions

- Short term(3 days) : Very good
- Medium term(7 days); getting better
- Extended range (15 days): great promise
- Long range(> 30 days): tough

Hybrid forecasting Dynamical models good in prediction winds but not rainfall

Statistical method to link model predicted winds to observed rain

Understanding the monsoon implies a theory which will explain the observed variability and model simulations **The traditional Land-sea** contrast theory has failed to improve our understanding of monsoon processes

Tropical precipitation, SSTs and the surface energy budget: a zonally symmetric perspective

Sarah M. Kang · Isaac M. Held

Climate Dynamics,2012

Atmospheric energy budget is more fundamental to the control of tropical precipitation than SSTs in these simulations

P = **E** + {**Q**_{NET}} / {Vertical Stability}

P = RAINFALL E= EVAPORATION Q_{NET} = NET ENERGY CONVERGENCE

Therefore, (P-E) > 0 if $Q_{NET} > 0$

This is can be verified!

ERBE NET RADIATION JUL1987

Scatter plot of Water vapor content Vs Rainfall, for MPI/ECHAM5 Model averaged over Indian land region(70-90E,10-30N)

Note: Skymet forecast is with a model error of plus & minus four percent; numbers indicate percentage of long- period average

Indian summer monsoon rainfall from MRI GCM(Rajendran et al,2005)

IMD observation

20-km model

% Deviation of rainfall in 2018

2018 JJAS % Deviation

CFSv2-T126 2018 JJAS % Deviation of Rainfall

Intrinsic mode functions and a strategy for forecasting Indian monsoon rainfall

R.N.Iyengar & S.T.G. Raghukanth Meterology & Atmospheric Physics, 2004

Table 2. Central period of the IMF's in years and % variance contributed to IAV

Region	IMF ₁		IMF_2		IMF ₃		IMF ₄		IMF ₅	
	Т	IAV%	Т	IAV%	Т	IAV%	Т	IAV%	Т	IAV%
All India	2.67	66.2	5.45	14.3	12.00	11.2	30	2.2	60	4.0

Prediction of the Indian summer monsoon rainfall for 2013 based on past rainfall data Current Science, June, 2013

Groundnut crop growing in Andhra Pradesh, India

IOP PUBLISHING

Environ. Res. Lett. 7 (2012) 044023 (9pp)

ENVIRONMENTAL RESEARCH LETTERS

doi:10.1088/1748-9326/7/4/044023

A statistically predictive model for future monsoon failure in India

Jacob Schewe and Anders Levermann

Potsdam Institute for Climate Impact Research, Telegrafenberg A62, D-14473 Potsdam, Germany Institute of Physics, Potsdam University, Potsdam, Germany

Non-linear intensification of Sahel rainfall as a possible dynamic response to future warming

Jacob Schewe¹ and Anders Levermann^{1,2,3}

A critical humidity threshold for monsoon transitions

J. Schewe^{1,2}, A. Levermann^{1,2}, and H. Cheng^{3,4}

¹Earth System Analysis, Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany ²Institute of Physics, University of Potsdam, 14476 Potsdam, Germany

³Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, 710049, China

⁴Department of Geology and Geophysics, University of Minnesota, Minneapolis, 55455, USA

Schewe & Levermann (2012, subm.), ERL

Kucharski et al, Climate Dynamics, 2009 **Observations(Red) Model Ensemble (Black) 6 AGCM** mm/day (a) Total IMR CRU (R), ENSL (B) 1.5 0.5 0 -0.5-1.51930 1940 1950 1960 1910 1990 1970 1980 1920

Kucharski et al , Climate Dynamics, 2009 Observations(Red) Model Ensemble (Black) 6 AGCM mm/day

TraCE-21ka Simulation of Transient Climate Evolution over the last 21,000 years

CCSM3 is a global, coupled ocean-atmosphere-sea ice-land surface climate model without flux adjustment. All the simulations were performed at T31 with a dynamic global vegetation model (DGVM). The atmospheric model is the Community Atmospheric Model 3 (CAM3), a three-dimensional primitive equation model solved with the spectral method in the horizontal (T31, ~3.750 latitude-longitude resolution) and with 26 hybrid coordinate levels in the vertical.

BETTER UNDERSTANDING VERSUS ACCURATE PREDICTION

Thank You