DFT+DMFT, oxide superlattices and the metal-insulator transition: the good, the bad and the ugly

A. J. Millis

Department of Physics, Columbia University

Support: US-DOE-ER-046169 US-NSF-DMR-1006282 Hyowon Park, Andrew J. Millis, and Chris A. Marianetti, PRL 109, 156402 (2012)
E. Gull, O. Parcollet and A. J. Millis, PRL 110 216406 (2013)
H. T. Dang, A. J. Millis and C. Marianetti, arXiv:1309.2995

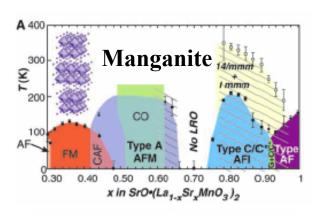
Bangalore 2014

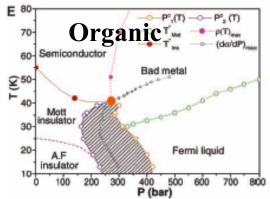

Collaborators

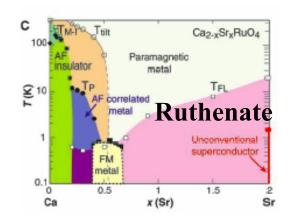
C. Marianetti

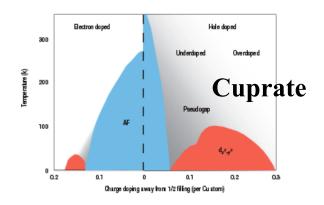
Hanghui Chen
Ara Go
Seyoung Park
Hung The Dang
(Columbia->Aachen)

*Hyowon Park

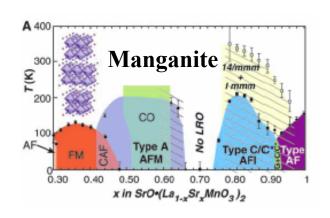


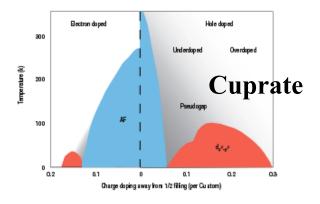

Department of Physics


Columbia University

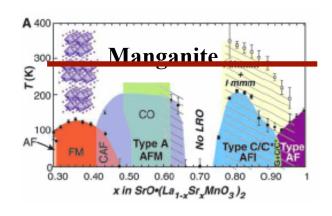

M-J. Han (CU->ANL->KAIST)
X. Wang (CU->U-Md)
L. deMedici (ESPCI)

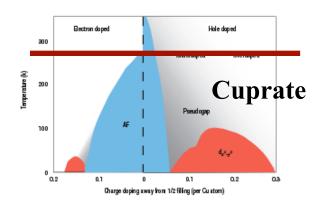
Materials with Strongly Correlated Electrons Do Interesting Things





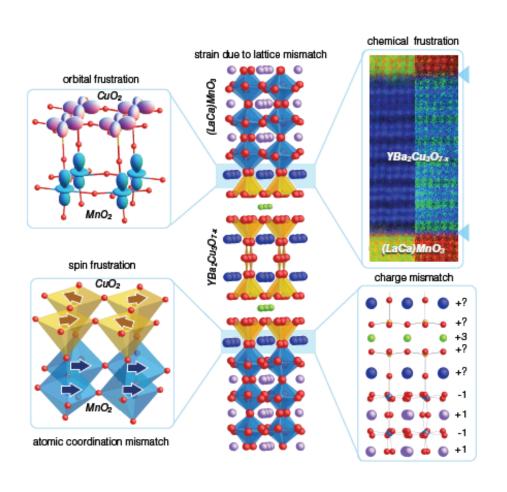
One would like to





- Design materials with desired behavior
- •Control the phases with external fields

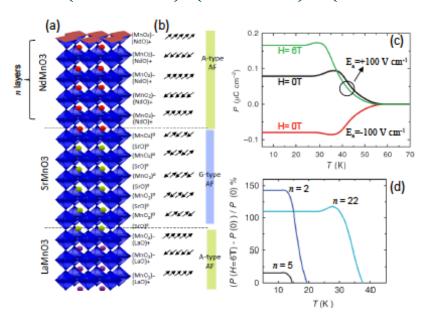
One would like to



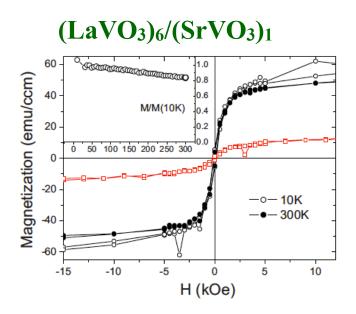
- Design materials with desired behavior
- •Control the phases with external fields
- Move the interesting behavior closer to (or above) room temperature

Oxide epitaxy: Can now combine 'interesting' materials on atomic scale

Control (in principle)


- Charge density
- •Strain
- Local geometry (coordination/bond angles)
- •Proximity (of different kinds of orders)
- =>Access (in principle)
 new physics

Examples


Multiferroicity

(LaMnO₃)_n(SrMnO₃)_m (NdMnO₃)₁

Rogdakis...Panagopolous, Nat. Comm 3 1064 (12)

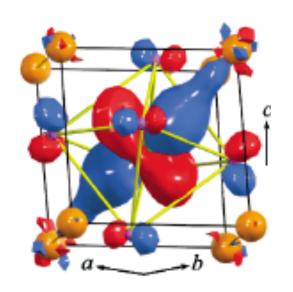
?Room Temperature Ferromagnetism?

Luders et al Phys Rev B80 241102 (2009)

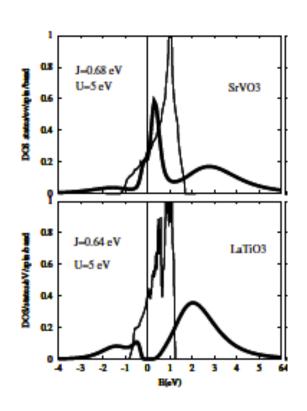
Challenge for Theory

The Stuart Parkin question: What do I have to grow to get a room temperature superconductor??

More prosaically: need theory to


- (a) determine electronic properties of model systems
- (b) predict structures (esp oxygen positions)
- (c) connect physical and chemical structure to properties

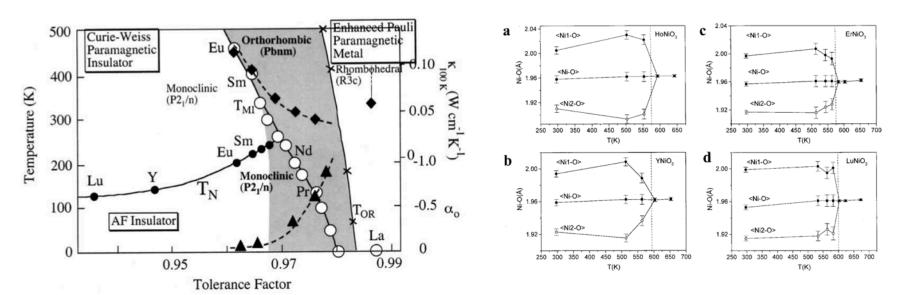
=> DFT+DMFT



structure and properties (1a): local crystal structure

example: d¹ perovskites

Pavarini//Georges 2004: GdFeO₃ rotational distortion essential to insulating phase of LaTiO₃


To understand metal-insulator transition

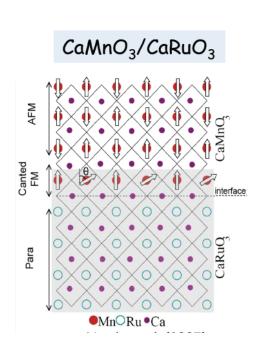
incorporate physics of crystal structure (esp.octahedral rotations) on equal footing with many-body effects

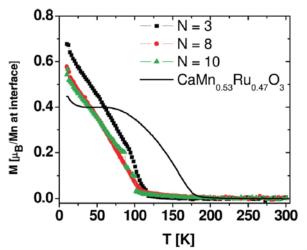
structure and properties (1b): oxygen displacements

example: rare earth nickelates

Metal-insulator transition coincident with change in Ni-O bond-length.

To understand metal-insulator transition in nickelates


incorporate physics of changes in transition metal-oxygen bond lengths on equal footing with many-body effects



Structure and properties (2): Charge transfer

Ferromagnetism at interface between paramagnet, antiferromagnet

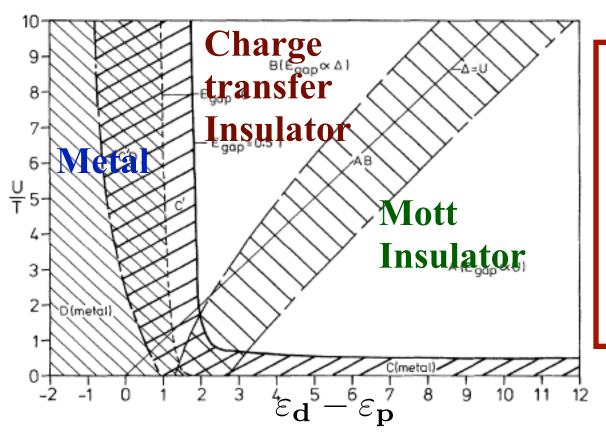
He et al JAP 109 07D729 (2011) (see also Takahashi, Kawasaki and Tokura APL 79 1324 (2001)

Idea: charge flow across interface dopes CaMnO₃ ?how much charge moves? ?in which direction?

To understand oxide superlattices

understand charge flow between different materials =>work functions, atomic physics contribution to electronegativity and long-ranged Coulomb interaction (charge balance) on equal footing with many-body energetics

=>DFT+DMFT with full charge self consistency



Important point

the many body physics of the metalinsulator transition and the charge flow in superlattices are intimately related

p-d splitting governs both metal-insulator transition and superlattice charge flow.

Conventional Wisdom

Oxygen energy: DFT band theory

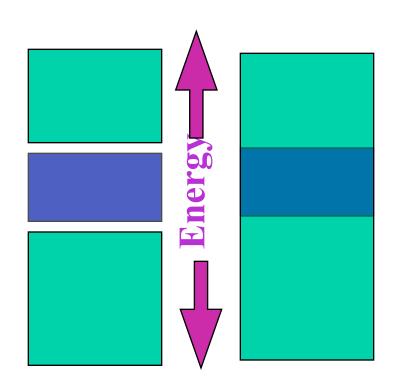
d-level energy: correlation physics

VOLUME 55, NUMBER 4

PHYSICAL REVIEW LETTERS

22 July 1985

Band Gaps and Electronic Structure of Transition-Metal Compounds


Zaanen Sawatzky Allen

Department of Physics Columbia University

General Approach to Many-Body Electronic Structure

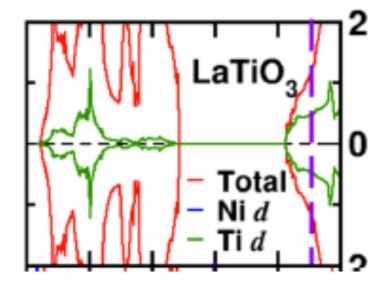
- •=>partition d.o.f. into "correlated subspace" (active space) (atomic-like d orbitals) and "background"
- treat correlated subspace by many-body method (DMFT); treat background by mean field method (DFT)
- •embed active space into background (DMFT self-consistency+double counting +charge self consistency)

Correlated subspace: transition metal d orbitals

Interaction: Full multiplet structure of d-shell (here written for t_{2g} or e_g)

$$H = U \sum_{a} n_{a\uparrow} n_{a\downarrow} + (U - 2J) \sum_{a>b,\sigma=\uparrow,\downarrow} n_{a\sigma} n_{b\sigma}$$
$$+ (U - 3J) \sum_{a\neq b\sigma} n_{a\sigma} n_{b\bar{\sigma}} - J \sum_{a\neq b} c_{a\uparrow}^{\dagger} c_{a\downarrow}^{\dagger} c_{b\uparrow} c_{b\downarrow} + c_{a\uparrow}^{\dagger} c_{b\downarrow}^{\dagger} c_{b\uparrow} c_{a\downarrow}$$

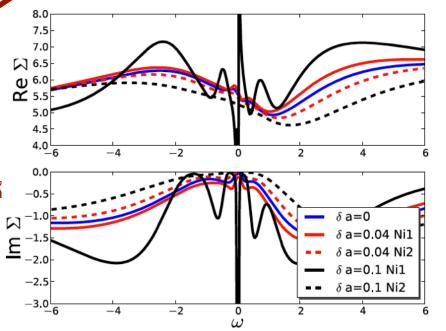
U: screened in solid--phenomenological or 'c-RPA' calculations.


J: close to atomic limit value

DFT+DMFT

$$\mathbf{G^{-1}} = \left[\omega \hat{\mathbf{1}} - \hat{\mathbf{H}}_{\mathbf{DFT}} - \hat{\mathbf{P}}_{\mathbf{d}} \left(\hat{\boldsymbol{\Sigma}}_{\mathbf{d}}(\omega) - \hat{\boldsymbol{\Sigma}}_{\mathbf{dc}} \right) \hat{\mathbf{P}}_{\mathbf{d}} \right]$$

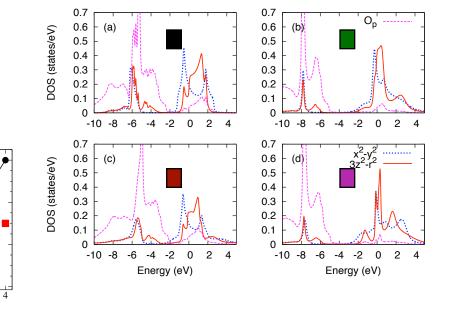
Defines p and (bare) d level energies, and (via Wannier or projector method) d-orbital wave function



DFT+DMFT

$$\mathbf{G^{-1}} = \left[\omega \hat{\mathbf{1}} - \hat{\mathbf{H}}_{\mathbf{DFT}} - \hat{\mathbf{P}}_{\mathbf{d}} \left(\hat{\boldsymbol{\Sigma}}_{\mathbf{d}}(\omega) - \hat{\boldsymbol{\Sigma}}_{\mathbf{dc}} \right) \hat{\mathbf{P}}_{\mathbf{d}} \right]$$

Many-body physics of d-level: real part implies Hartree shift of d-states relative to DFT DFT+U: static Hartree approx


(H. Park: LaNiO3 in ideal and disproportionated state)

DFT+DMFT

$$\mathbf{G^{-1}} = \left[\omega \hat{\mathbf{1}} - \hat{\mathbf{H}}_{\mathbf{DFT}} - \hat{\mathbf{P}}_{\mathbf{d}} \left(\hat{\boldsymbol{\Sigma}}_{\mathbf{d}}(\omega) - \hat{\boldsymbol{\Sigma}}_{\mathbf{dc}} \right) \hat{\mathbf{P}}_{\mathbf{d}} \right]$$

Double counting a correction: cancels portion of Hartree shift: controls physical p-d splitting.

(X Wang PRL 2011 LaNiO3 with different U and double counting)

Crucial question for superlattice and metal-insulator transition in bulk materials

??What is the double counting??

Accepted choice: `FLL'

Added interaction:

$$H_{\rm int} = \frac{1}{2} \sum_{m,m',\sigma} U_{mm'} n_{m\sigma} n_{m'-\sigma} \\ \quad + \frac{1}{2} \sum_{m,m',m \neq m',\sigma} (U_{mm'} - J_{mm'}) n_{m\sigma} n_{m'\sigma}$$

exp. val.

Atomic limit
$$E^{\text{at lim}} = \frac{1}{2}UN(N-1) - \frac{1}{2}JN_{\uparrow}(N_{\uparrow}-1) - \frac{1}{2}JN_{\downarrow}(N_{\downarrow}-1)$$

$$\mathbf{E} = \mathbf{E_{DFT}} + \langle \mathbf{H_{int}} \rangle - \mathbf{E_{at}}$$

=>hartree contribution to d-level self energy

$$\hat{\mathbf{\Sigma}}_{\sigma}^{\mathbf{dc}} = \mathbf{U} \left\langle \mathbf{N} \right\rangle - \mathbf{J} \left\langle \mathbf{N}_{\sigma} \right\rangle$$

Czyzyk and Sawatzky, PRB49 14211 (1994) M. Karolak et al, J Elect Spectr. 181 p. 11 (2010)

Note 1/2 in energy

Added interaction:

$$H_{\rm int} = \frac{1}{2} \sum_{m,m',\sigma} U_{mm'} n_{m\sigma} n_{m'-\sigma} + \frac{1}{2} \sum_{m,m',m \neq m',\sigma} (U_{mm'} - J_{mm'}) n_{m\sigma} n_{m'\sigma}$$

expectation val.

Atomic limit
$$E^{\text{at lim}} = \frac{1}{2}JN(N-1) - \frac{1}{2}JN_{\uparrow}(N_{\uparrow}-1) - \frac{1}{2}JN_{\downarrow}(N_{\downarrow}-1)$$

$$\mathbf{E} = \mathbf{E_{DFT}} + \langle \mathbf{H_{int}} \rangle - \mathbf{E_{at}}$$

=>hartree contribution to d-level self energy

$$\hat{\mathbf{\Sigma}}_{\sigma}^{\mathbf{dc}} = \mathbf{U} \left\langle \mathbf{N} \right\rangle - \mathbf{J} \left\langle \mathbf{N}_{\sigma} \right\rangle$$

Czyzyk and Sawatzky, PRB49 14211 (1994) M. Karolak et al, J Elect Spectr. 181 p. 11 (2010)

Charge flow

To understand charge transfer across oxide interface

1. correctly place oxygen states on each side of interface

To understand charge transfer across oxide interface

- 1. correctly place oxygen states on each side of interface
- 2. determine p-d gap

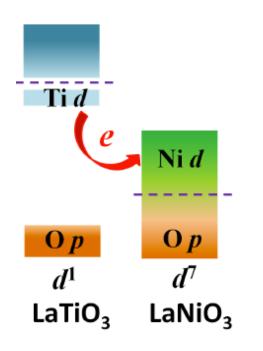
To understand charge transfer across oxide interface

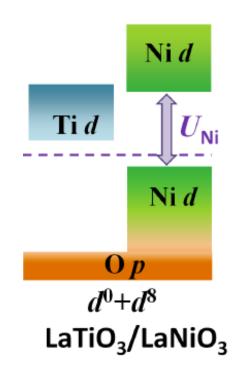
- 1. energy of oxygen states on each side of interface
- 2. determine p-d gap
- 3. account for effects of charge flow

Conventional wisdom

Basic (uncorrelated) electronic structure

Many body physics of transition metal d-orbital

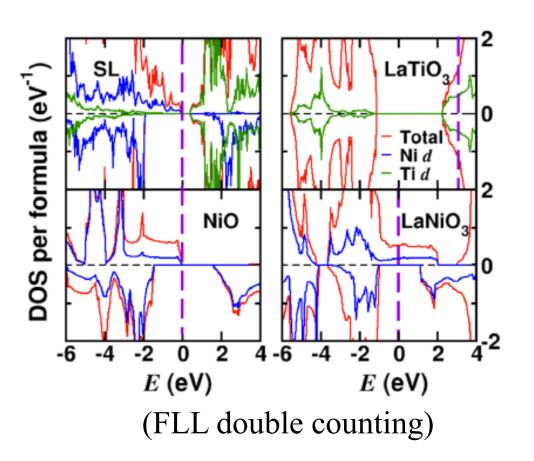

Full charge selfconsistency



LaTiO₃/LaNiO₃ (001)

LaTiO₃: d¹ 'Mott' insulator LaNiO₃: d⁷ correlated metal

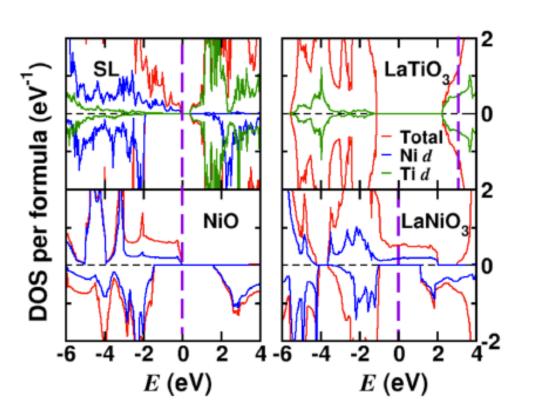
Idea: if put them together, complete charge transfer Ti->Ni =>S=1 (Ti d⁰ Ni d⁸) Insulator



H. Chen, AJM and C. Marianetti Phys. Rev. Lett. 111, 116403 (2013)

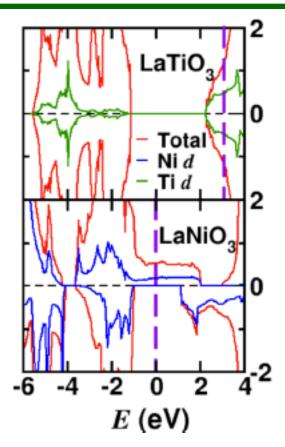
Calculation: DFT+U (FLL double counting)

*oxygen bands line up (approximately)

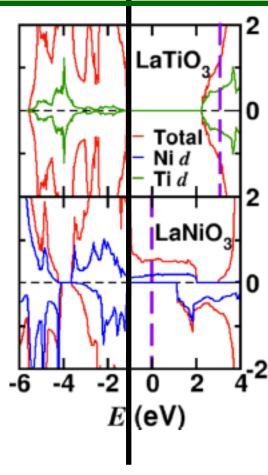

*local physics fixes d level energy relative to O

*d-level energy difference drives complete charge transfer

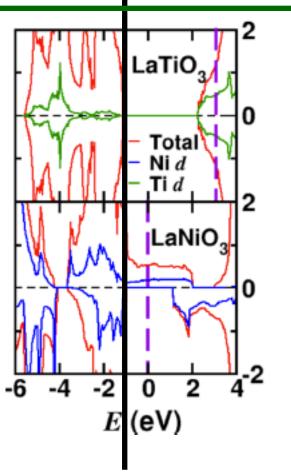
H. Chen, AJM and C. Marianetti, Phys. Rev. Lett. 111, 116403 (2013)

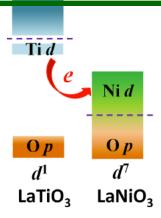

Side remark: actual charge density almost unchanged

'rehybridization':
degree of mixing of
other (uninteresting)
states changes to
compensate transfer of
near fermi surface
charge

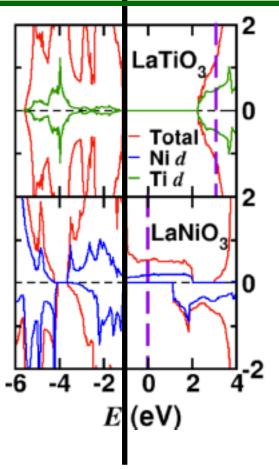


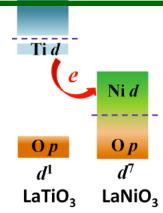
Rough physical picture: oxygen states line up.
Charge transfer controlled by energy of d band relative to p-levels





Rough physical picture:
oxygen states line up.
Charge transfer controlled by energy of
d band relative to p-levels




Rough physical picture: oxygen states line up.
Charge transfer controlled by energy of d band relative to p-levels___

Rough physical picture:
oxygen states line up.
Charge transfer controlled by energy of
d band relative to p-levels___

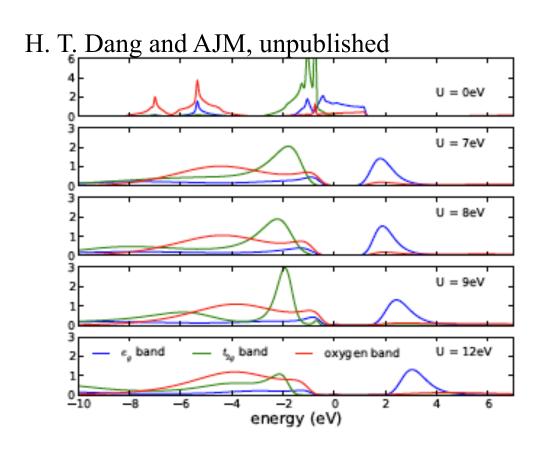
(Note: thicker interface
=>Schottky barrier effects.)

?Are the estimates right?

Two examples

NiO

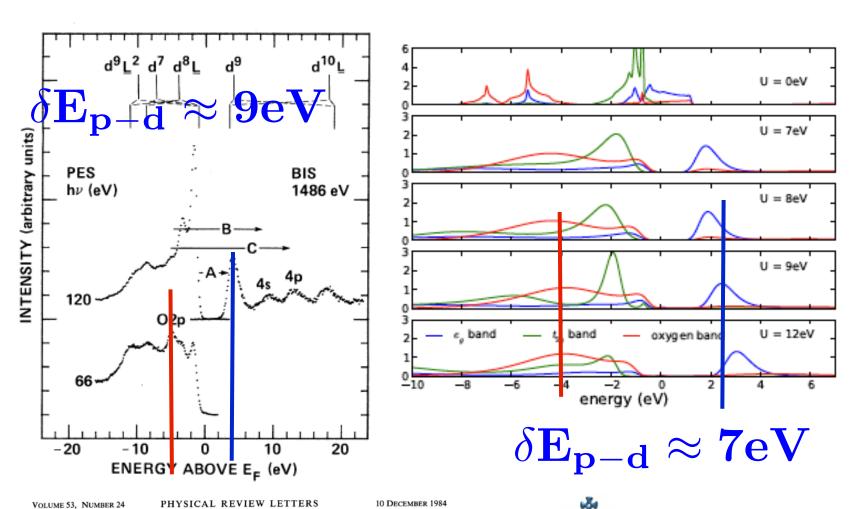
LaTiO₃


Experimentally:

both charge transfer insulators

Theory: DFT+DMFT, defining d orbitals from MLWF defined over energy range of p-d manifold

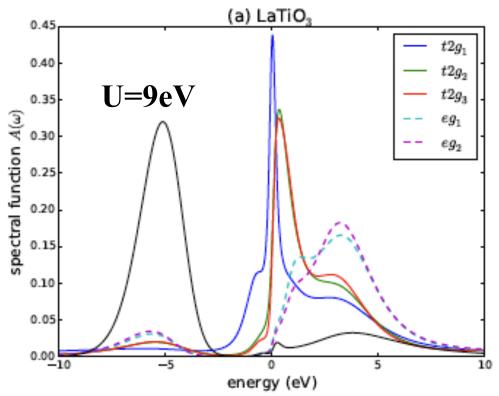
NiO: Full charge sc +FLL double counting produces insulator



- •insulator
- •gap (3eV)<expt (4eV)
- •p-d splitting only weakly U-dependent
- •p bands too close to dbands

FLL double counting for NiO also discussed in M. Karolak et al, J Elect Spectr. 181 p. 11 (2010) Copyright A. J. Millis 2014

p-d splitting: DFT/DMFT vs Expt



Magnitude and Origin of the Band Gap in NiO

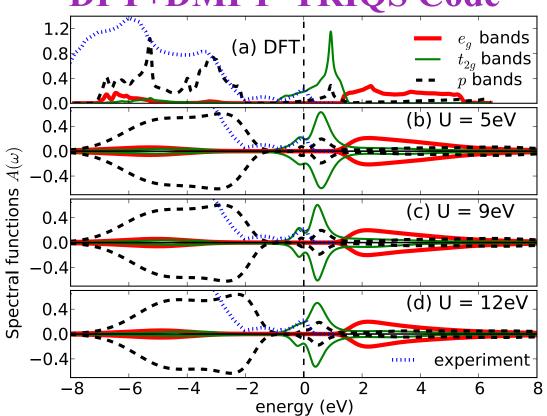
G. A. Sawatzky^(a) and J. W. Allen

Copyright A. J. Millis 2014

LaTiO₃: Full charge sc +FLL double counting produces metal

Experimental structure

H. T. Dang, C. Marianetti and AJM, unpublished

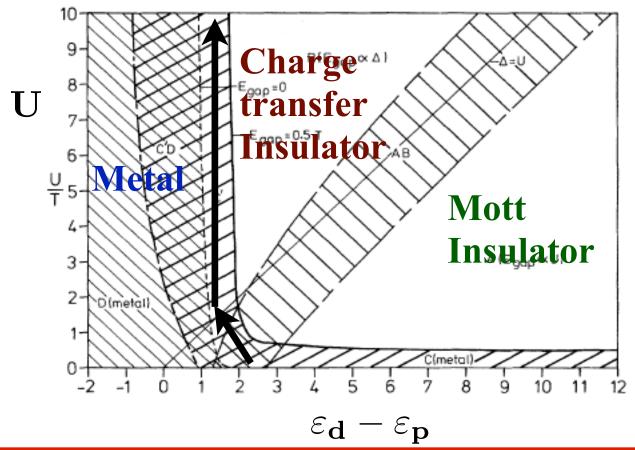

?What is going on?

SrVO₃: an instructive example

Cubic, moderately correlated metal

DFT+DMFT TRIQS Code

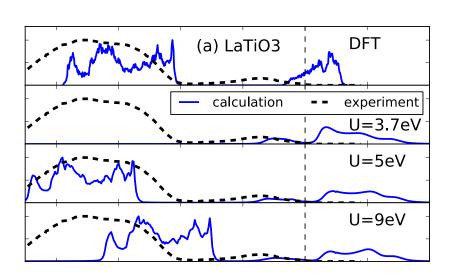
FLL+ full charge self consistency keeps relative separation of p and d bands ~constant and ~1eV smaller than exptvalue for all U

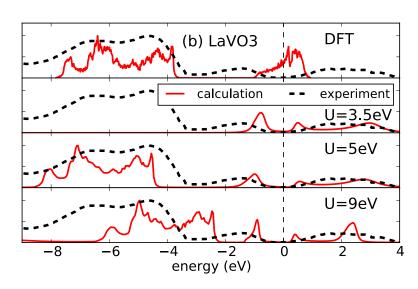

Without charge self consistency, p-bands stay at DFT position

H. T. Dang, AJM and C. Marianetti arXiv:1309.2995

Copyright A. J. Millis 2014

DFT+DMFT: increasing U moves you more or less vertically in the ZSA phase diagram.

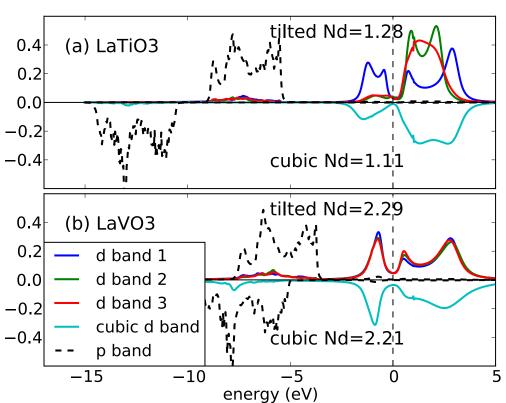

If the calculation starts with too small a p-d energy splitting, it remains in the metallic regime as U increases



Titanates/Vanadates

For each U, adjust E_{dc} by hand so calc gives insulating gap of size found in experiment. Compute oxygen bands. Relatively narrow U-range consistent with expt

U~5-6eV is found in c-RPA calculations

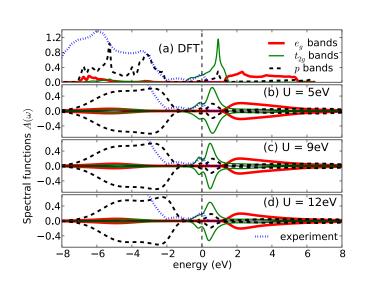


Department of Physics

Columbia University

Single-site DMFT +DFT ``works'' *provided* oxygen levels are correctly positioned and reasonable U chosen

Aside: GdFeO₃-distorted (tilted) structure essential for insulator



GdFeO₃ structural distortion (and associated level splitting) essential for insulating behavior of LaTiO₃ (as previously found by Pavarini, Georges et al); much less so for LaVO₃

?How to position oxygen levels?

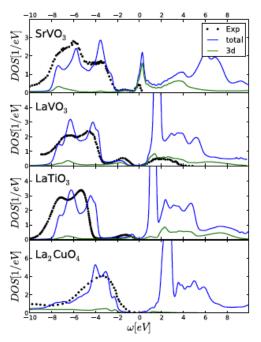
Fully charge self consistent DFT +DMFT pins p-d splitting to value (slightly) smaller than DFT value.

=>2 options

Modify band theory

*Better approx than DFT (?GW?)

Modify E_{DC}


*Haule/Kotliar
*Park/Marianetti

Modify E_{DC} (1)

Haule et al arXiv:1310.1158

$$\mathbf{E_{DC}} = \mathbf{N_d} \left(\mathbf{U} - \frac{\mathbf{J}}{2} \right) \left(\mathbf{N_d^0} - \frac{1}{2} \right) \;\; \mathbf{N_d^0} : ext{formal valence}$$

$$U=10eV$$

Good agreement with data

But: big problem with energetics

FLL double counting

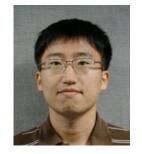
$$E^{\rm at\, lim} = \boxed{\frac{1}{2} J N(N-1) - \frac{1}{2} J N_{\uparrow}(N_{\uparrow}-1)} - \frac{1}{2} J N_{\downarrow}(N_{\downarrow}-1)$$

Haule double counting

$$\mathbf{E_{DC}} = \mathbf{N_d} \left(\mathbf{U} - rac{\mathbf{J}}{\mathbf{2}}
ight) \left(\mathbf{N_d^0} - rac{\mathbf{1}}{\mathbf{2}}
ight)$$

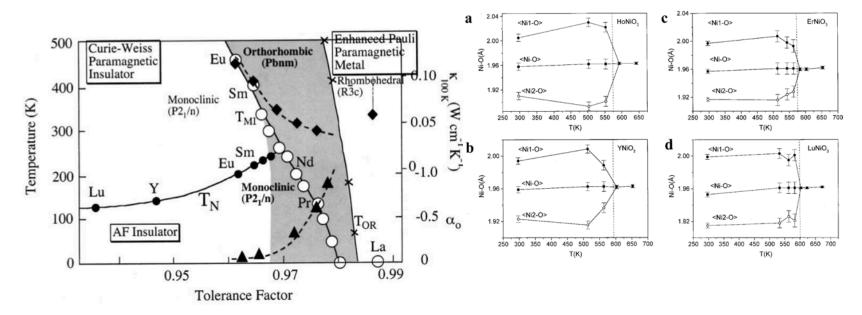
Haule double counting is level shift, not interaction energy=>no factor of 1/2 => problem for energetics

Alternative (ad hoc)

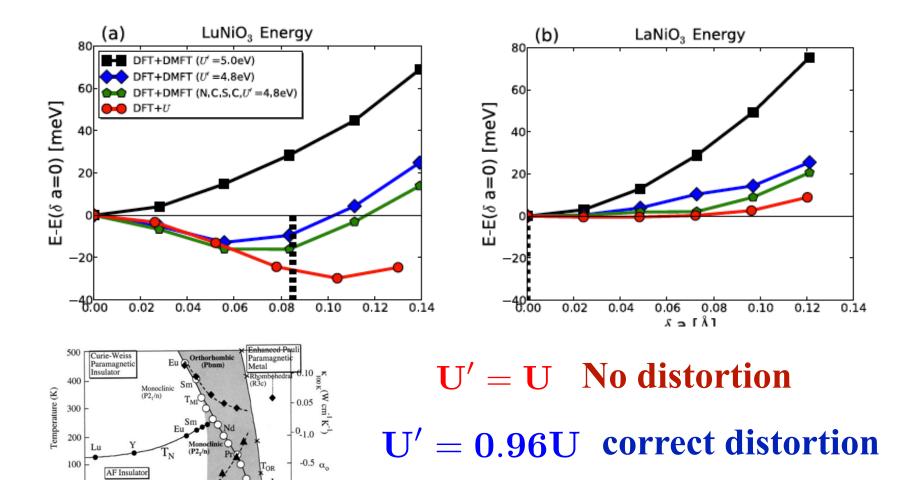

Park, AJM, Marianetti arXiv:1310.5772

$$E_{DC} = \frac{1}{2} U' N_d \left(N_d - 1 \right) - \frac{1}{2} J \sum_{\sigma} N_{\sigma} \left(N_{\sigma} - 1 \right)$$

$$U' < U$$
 increases p-d splitting

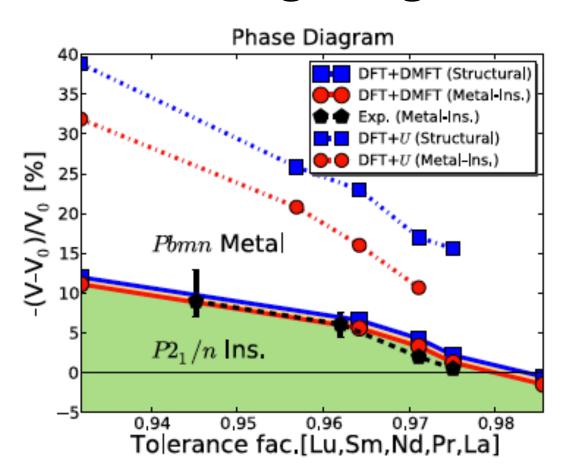


Total energy within DFt+DMFT: Application to rare earth nickelates


*Hyowon Park

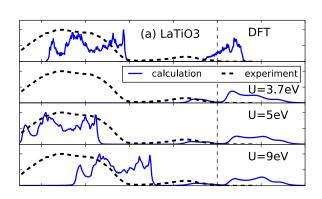
PRL 109, 156402 (2012) arXiv:1310.5772

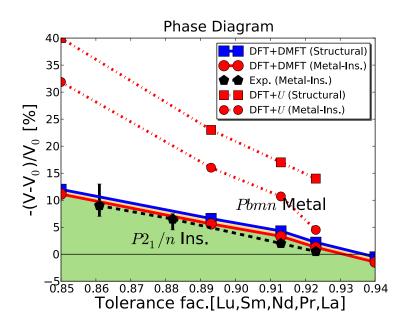
Energy as function of distortion



0.95

Tolerance Factor


Entire pressure-rare earth phase diagram given correctly



$$U' = 0.96U = 4.8eV$$

Conclusion

Key issue for DFT+DMFT: proper p-d energy splitting.

Is this a problem of double counting or band theory

