Assignment

Consider a fully connected network of 4 nodes shown on the right, the nodes being labelled A, B, C, D and the links designated $A B, B C, C D$, etc. (i.e., indicating the pair of nodes that each link connects).
(a) If each link can be either + ve or -ve, what is the total number of possible configurations that can be obtained (where the configurations can be represented as $\{+,+,+,+,+,+\},\{+,+,+,+,+,-\},\{+,+,+,+,-,+\},\{+,+,+,-,+,+\}$, etc.)?
[Note that each of the links are distinct, i.e., AB being negative in a network where all other links are positive is a distinct configuration compared to one
 in which AD (for instance) is the only link which is negative.]
(b) How many distinct configurations will have 3 links positive and 3 links negative?
(c) Find how many of the total number of configurations with distinct assignment of link signs that you calculated in (a) are balanced. Note that a network is balanced if every closed loop or cycle is balanced, i.e., product of the signs of the links in the loop is + ve. However, instead of having to look at all 4 -cycles as well as 3 -cycles (triads), you can use the Cartwright-Harary theorem, according to which a fully connected network is balanced if each of the triads ($\mathrm{ABC}, \mathrm{ABD}$, etc.) are each individually balanced.
[Hint: find how many distinct triads are there in the network. If for a given configuration, even one of these triads is not balanced (i.e., has an odd number of negative links) the configuration will be not balanced.]

Answers

(a) The total number of possible configurations is $2^{6}=64$.
(b) Number of distinct configurations with 3 links positive and 3 links negative is ${ }^{6} \mathrm{C}_{3}=20$.
(c) Total number of configurations out of 64 which are balanced is 8 .

Note: There are 4 triads to be considered $\mathrm{ABC}, \mathrm{ABD}, \mathrm{BCD}, \mathrm{ACD}$. You must ensure that none of these 4 triads have an odd number of negative signs, in order to be able to call the configuration balanced. The only ones which satisfy this criterion are:
I. If all links are positive, that single configuration is balanced.
II. If 3 links are positive, 3 links are negative, then out of 20 possible configurations, 4 are balanced: 1. Links $\mathrm{AB}, \mathrm{AC}, \mathrm{AD}$ are negative, rest positive; 2 . Links $\mathrm{AB}, \mathrm{BC}, \mathrm{BD}$ are negative, rest positive; 3 . Links $\mathrm{AC}, \mathrm{BC}, \mathrm{CD}$ are negative, rest positive; 4 . Links $\mathrm{AD}, \mathrm{BD}, \mathrm{CD}$ are negative, rest positive.
III. If 2 links are positive, 4 links are negative, then, out of the 15 possible configurations, 3 are balanced: 1 . Config with links AB and CD positive, the rest negative; 2 . Config with AC and BD positive, the rest negative, 3 . Config. with $A D$ and $B C$ positive, the rest negative

