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Abstract

Many traits of interest are highly heritable and genetically complex,meaning
that much of the variation they exhibit arises from differences at numerous
loci in the genome. Complex traits and their evolution have been studied for
more than a century, but only in the last decade have genome-wide associa-
tion studies (GWASs) in humans begun to reveal their genetic basis. Here,
we bring these threads of research together to ask howfindings fromGWASs
can further our understanding of the processes that give rise to heritable vari-
ation in complex traits and of the genetic basis of complex trait evolution in
response to changing selection pressures (i.e., of polygenic adaptation).Con-
versely, we ask how evolutionary thinking helps us to interpret findings from
GWASs and informs related efforts of practical importance.
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1. INTRODUCTION

Understanding the processes that generate differences in complex traits among individuals, popu-
lations, and species has been a central challenge to evolutionary biology since Darwin and Galton.
Many, if not most, phenotypes of interest, including morphological, life history, and behavioral
traits, as well as the risks of diseases, are genetically complex, in that heritable variation in these
traits is due mostly to small contributions from many genetic loci (17, 102, 106, 155). Moreover,
the heritable contribution typically accounts for a substantial proportion of the variation among
individuals (119, 130, 178). Making sense of phenotypic differences among individuals therefore
requires understanding the causes of genetic variation in complex traits. In turn, when selection
pressures change, the response of the complex trait—the adaptive change—involves shifts in allele
frequencies at many loci. Characterizing the polygenic response is therefore key to understanding
the evolution of phenotypic differences among populations and species.

These topics have been studied for more than a century, but recent developments in the study
of complex traits, notably in humans, make them especially timely. Until recently, empirical work
on complex traits was limited largely to phenotypic observations, which allowed the estimation of,
e.g., the genetic and environmental contributions to phenotypic variance, or the design of efficient
breeding programs in agriculture (43, 106). Similarly, empirical studies motivated by evolutionary
questions focused on phenotypic measurements of, e.g., the mutational input to phenotypic vari-
ance (58, 64, 72, 106, 115), the relationship between traits and components of fitness (94, 182), and
the phenotypic response to selection (e.g., 11, 66, 185). Only over the past decade has it become
feasible to systematically dissect the genetic basis of variation in complex traits (140), moving ob-
servations from a phenotypic (macroscopic) level to an allelic (microscopic) one. Notably, since
2007, genome-wide association studies (GWASs) in humans have identified many thousands of
variants that are reproducibly associated with hundreds of complex traits, including susceptibility
to a wide variety of diseases (177, 188). These studies have begun to reveal the genetic architecture
of complex traits, particularly the numbers and genomic distributions of the variants that affect
complex traits, and the distributions of their frequencies and effect sizes.

These new data hold the promise of substantial progress in our understanding of the evo-
lution of complex traits. The genetic architecture of a trait is informative about the population
genetic processes that gave rise to it; conversely, a better understanding of these processes can
provide insight into practical questions, such as why GWASs have accounted for only a modest
fraction of heritable variation [the missing-heritability problem (109)], why GWASs differ in suc-
cess across traits, the design of future mapping studies, and prospects for predicting phenotypes
from genomes. In addition, combining information about the effects of individual loci on traits
with other kinds of data—notably, changes in allele frequency across space and time—should help
us learn about polygenic adaptation.

With these objectives in mind, we review what is known about the processes that underlie
variation in complex traits among individuals and populations.We have not aimed to be exhaustive,
instead focusing on what we think is most relevant for realizing the opportunities for progress.

2. THE PREMISE

We begin by summarizing lines of evidence indicating that (a) variation in many traits is influ-
enced by a large number of loci, (b) allelic effects on a trait are well approximated by a simple
additive model, (c) alleles that affect one trait typically affect many others, and (d) complex traits
are typically under stabilizing selection toward some optimum. Some of these assertions are better
supported than others, but together they provide a plausible premise for beginning to think about
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the evolution of complex traits.We rely on this premise later, when we consider the processes that
shape heritable variation (Section 3) and polygenic adaptation (Section 4). For a summary of the
notation and a glossary of key terms used throughout the article, see the supplemental material.

2.1. Many Traits Are Highly Polygenic

The genetic basis of phenotypic variation spans a broad spectrum, from the Mendelian extreme,
in which alleles at a single gene explain most heritable variance in a trait, to the highly polygenic
extreme, in which thousands of alleles, distributed across the genome, contribute to heritable vari-
ance. Strong evidence suggests that many traits fall in the latter extreme.

This view is supported by more than a century of systematic artificial selection on a vast array
of traits in plants and animals in agriculture and evolution experiments. The change in trait value
in response to artificial selection is typically amazingly rapid, fairly steady, and without a limit in
sight (11, 66, 185). Examples from agriculture abound, including a more than fourfold increase
in the weight of eight-week-old chickens, with a near doubling of the proportion of breast meat,
between 1957 and 2001 (59); a more than fourfold increase in grain oil content (from ∼5% to
>20%) in 100 generations of selection on one strain of corn; and a threefold increase in grain
protein content (from ∼10% to ∼30%) in another (117). There are also numerous examples from
evolution experiments, notably inDrosophila, including an increase in flying speed in a wind tunnel
from 2 cm s−1 to 170 cm s−1 (184), a more than tripling of the abdominal bristle number (200),
and an ∼20% increase or decrease in body size (176), all within ∼100 generations. In these ex-
amples and many others, changes due to selection far exceed the range of variation in the original
populations, within ∼40–100 generations.

It is hard to account for these rapid, sustained responses on the assumption that they arise from
a few alleles of large effect. If such alleles had been present initially, they would have ascended
to high frequencies shortly after the onset of directional selection. As they reached intermediate
frequencies, the phenotypic variance and thus the rate of phenotypic change would have increased
substantially (11, 204) (see Section 4.1). As alleles neared fixation, phenotypic change would have
slowed down and eventually ground to a halt. Neither phenomenon is typically seen. Moreover,
newly arising mutations cannot salvage this explanation: If only a few loci affect the trait, then
the mutational target is small, and given that artificial selection is typically conducted on small
populations (e.g., with effective sizes on the order of 100), the input of new mutations would be
too low to account for the continuous and rapid changes that are observed.

By contrast, these observations do accord with genetic variation being spread thinly over many
loci of small effect (68, 185). In fact, they are well approximated by the idealized infinitesimal
model (9, 20, 46), in which genetic variation arises from infinitely many segregating alleles with
infinitesimal effects. In this case, small changes to allele frequencies at numerous loci are expected
to produce a rapid, steady, and sustained change in mean, with negligible effects on phenotypic
variance. Although the small effective population sizes may entail a rapid loss of genetic variance,
the large mutational input can sustain the response (64).This highly polygenic view is further sup-
ported by recent evolve-and-resequence experiments in Drosophila, in which significant changes
in allele frequency are widely distributed across the genome (e.g., 6, 23, 170, 176). While ram-
pant hitchhiking—in which alleles in linkage disequilibrium (LD) with causal loci are dragged to
higher frequency—makes it difficult to estimate how many of the alleles are causal, their number
is plausibly large (25, 81).

The high polygenicity and genome-wide distribution of variation of many traits are fur-
ther supported by estimates of the heritable variation tagged by single-nucleotide polymor-
phisms (SNPs) in human GWASs (SNP heritability). For many traits, estimates of the heritability
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contributed by chromosomes are proportional to their length (155), suggesting that causal vari-
ants are numerous and are distributed fairly uniformly across the genome. Nonetheless, traits
vary in their polygenicity. For instance, Shi et al. (155) found that, for the most polygenic among
30 traits, schizophrenia and height, the top 1% of loci with the greatest contribution to (SNP)
heritability collectively contribute only 4.2% and 6.5% of the total estimated (SNP) heritability,
respectively; on the less polygenic end, for rheumatoid arthritis and lipid traits, the top 1% of
loci account for 14–30% of heritability. Similarly, Loh et al. (102) estimated that more than 71%
of 1-Mb windows in the genome contribute to heritability for schizophrenia, while similar lower
bounds for hypertension and dyslipidemia were ∼60% and ∼30%, respectively. In some cases,
the less polygenic among these traits have specific regions with large contributions, e.g., the HLA
locus for rheumatoid arthritis, ulcerative colitis, and inflammatory bowel disease, or FTO for body
mass index (BMI) and lipid traits, on an otherwise highly polygenic, fairly uniformly distributed
background (155). While direct estimates of the number of causal variants contributing to heri-
tability are still rare, Boyle et al. (17) estimated that ∼3.8% of the 1000 Genomes Project SNPs
affect height, amounting to more than 100,000 common alleles [i.e., alleles with a minor allele
frequency (MAF) of >1%].

Pritchard and colleagues (17, 100) have recently proposed a thought-provoking interpretation
of these findings (also see 27). In their omnigenic model, the value of a given trait is determined
by the expression level of a few core genes in relevant tissues. The expression levels of core genes,
however, can be weakly affected by the expression level of any other gene in these same tissues, and
thus by any variants that affect the expression of these other genes [i.e., expression quantitative
trait loci (eQTLs)]. As an example, weak effects could arise through shared cellular machinery
or by regulatory crosstalk within the RNA and protein network. Even though these trans effects
may be minute, their sheer number (together with the fact that, due to selection, only weak allelic
effects are expected to segregate at appreciable frequencies) leads them to account, in aggregate,
for most of the heritable variance in the trait. This model is supported by several lines of evidence;
for example, active chromatin in relevant tissues, rather than specific functional annotations, seems
to be the best predictor of GWAS signals. Notably, it provides an explanation for why so many
loci, distributed across the genome, contribute to the heritability of a given trait.

2.2. A Largely Additive Genotype-to-Phenotype Relationship

With numerous loci affecting a trait, how should we think about the relationship between an
individual’s genotypes at these loci and the person’s trait value? In principle, quantitative genetics
can describe any relationship between genotype, environment, and phenotype. The variance of a
trait due to genetics (VG) can be partitioned into additive (VA), dominance (VD), and a combined
epistatic component (VI), which itself can be partitioned into two-locus (VAA, VAD, and VDD) and
multilocus components (VAAA, etc.); higher-order terms in this expansion are defined through the
residuals of lower-order ones. Fisher introduced this expansion in his seminal 1918 paper (46),
showing how in principle the components can be estimated from the phenotypic correlations
among relatives (see 106).

Analyses based on the correlations among relatives and other lines of evidence (e.g., based on
the response to artificial selection) in a variety of species suggest that the bulk of genetic variance
in quantitative, complex traits is additive (see review and caveats in 67). This statement requires
some clarification: It is formulated in terms of an analysis of variance, which is a descriptive sta-
tistical framework rather than a generative model. The processes that generate an individual’s
phenotype clearly involve highly complex and nonlinear interactions among many genes and ex-
ternal and internal environments.Nonetheless, the predominance of additive variance implies that
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(on average) the deviation of an individual’s trait value from the population mean, z, can be well
approximated by a simple additive model:

z = g+ e =
L∑
l=1

(al + a′
l ) + e, 1.

where g is the individual’s breeding value, which is the additive genetic contribution from the L
segregating sites affecting the trait; al and a′

l are the effects of the parents’ alleles at site l, scaled
such that the population mean contribution at each site equals 0; and e ∼ N (0, Ve ) is the additive
environmental contribution. Importantly, al and a′

l reflect marginal allelic effects, averaged over
the distribution of genetic backgrounds and environments in the population being considered.
Assuming that segregating sites are biallelic, a given site with difference a in the effect of alleles
and MAF x contributes 2a2x(1 − x) to genetic variance. The additive genetic variance, VA, is a
sum of these contributions; the total phenotypic variance is the sum of the additive genetic and
environmental contributions,VP = VA +VE; and the narrow-sense heritability, h2 = VA/VP, is the
proportion of phenotypic variance due to additive genetic effects.

From the perspective of phenotypic prediction, we would like to know how well the breeding
value can be approximated by polygenic scores, constructed by adding up estimated allelic effects at
subsets of loci associated with a trait.The narrow-sense heritability for traits is typically substantial
(∼0.1–0.9) (178), suggesting that polygenic scores should, in principle, account for a substantial
proportion of the phenotypic variance.A current polygenic score for height, for example, for which
h2 ≈ 0.8, relies on effect-size estimates for 20,000 SNPs and explains ∼40% of the phenotypic
variance in the self-described “white British” (96). In the near future, we should learn how well
individual phenotypes can be approximated for a variety of traits across human populations.

The primacy of additive variance can be understood in several ways. Genetic variance can be
modeled in terms of contributions arising from different combinations of alleles—from individ-
ual alleles, from the interactions of two alleles at a locus, from the interactions of two or more
alleles at different loci, etc. Consequently, the additive variance can be expressed as a sum over
terms proportional to second-order products of allele frequencies (xix j), whereas kth-order vari-
ance components are sums of terms proportional to 2kth-order products. Maki-Tanila & Hill
(107) showed that, assuming minor alleles affecting quantitative traits tend to be rare (as are most
neutral alleles, let alone selected ones), the additive component can contribute the bulk of genetic
variance even when dominance and epistatic interactions are included. This argument does not
assume that interactions have a negligible effect; rather, it states that even when their effect is
substantial, most of it can be attributed to the marginal effects of individual alleles.

A distinct argument for the primacy of additive variance is that most segregating genetic vari-
ation arises from alleles with small effects on the trait, which are likely to translate into additive
effects. It has long been known that mutations of small effect at a given locus tend to act additively,
whereas those of large effect tend to be recessive (3, 16, 28, 56, 127, 191).Wright (191) explained
this pattern in terms of the flux through a metabolic pathway subject to Michaelis–Menten-like
enzyme kinetics.He argued that the flux would be only moderately reduced by halving the enzyme
concentration, as occurs in loss-of-function heterozygotes, but is eliminated if the concentration
drops to 0, as happens in loss-of-function homozygotes. In turn, the effect of mutations that only
slightly reduce enzyme concentration is well approximated by the linear term of a Taylor expan-
sion of flux with respect to concentration, around the normal (wild-type) expression level, such
that the effect in homozygotes is approximately double that in heterozygotes.

This argument may extend to dominance and epistasis more generally. We can envision a
multivariate Taylor expansion of a trait value with respect to some measure of gene activity for
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each gene. The effect of sufficiently small perturbations in activity may be well approximated by
the linear terms in the expansion, whereas larger perturbations amplify the importance of the
higher-order, nonlinear effects (or disrupt smoothness altogether). This reasoning may help ex-
plain why additivity is insensitive to the particular choice of trait or to (smooth) transformations
of the units in which it is measured. The argument remains incomplete, however, without an
explanation of why small-effect mutations dominate genetic variation in complex traits. Possibil-
ities include that most spontaneous mutations have small effects or that selection substantially
reduces the frequencies and thus the contributions to variance of mutations with large, nonlinear
effects.

Albeit speculative, these considerations are consistent with GWAS findings in humans,
whereas evidence sometimes taken as providing arguments against additivity may not in fact
apply to natural populations. For example, many studies have reported dominance and epistatic
interactions in crosses between inbred lines and between individuals from diverged populations
and species (e.g., 73). However, such crosses distort the allelic frequency spectrum (see 107) and
bring together combinations of alleles that selection might prevent from cosegregating in the
same population (akin to Dobzhansky–Muller incompatibilities in speciation) (48, 150, 156).
Dominance and epistasis are also often observed for mutations of large effects, e.g., in knockout
experiments (3, 153). The variants identified in human GWASs rarely if ever have such large
effects, however; instead, their effect sizes are typically much smaller than the total phenotypic
standard deviation (e.g., 101, 126, 152, 189). Extremely rare variants with large effects will tend
to be missed by GWASs because of the reliance on genotyped common variants, but they are
rarely found by other methods either (e.g., linkage studies and burden tests); even in traits for
which they are more common (such as autism), their total contribution to phenotypic variance
is small (74). Moreover, dominance effects in GWASs appear to be minor (e.g., 205). Similarly,
considerable efforts to detect epistatic interactions in human GWASs have by and large come
up empty-handed (e.g., 187, 203), possibly because they remain severely underpowered (187; but
see 202). In summary, although the evidence is not airtight, it supports the notion that genetic
variation in complex traits can be largely explained by additive effects.

From an evolutionary perspective, if we assume that higher-order genetic and environmental
interactions are fairly constant, then the marginal additive effect of an allele should reflect its
average effect on the trait during its sojourn (through time) in the population. Thus, in principle,
the simple additive model (Equation 1) can be used to relate selection on traits to selection on
individual alleles.

2.2.1. A transformed-additivemodel for complex diseases. While complex diseases are often
described and studied as discrete traits, they are assumed to arise from an underlying continuous
liability described by an additive model (but see 116). Falconer & Mackay (43) assumed that the
disease state arises when liability exceeds a threshold, following Wright’s (193) treatment of dis-
crete complex traits. Risch (139) modeled the probability of developing a disease as a product
of variants’ odds ratios, which is equivalent to assuming that this probability is given by the loga-
rithm of an underlying additive liability; this model is the premise formost diseasemapping studies
(e.g., linkage studies and case–control GWASs). Quite generally, we can think of the probability
of developing a disease as a function of a set of continuous traits; assuming that this function is
sufficiently smooth and allelic effect sizes are sufficiently small, the probability can be well ap-
proximated by a transformation of an underlying additive liability (but see 206).When additional
constraints on model parameters are considered (e.g., that common diseases typically have preva-
lences of ∼0.1–2% and risk ratios for first-degree relatives of ∼4–10), the differences among most
models become negligible, suggesting that they are practically interchangeable (161, 190).
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To the best of our knowledge, there is not much evidence to indicate whether disease risk is
well approximated by these models, in part because it is difficult to measure correlations among
relatives in disease risk.Applications of polygenic scores to predict heritable disease riskmay clarify
this issue in years to come. For now, assuming transformed-additive models of complex-disease
risk seems like a sensible starting point for thinking about the evolution of complex diseases.

2.3. Pleiotropy Is Pervasive

The high polygenicity of many traits almost inevitably implies extensive pleiotropy: If variation
affecting a given trait spans a considerable portion of the functional genetic variation, then it is
bound to overlap with variation affecting other traits (in addition to which causal variants in LD
may also generate effective pleiotropy). Indeed, many of the variants identified in human GWASs
are associated with more than one trait, and the extent of pleiotropy uncovered appears to be
increasing rapidly with improvements in power and methodology (e.g., 4, 18, 34, 95, 128, 160,
164). The omnigenic model offers some intuition here, as an eQTL for one gene could affect
expression of core genes for multiple traits in the same and in different tissues (17, 100).

The effects of variants on different traits can be correlated, e.g., due to shared regulatory path-
ways (100). Examples of genetic correlations among traits abound, both in classical quantitative
genetics (145) and in GWASs. For example, Pickrell et al. (128) conducted a meta-analysis of
GWASs to show that “variants that delay the age of menarche in women tend to delay the age of
voice drop in men, decrease body mass index, increase adult height, and decrease risk of male pat-
tern baldness” (p. 715). The same variants can also affect multiple traits without having correlated
effects on these traits. We would expect this type of uncorrelated pleiotropy [sometimes referred
to as type I (180)] to be abundant as well (100), but it is harder to identify, requiring knowledge
of the genetic basis of variation. As we review below, these two kinds of pleiotropy have different
evolutionary consequences.

Of course, we would be remiss if our consideration of pleiotropy did not note that traits are to
some degree an arbitrary construction. In principle, a trait could be any feature of an organism that
we can measure. With a potentially infinite number of measurable traits and with finite genetic
variation, the genetic basis of variation in subsets of traits would inevitably overlap.However,more
often than not the choice of traits is motivated by biological intuition, and many examples point to
extensive pleiotropy among “biologically meaningful” traits. Considering selection on traits may
allow us to better articulate what we mean by biologically meaningful.

2.4. Selection on Complex Traits

We can think of selected traits as fitness modules. In this view, fitness is a function of a set of
selected traits, and altering the value of one while leaving others constant (within a functioning
range) changes fitness.These sets of traits are organized in a nested hierarchy, ranging from fitness
itself at the top, through viability and fecundity, down to the expression of every gene at every time
and tissue. The value of a trait in this hierarchy derives from multiple traits below it; conversely,
selection on a trait derives from its effects on the traits above it. Below,we consider selection on ge-
netic variation affecting a given complex trait, which may or may not be a fitness module. Some of
the models we describe posit direct effects of variation on fitness, while in others, selection derives
from the effects of variation on intermediate fitness modules, which are themselves complex traits.

Selection on traits depends on an organism’s ecology in the broad sense, bearing in mind that
an organism’s makeup influences the environmental attributes that affect it (98). In this review,
we focus on relatively short evolutionary timescales, assuming that the traits that make up the
fitness hierarchy remain constant. In a constant environment, we can envision a fitness landscape,
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in which fitness is a function of the values of a set of selected traits. At steady state, we expect the
population to be near some optimum in this landscape. We also expect the range of possible trait
values around the optimum to be bounded; for example, fecundity cannot be infinite and may be
constrained by a trade-off with viability. If fitness is maximized when the trait value is at the edge
of its range, then directional selection pushes the trait against the boundary. If fitness is maximized
when the trait takes an intermediate value, stabilizing selection pushes it toward its optimum.

There must be many quantitative traits, simple and complex, whose values need to be close to
some intermediate optimum for the organism to function well. The morphology of a fly’s wings
is especially well studied: They have been precisely fine-tuned by selection, such that their many
attributes—shape and weight (183), cellular density, and positioning of muscles and veins (1)—
have specific combinations that optimize flight. Attaining this form entails many additional re-
quirements, notably on gene expression and cellular patterning during development (1). Although
any one of these attributes is affected by numerous mutations (115, 183, 186), the morphologies
show remarkably little variation within populations and among closely related species (71, 183).
More generally, the fossil record shows that morphological traits tend to remain fairly constant
over long timescales (53), even though themorphology is highly unlikely to be neutral and changes
rapidly when under artificial selection (5, 11, 68). This constancy of form and function indicates
that stabilizing selection keeps many traits close to an optimum—and, indeed, this is essential for
organisms to survive.

Other selected traits, especially at the very top and bottom of the fitness hierarchy, are clearly
subject to directional selection. For instance, selection suppresses expression of genes in tissues
where they are not needed, while at the highest level, fitness and its components are by definition
under directional selection. It is less clear whether directional selection is common for interme-
diate, complex traits. As one example, the rate of somatic mutation is presumably selected to be
as low as possible, as the incidences of cancers and other diseases increase as this rate increases,
although it is likely bound from below by the costs of repair (162). More generally, while some
complex diseases may reflect deviations of an underlying trait from an intermediate optimum (e.g.,
blood pressure or body mass index), others may arise in a setting in which directional selection
simply acts to minimize liability. The literature on the evolution of complex traits assumes that
there are many more complex selected traits under stabilizing selection than under directional
selection, but, as we review next, this premise is hard to assess.

2.4.1. Phenotypic measurements of selection. In principle, the strength of directional and
stabilizing (or disruptive) selection acting on quantitative traits can be estimated from the rela-
tionship between the trait values and fitness (94, 125). Directional selection on a trait in a sin-
gle generation produces a change in its mean, known as the selection differential. For a single
trait, the selection differential is the covariance of relative fitness, w, and the trait value, z—i.e.,
S = Cov(w, z). In natural populations, it is typically estimated by contrasting the means before
and after some event that causes mortality, or by the covariance between fecundity and trait value,
and thus reflects only a component of fitness. Because only heritable differences are passed down
to the next generation, the selection response (i.e., the difference in mean across successive gener-
ations) is related to the selection differential by the breeder’s equation (65, 104)—i.e.,�z̄ = h2 · S,
where h2 = VA/VP. The breeder’s equation can be rewritten as �z̄ = VA · β, where the selection
gradient, β = S/VP = Cov(w, z)/VP, is the regression coefficient of relative fitness on the trait
value and measures the strength of directional selection on the trait. A similar logic applies to
stabilizing (or disruptive) selection. With a single trait, the stabilizing selection differential is the
quadratic regression coefficient of relative fitness on the trait, γ = Cov(w, (z− z̄)2)/VP

2. Con-
sider, for example, a trait that is normally distributed around an optimum with variance VP and
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subject to Gaussian stabilizing selection, i.e., with fitness decreasing with distance from its opti-
mum, δz, as exp(−δz2/2VS). If we plausibly assume that VS � VP (see, e.g., 157), the stabilizing
selection differential is γ = −(VS +VP)−1 ∼= −VS

−1, which is the strength of selection around the
optimum. Stabilizing selection reduces (and disruptive selection increases) phenotypic variance,
where the selection response in successive generations is �VP = h4 · Cov(w, (z− z̄)2) = VA

2 · γ .
When traits are correlated, which is often the case, estimates of the strength of selection us-

ing a single trait absorb indirect effects of selection on others. In principle, this problem can be
overcome by treating multiple traits jointly in the multivariate framework introduced by Pearson
(125) and extended by Lande & Arnold (94). Assuming multiple, normally distributed traits, the
breeder’s equation takes a vector form in the multidimensional trait space, �z̄ = h2 · S = VA · β,
where h2 = VA ·VP

−1 is themultivariate heritability matrix, andVA and VP are variance–covariance
matrices. Similarly, the quadratic selection gradient and response take matrix forms. Importantly,
the components of the selection gradients, e.g., β = VP

−1 · Cov(w,�z), are partial regression coef-
ficients that measure the strength of selection on each trait, excluding indirect effects from other
traits that are included in the analysis. Viewing the population on a multidimensional phenotype
fitness landscape, the linear and quadratic selection gradients correspond to the gradient and cur-
vature at the population’s mean phenotype, respectively.

One of the earliest and most prominent applications of the multivariate method was to study
selection onGalapagos finches,Geospiza fortis andGeospiza scandens, on the island ofDaphneMajor
(reviewed in 54). During a drought in 1977, selection strongly favored birds who could crack large
seeds. In subsequent years, changes in seed abundance reversed the direction of selection, and in
both cases, beak morphology changed accordingly. The multivariate analysis showed that beak
depth was the primary target of selection, and the multivariate breeder’s equation predicted the
changes in beak morphology (132). In this example, the method may have been successful because
seed handling was a strong component of fitness and was influenced by only a few measurable
morphological traits.

Other long-term studies of natural selection in the wild (84, chap. 30 of 182), are more difficult
to interpret (32). In many studies, traits are estimated to be under appreciable directional selection
and to have substantial additive genetic variance, yet trait means typically change little over long
time spans (see, e.g., 53, 85). In addition, estimates of quadratic selection suggest that disruptive
and stabilizing selection are equally common, which conflicts with the long-term stability of the
traits’ means and variances. In part, these discrepancies may reflect a focus on systems in which
selection varies strongly in space (e.g., along geographic clines) or time (e.g., in response to se-
vere disturbances), which might be unrepresentative of longer-term selection affecting heritable
genetic variation.

These discrepancies may also reflect inherent difficulties in measuring selection, however.One
problem is that, contrary to the premise of the breeder’s equation, covariance between fitness and
a trait might not reflect selection on the trait; rather, it could reflect a nonheritable environmental
effect on both. For example, both fitness and the trait may be strongly affected by an individ-
ual’s general condition (91), and variation in condition may be largely due to the environment.
Another problem is that the multivariate approach relies on estimating variance–covariance ma-
trices, which requires sample sizes that scale with the number of traits squared. Thus, in practice,
most studies can afford to include only a few traits, and correlated traits that are excluded likely
introduce substantial biases. This suggests that the prevalence of disruptive and stabilizing se-
lection in meta-analyses largely reflects a combination of low statistical power and publication
bias. Notably, only 16% of the reported estimates of quadratic selection terms are significant, and
larger studies generally report weaker selection (84). In humans, larger sample sizes have recently
become available; Sanjak et al. (147) recently applied the multivariate approach, using lifetime
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reproductive success as a proxy for fitness in a sample size of more than 250,000 from the UK
Biobank (168), orders of magnitude larger than previous studies. Nonetheless, they had to limit
the number of traits included and apply an approximate multivariate regression. Estimates of se-
lection gradients, accounting for multivariate correlations, were substantially reduced compared
with previous findings; moreover, they found a large excess of stabilizing relative to disruptive
selection.

Such large data sets in humans, with extensive phenotypic, environmental, and genomic in-
formation, may offer a way forward. In particular, genomic information makes it possible to es-
timate covariances between fitness components and breeding values (rather than phenotypic val-
ues) of a trait. The selection response is proportional to such covariances: The change in mean
is �z̄ = Cov(w, (g− ḡ)) and in variance is �VP = Cov(w, (g− ḡ)2), where g is the trait’s breeding
value, and ḡ is its mean (131, 143). Importantly, because these equations rely on heritable variation,
they should not be affected by environmental effects or predicated on selection acting directly on
the trait being considered. This approach has been applied to identify selected changes in individ-
ual traits, using both pedigrees in species in the wild (e.g., 32) and genomic data in humans (e.g.,
12, 88, 118, 147). It can also be applied to multiple traits and, accounting for their heritability
matrix, can provide estimates of the strength of selection on individual traits. In practice, even
with large data sets, statistical power is limiting. However, it may be possible to apply dimension-
ality reduction (e.g., principal component analysis) to reduce the number of traits included, while
limiting errors due to those that are not.

2.4.2. Limits on the number of selected traits. While it is plausible that many complex traits
are under stabilizing selection, their number and the strength of selection on them remain un-
known. Interestingly, theory suggests that both are strongly constrained (7).Consider, for example,
n uncorrelated traits that are normally distributed around the optimal n-dimensional phenotype,
each with variance VP, where each trait is subject to Gaussian stabilizing selection of strength
VS

−1. If we plausibly assume that variation in individual traits has a minor effect on mean fitness,
i.e.,VS � VP (see, e.g., 157), then variation in all traits will reduce fitness by ∼ exp(−n(VP/2VS))
relative to the optimal phenotype. If organisms below a given absolute fitness cannot function,
this genetic load would impose strong constraints on the number of independently selected traits.
However, this constraint would be weaker if most selection is soft, e.g., based on competition be-
tween individuals rather than on differences in absolute fitness, or if there are negative epistatic
interactions in effects on fitness (87).

A more robust (though weaker) constraint is set by the actual variance in relative fitness
among individuals. The standard deviation in relative fitness increases with the number of traits
as ∼ exp(n(VP/2VS)2). While the standard deviation in fitness is difficult to measure (but see 30),
it is unlikely to exceed ∼1/4 and is bound from above by offspring numbers (7). Assuming the
traditional estimate of VP/VS ∼ 1/20 (174) would suggest an unreasonably low number of ∼400
traits (althoughVP/VS is likely smaller typically, and thus the number of traits could be somewhat
larger). Such constraints on the strength and extent of stabilizing selection definitely merit further
investigation.

3. THE PROCESSES THAT SHAPE GENETIC VARIATION
IN COMPLEX TRAITS

With these preliminary considerations inmind,we turn to one of our central questions: How is the
ubiquitous heritable variation in complex traits shaped and maintained? This question has been
studied for more than a century, largely through mathematical models (50, 182). Until recently,
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the focus was on explaining how substantial heritable variation in numerous traits is maintained,
guided by phenotypic observations. More recently, emphasis has shifted toward explaining ob-
servations about the genetic architectures of complex traits emerging from human GWASs. We
briefly review the earlier work, then move to what models tell us about genetic architecture and
how they can be related to GWAS discoveries.

3.1. Maintenance of Variation

Quantitative genetic variation could be maintained in many ways, reflecting the many processes
influencing genetic diversity. These processes can be broadly divided into mutation–selection–
drift balance and balancing selection (31, 52). Balancing selection takes many forms, including
heterozygote advantage, frequency-dependent advantage of rare alleles, and temporally and spa-
tially varying selection pressures. Nevertheless, there is little evidence indicating that it plays a
major role in maintaining genetic variation in general and variation in complex traits in particular
(but see 30, 81), although this might be due partly to the difficulties in identifying its subtler forms
[especially fluctuating selection pressures (51)].

One argument against the ubiquity of balancing selection is that if it maintained alleles at sub-
stantial frequencies and these alleles had substantial effects on complex traits, they would have
been among the first to be identified in human GWASs (see Section 3.3).We are unaware of such
examples, with one notable exception. The special role of the major histocompatibility complex
(MHC, or HLA in humans) loci in adaptive immunity (171) likely renders them subject to per-
sistent balancing selection (167). Specifically, arms races between the host immune system and
pathogens likely favor rare alleles at these loci (167), helping to explain why the MHC is the most
genetically variable region in the genomes of humans and other species (40, 61). Additionally,
since MHC alleles affect general health throughout life, both through the immunity they con-
fer and their pleiotropic effects (e.g., on the risk of autoimmune disorders), they likely affect the
values of many complex traits, plausibly explaining why the MHC region is highly enriched for
GWAS hits across many traits (97, 172).

One might also view migration–selection balance as a form of balancing selection, one that
may help explain why major loci (i.e., loci that contribute substantially to genetic variance) are
found for specific traits. Theory suggests that when different populations are subject to opposing
selection pressures yet exchange migrants, major alleles may evolve that are beneficial in a given
environment (e.g., via loss-of-function mutations, inversions, or the agglomeration of multiple
alleles into a compound supergene), thereby reducing the deleterious migration load (86, 198,
199). Such processes may explain why GWASs with relatively small samples of Arabidopsis thaliana
collected over a diverse ecological range have identifiedmajor loci for traits such as flowering time,
which show high genetic differentiation along seasonal clines (99). They may also explain findings
of major loci, with fairly old alleles, for skin pigmentation in humans, also discovered in a GWAS
with a small sample size collected over a wide range; in this case, selection is thought to vary with
UV radiation levels across the world and in particular across Africa (36). Similar processes may
explain why marine stickleback populations carry extremely old, rare alleles, which were central
to repeated adaptive radiations into freshwater environments (77); such loci might have facilitated
other adaptive radiations as well (199). However, theory suggests that the conditions in which
migration–selection balance produces major loci are quite restrictive; notably, mutations affecting
the selected trait should be clustered in low-recombination regions (86, 197–199). In humans, the
scarcity of major loci found in GWASs suggests that such mechanisms affected the architecture of
few traits. More generally, while various kinds of balancing selection doubtless contribute to the
maintenance of genetic variation, they depend on the idiosyncrasies of a trait and so seem unlikely
to explain ubiquitous heritability.
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By contrast,mutation–selection balance, in whichmutations continually replenish genetic vari-
ation while stabilizing and/or directional selection (alongside genetic drift) eliminate it, is plau-
sibly universal (182). The conditions for mutation–selection balance affecting many traits—i.e.,
a substantial mutational input and selection on genetic variation affecting the traits—are largely
established by the evidence reviewed above.

The pervasiveness of mutation–selection balance is further supported by experimental work on
a variety of traits and taxa (182), in which the input of variation per generation due to mutation,
VM, is measured either by the accumulation of mutations in a genetically homogeneous population
(see 106) or by relaxing selection in a heterogeneous population (e.g., 115).Estimates of the ratio of
mutational and environmental variances,VM/VE, known as themutational heritability, are typically
∼0.0006–0.006 (72, 106, 115). To interpret these values, note that the mutational input of variance
per generation VM ∼= 2U · E(a2), whereU is the rate of mutations per gamete affecting the trait,
and that the average mutational effect size squared, E(a2), is likely smaller than 0.1 ·VP, based,
e.g., on the dearth of large-effect alleles in the response to artificial selection (see Section 2.1).
Assuming such an upper bound and accounting for heritability, the estimates of VM/VE suggest
remarkably high mutation rates of ∼0.006–0.06 per gamete per generation affecting a variety of
traits. Assuming a typical mutation rate of ∼10−8 per base pair per generation for multicellular
eukaryotes, these values suggest mutational target sizes of ∼0.15–1.5 Mb, echoing the evidence
for high polygenicity based on the response to artificial selection and human GWASs.

The same experiments were used to estimate the ratio of the genetic and mutational variances,
VA/VM. This ratio, also referred to as persistence time, is a measure of the number of generations
required for mutation to replenish quantitative genetic variation. If most genetic variation is dele-
terious, the persistence time should be an average of the inverse selection coefficient; the specific
averaging depends on the relation between effect sizes and selection coefficients (see below). If
most variation is effectively neutral, the persistence time is much longer, on the order of twice the
effective population size, 2Ne. Estimates of the persistence time are typically on the order of 100
generations (72, 115), much lower thanNe for any species, suggesting that the bulk of quantitative
genetic variation is selected against (as opposed to being neutral or under balancing selection)
and lending strong support to the dominant role of mutation–selection balance in maintaining
quantitative genetic variation.

For all these reasons, understanding how mutation–selection balance shapes quantitative ge-
netic variation has been a major theoretical endeavor over the past four decades (76). One of the
early fault lines, the so-calledGaussian versus house of cards debate (174), centered on whether the
distribution of allelic effect sizes should be modeled as Gaussian (83, 92) or rather reflects an (un-
known) distribution for newly arisingmutations (141, 174, 194).Onemight expect an approximate
Gaussian distribution if segregating variation at a locus consisted of (largely) nonrecombining hap-
lotypes carrying many mutations affecting the trait; this would occur if the per-site mutation rate,
u, far exceeds the recombination rate, r. However, we now know that typically u/r ∼ 1 or less for
all mutations, and for mutations affecting a given trait, it is likely to be at least an order of magni-
tude smaller (e.g., in humans, only ∼10% of mutations are under selection; see, e.g., 137). For this
reason and others, the Gaussian assumption has been largely abandoned, and LD is now thought
to play a minor role in mutation–selection balance (174). Instead, as we review next, models of
mutation–selection balance over the past three decades disagree primarily in their assumptions
about the relationship between allelic effects on a trait and on fitness.

3.2. Mutation–Selection Balance Models of Genetic Architecture

Mutation–selection balance models can be thought of as follows: Mutations affecting the trait
arise at a rate U , which depends on the number of contributing loci or its target size, and have
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some distribution of selection coefficients, s. The mode and strength of selection on these muta-
tions, genetic drift, and demographic processes together determine allele frequencies; alongside
themutation rate, they also determine the number of segregating sites.We assume that segregating
sites are biallelic; this infinite-sites assumption is a good one for most species, including humans
(as θ = 4Neu � 1 per site). We further assume a diploid panmictic population with constant size
N , but later consider the effects of nonequilibrium demography.

The relationship between a mutation’s effect on the trait and on fitness is then modeled using
one of two approaches. One traces back to models of mutation–selection balance at a single locus
(31, 52, 57, 195): Mutations are assumed to be unconditionally deleterious and semidominant, and
the conditional probability distribution of allelic effect sizes, a, given their selection coefficient,
P(a|s), takes a given form by assumption. The other approach is generative, in the sense that the
mode and strength of selection on alleles and P(a|s) arise from modeling the selection acting
on traits. The distribution of selection coefficients and P(a|s) determine the joint distribution of
frequencies, x, and effect sizes of alleles influencing the trait. In particular, they determine the
distribution of allelic contributions to genetic variance, v = 2a2x(1 − x), e.g., whether most of the
heritability arises from strongly selected, extremely rare alleles or more common, weakly selected
ones.

Because the distribution of selection coefficients is generally unknown, we focus primarily on
what the assumptions made about the conditional distribution P(a|s) imply about the relative con-
tribution of mutations to variance, given their selection coefficient. At one extreme, the trait in
question does not affect fitness, but the alleles that influence the trait have uncorrelated, uncondi-
tionally deleterious effects on fitness. Barton (7) and Kondrashov & Turelli (87) showed that these
assumptions result in apparent stabilizing selection, because individuals with trait values farther
from the population mean tend to carry a greater burden of deleterious mutations and thus have
lower fitness. Pritchard (133) considered the genetic architecture of complex-disease risk under
these assumptions and showed that, under these conditions, the largest per-mutation contribution
to genetic variance would arise from mutations that are effectively neutral and therefore ascend
to higher frequencies than other mutations, but happen to have large effects on the trait.

At the other extreme, selection on alleles affecting a trait stems entirely from the trait itself,
typically assumed to be under stabilizing selection (e.g., 79, 141, 174, 194). The distribution of
phenotypes and allelic dynamics under this model turn out to be relatively simple. When the
number of contributing loci is large enough for the trait to be highly polygenic, phenotypes are
approximately normally distributed, because they arise from a sum of (approximately) independent
contributions from many segregating sites. The phenotypic mean is held tightly at the optimum,
because selection becomes stronger with its distance from the optimum and any displacement is
quickly adjusted for by minor changes to allele frequencies at many loci. Consequently, individual
alleles barely affect the phenotypic mean, and selection acts primarily to reduce their contribution
to phenotypic variance.For a biallelic site, this implies that (a) selection on the site does not depend
on other loci, (b) selection takes an underdominant form, acting against the rarer allele, and (c) the
strength of selection scales with the squared effect size (s = a2/VS). The allele frequency dynamics
are fully characterized by the first two moments of frequency change per generation (41):

E(�x) ∼= − a2

2VS
x(1 − x)

(
1
2

− x
)

and V(�x) ∼= x(1 − x)
2N

. 2.

The effect of selection on the contribution to genetic variance follows (79, 157) (Supplemental
Figure 1a). In this case, increasing the effect size of a mutation has countervailing effects on its
expected contribution to variance: It increases the difference in trait value among individuals with
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and without the mutation, but it also strengthens the selection that acts to reduce the frequency of
the mutation. Consequently, and in contrast to the purely pleiotropic model, the greatest expected
variance arises from mutations under moderate and strong selection (roughly 2Ns > 3), which
contribute approximately vS = 2VS/N per unit mutational input.

In practice, we would expect most traits to fall somewhere between the two extreme assump-
tions about pleiotropic effects. As reviewed above, there are compelling reasons to believe that
quantitative genetic variation is highly pleiotropic. Yet contrary to the purely pleiotropic model,
we expect alleles with large effects on a given trait (whether selected or not) to tend to have large
effects on other traits that are under selection and thus on fitness [e.g., because they cause greater
perturbations to gene expression, affecting many traits (17, 100)]. Motivated by these consider-
ations, Eyre-Walker (42) and Caballero et al. (24) considered models in which the correlation
between allelic effects on a trait and those on fitness can vary between the purely pleiotropic and
direct selection extremes. Interestingly, when plausible, intermediate correlation strengths are as-
sumed, the predictions of these models diverge. In the Eyre-Walker model, mutations with large
effect sizes and small selection coefficients are too rare to contribute substantially to genetic vari-
ance, and therefore strongly selected mutations with large effect sizes have the greatest contribu-
tion to variance. By contrast, in the Caballero et al. model (first presented in 80), the distribution
of effect sizes conditional on a given selection coefficient can have thicker tails, and thus weakly
selected mutations with larger effect sizes make the greatest contribution. In both cases, the distri-
butions were chosen largely for mathematical convenience. Their diverging predictions suggest
that we need to understand more about the statistical relationship between selection coefficients
and effect sizes to know what to expect.

Simons et al. (157) approached this problem by deriving (rather than postulating) this rela-
tionship, in a model with stabilizing selection on multiple traits. They focused on the architecture
of one of these traits (say, the first), where the total number of traits, n, quantifies the degree of
pleiotropy.With multiple traits, the selection coefficient of an allele is proportional to the sum of
its squared effects over all selected traits—i.e., s = a2/VS = ∑n

i=1 a
2
i /VS, where ai (its effect on trait

i) is measured in appropriate units. In other words, mutations with a given selection coefficient lie
on a hypersphere with a corresponding radius in the n-dimensional trait space. Thus, if mutations
are equally likely to point in any direction in trait space (i.e., are isotropic), the distribution P(a1|s)
derives from the projection of mutations on the hypersphere on the first dimension (Supplemen-
tal Figure 1b). In reality, mutations tend to have larger effects on some traits than on others, and
their effects on different traits tend to be correlated (110). Simons et al. (157) showed that when
mutational effects are described by a variance–covariance matrix, the distribution P(a1|s) can be
approximated by assuming that mutation is isotropic in a model with an effective rather than an
actual number of traits, ne; if, e.g., effect sizes on the focal and other traits are highly correlated,
then ne is less than n. Importantly, when genetic variation is highly pleiotropic (e.g., ne ≥ 10), the
distribution P(a1|s) is well approximated by the normal distribution a1 ∼ N (0, (VS/ne ) · s). The
genetic architecture of a trait follows from this distribution and the first two moments of change
in allele frequency, which take the same form as Equation 2.

The effect of selection on the relative contribution to genetic variance does not depend on the
number of traits, and takes the single-trait form (Supplemental Figure 1a) where the expected
contribution under strong selection generalizes to vS = 2VS/neN . Thus, similar to the case with
a single trait, more weakly selected alleles make smaller contributions to genetic variance. By
contrast, the distribution of variance among loci with a given selection coefficient is affected by
the number of traits. When variation is highly pleiotropic, as seems plausible, and selection is
sufficiently strong (roughly 2Ns > 5), this distribution approaches a limit, which depends only
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on vS and is thus insensitive to the selection coefficient and degree of pleiotropy (Supplemental
Figure 1c).

3.2.1. Possible extensions. We can envision several important generalizations to this kind of
geometric model. One would be to relax the assumption that the (effective) number of traits af-
fected by mutations is fixed. Notably, given that different genes affect distinct numbers of traits
and that genes that affect more traits are likely to evolve under stronger selective constraint, we
would expect the number of traits to vary across mutations and covary with the strength of selec-
tion. Another generalization would be to relax the assumption that all selected traits are subject
to stabilizing selection. To the best of our knowledge, there are currently no models in which the
architecture of a complex trait derives from directional selection on its value (e.g., a model of li-
ability), let alone models that include traits under both directional and stabilizing selection. One
might also envision mutational effects on a focal trait to partially reflect contributions that are
not selected. Such effects can be incorporated by adding an underlying neutral trait. The mean
value of such a trait would slowly drift (44, 105), and its variance would be affected by apparent
stabilizing selection (7, 87). Lastly, one might consider the effects of selected traits that are not
highly polygenic, e.g., when intermediate fitness modules do not fully capture the selection acting
on quantitative genetic variation (see Section 2.4). Arguably, models that incorporate such exten-
sions would capture the major factors that are thought to affect genetic variation in complex traits
under mutation–selection balance.

3.2.2. The effects of nonequilibrium demography. Thus far, we have considered how the ge-
netic architecture of complex traits is shaped at steady state, notably under constant selection and
population size.We consider the response to changing selection pressures below (Section 4.1) and
argue that, despite its evolutionary importance, it likely has little effect on genetic architecture. By
contrast, nonequilibrium demographic changes, particularly ubiquitous changes in population size
and admixture from other populations, can dramatically affect genetic architecture. The effects of
gene flow definitely merit investigation but are not straightforward and have barely been studied
(but see 150, 156). We therefore focus on the better-understood effects of changes in population
size (103, 158, 159).

Changes in population size profoundly affect both the numbers and frequencies of segregating
variants, and these effects are modulated by selection, because more strongly selected mutations
spend less time segregating in the population than do more weakly selected ones. Consider, for
example, the case of Europeans, who have been inferred to have gone through an extended bot-
tleneck after leaving Africa and, very recently, undergone explosive population growth (35, 149,
181). Strongly deleterious genetic variation is sufficiently young for much of it to have arisen after
the bottleneck or even since the onset of growth, when the population size, N , was large. This
implies that the number of strongly selected mutations that entered the population was high, as
the expected number per generation is 2NU , but that their initial frequencies were low, i.e., 1/2N .
The total, strongly selected variance is approximately unaffected, because the two effects cancel
out, but the distribution of the variance among sites is profoundly affected, with many more sites
segregating but at proportionally lower MAFs, and thus with lower per-site contributions to ge-
netic variance (159). Weakly deleterious variation, by contrast, would have largely arisen before
or during the out-of-Africa bottleneck, which implies a lower input of mutations and stronger ge-
netic drift that accelerated the loss of most mutations and boosted the frequency of those remain-
ing. We would therefore expect fewer weakly selected segregating sites, but with greater MAFs
and per-site contributions to variance (159). More generally, we expect the total contribution of
strongly or weakly selected mutations to variance to be fairly insensitive to changes in population

www.annualreviews.org • Evolution of Complex Traits and GWASs 22.15
Review in Advance first posted on 
July 5, 2019. (Changes may still 
occur before final publication.)

A
nn

u.
 R

ev
. G

en
om

. H
um

. G
en

et
. 2

01
9.

20
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

C
ol

um
bi

a 
U

ni
ve

rs
ity

 o
n 

07
/1

4/
19

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



GG20CH22_Sella ARjats.cls June 21, 2019 15:25

size (and instead depend primarily on their mutational input). By contrast, the number of segre-
gating sites and the distribution of their contributions to variance should be markedly influenced,
with strongly selected variation more affected by the more recent population sizes than weakly
selected variation.

3.3. Relating Evolutionary Models to Findings from Genome-Wide
Association Studies

In the early days of GWASs, evolutionary models were used primarily to inquire whether we
should expect studies of modest size to succeed at mapping quantitative genetic variation (140),
with much attention revolving around the common disease–common variant hypothesis (26, 133,
138). More recently, the questions have been recast in terms of explaining the apparent failure
of large GWASs to map much of the heritable variance in many traits, the so-called missing-
heritability conundrum (109). While many factors have been argued to contribute to the missing
heritability, estimates of SNP heritability, based on all GWAS SNPs rather than only those that
are genome-wide significant (GWS), indicate that the bulk of heritable variance derives from loci
that current GWAS are underpowered to detect (70, 154, 196).

To a first approximation, a causal biallelic locus will be GWS if its contribution to variance,
2a2x(1 − x), exceeds a threshold determined by the study’s power, v∗. This threshold is propor-
tional to the variance of the background noise for identifying individual loci given the sample
size, m, i.e., v∗ ∝ VP/m. Current, large-scale GWASs rely on genotyping and imputation, which,
in effect, introduces an additional threshold on MAF (which depends primarily on the size of the
imputation reference panel).When GWS associations are represented in terms of their estimated
frequencies and effect sizes, they are often distributed tightly above the variance threshold (e.g.,
Supplemental Figure 2). The question about missing heritability can be recast as asking where
the remaining loci reside on such plots. For example, are they mostly strongly selected loci with
relatively large effects, which evade identification because their minor alleles are so rare, or are
they relatively weakly selected loci with relatively small effect sizes, which evade detection because
of their small contributions to variance (i.e., due to limitations in sample size)? Fitting evolutionary
models to GWAS findings can help to answer these questions.

3.3.1. Fitting models of architecture to findings from genome-wide association studies.
Agarwala et al. (2) took a pioneering step in this direction, asking about the evolutionary parame-
ters that are consistent with the empirical findings for type 2 diabetes. They used forward popula-
tion genetic simulations to generate samples of genomes, incorporating both neutral and selected
mutations, where the latter were assumed to arise from a distribution inferred for nonsynonymous
mutations. They ascribed liabilities to these genomes under a range of models that vary both in
their mutational target size for the disease (which determined how many of the selected sites were
picked to be causal) and in the coupling between selection and effect size, assuming Eyre-Walker’s
model (which determined how effect sizes were ascribed to these causal sites). The environmen-
tal contribution and liability threshold were chosen to match the heritability and prevalence of
type 2 diabetes. To determine whether models were consistent with observations, they performed
GWASs on their simulated data sets and compared the numbers of GWS associations with the
one observed for type 2 diabetes. They also considered summaries of epidemiological and linkage
studies, but their inclusion did little to narrow down the range of possible models. While they
were able to rule out the pleiotropic and direct selection extremes of Eyre-Walker’s model, they
were left with a wide range of possible genetic architectures.

More recently,Mancuso et al. (108) applied a similar approach to the study of prostate cancer in
men of African ancestry. To this end, they relied on targeted sequencing at 63 loci found to affect
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disease risk in a larger GWAS and estimated that rare variants at these loci (with MAFs of 0.1–
1%) account for ∼12% of the heritability in risk (on the liability scale) compared with ∼17% for
common variants. The contribution of rare variants far exceeds the neutral expectation, indicating
that variation affecting disease risk is subject to purifying selection.Mancuso et al. (108) then used
their heritability estimate as a summary statistic to infer the coupling between selection and effect
size, again assuming Eyre-Walker’s model (42), and as in the study by Agarwala et al. (2), they were
left with a wide range of possible architectures. These results suggest that using richer summaries
of genetic architecture may be required.

Simons et al. (157) took a step in this direction by asking whether the distribution of variances
among the loci identified in GWASs for height and BMI in Europeans accord with their theo-
retical predictions (see Section 3.2). They predicted that, assuming the loci are highly pleiotropic
and under moderate to strong selection (because otherwise they contribute much less to variance),
the distribution of variances among them is well approximated by a closed form that depends on
a single parameter, vS (Supplemental Figure 1c). They used the observed distribution for the
∼700 GWS associations for height and ∼80 for BMI to estimate this parameter and found that
the theoretical distribution provided a good fit for either trait (Supplemental Figure 3a), whereas
models with low pleiotropy did not. They then predicted the numbers of moderately and strongly
selected loci and corresponding variances that would be captured with future increases in study
sizes by extrapolating their fitted distributions to corresponding variance thresholds (Supplemen-
tal Figure 3b). Similarly, they estimated that moderately and strongly selected mutations affecting
height have a target size of ∼5 Mb and account for ∼50% of the heritable variance, whereas for
BMI these values are ∼1 Mb and only ∼15%, respectively. The lower proportion of variance for
BMI than for height may explain why the GWAS for BMI succeeded in mapping substantially less
heritable variance (∼3–5% versus ∼20%) despite its larger size (∼340,000 versus ∼250,000).

The Simons et al. (157) inferences should be considered preliminary, however, as they do
not account for the effects of historical changes in population size. Simulations that incorporate
changes in the population sizes of Europeans suggest that only moderately selected loci (s ∼ 10−3)
would be identified by these GWASs (157), because the contribution to variance per segregating,
strongly selected locus has been reduced by population growth after the out-of-Africa bottleneck
(see Section 3.2). Thus, their estimates should be attributed only to moderately selected loci, and
the heritability that they do not account for could be due to loci under stronger and/or weaker
selection. Interestingly, the same results suggest that the reliance on genotyping rather than rese-
quencing had little effect on the loci identified, because moderately selected loci that exceed the
variance threshold imposed by current sample sizes also exceed the MAF threshold imposed by
genotyping.

3.3.2. Potential extensions. The first steps toward evolutionary inferences based on associa-
tion studies highlight some outstanding challenges. Assuming that heritable variation in complex
traits is predominantly shaped by mutation–selection balance, the key evolutionary parameters
include the rate of mutations affecting the trait (i.e., its target size), the distribution of selection
coefficients of these mutations, and the extent of coupling between selection coefficients and their
effects on the focal trait. If genetic variation in most complex traits affects many selected traits,
then this coupling may follow some universal form, with few parameters, akin to the effective
number of traits in the study by Simons et al. (157). Given this relationship and the distribution of
selection coefficients, the mutation rate should be easy to infer, e.g., from the number of loci that
are GWS. Despite recent progress in fine mapping (148) and in accounting for LD in GWASs
more generally (e.g., 19), uncertainty about which loci are causal—and hence about their num-
bers, MAFs, and effect sizes—remains a major limitation. Setting this problem aside, the main

www.annualreviews.org • Evolution of Complex Traits and GWASs 22.17
Review in Advance first posted on 
July 5, 2019. (Changes may still 
occur before final publication.)

A
nn

u.
 R

ev
. G

en
om

. H
um

. G
en

et
. 2

01
9.

20
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

C
ol

um
bi

a 
U

ni
ve

rs
ity

 o
n 

07
/1

4/
19

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



GG20CH22_Sella ARjats.cls June 21, 2019 15:25

challenge will be to infer the distribution of selection coefficients; doing so would likely require
relying on richer summaries from GWASs than those used to date. One idea would be to con-
sider the joint distribution of frequencies and effect sizes of GWS associations (e.g., rather than
only their distribution of variances), also accounting for demographic effects. As we noted, how-
ever, current GWS loci likely reflect a fairly narrow range of selection effects; further progress
therefore depends on moving beyond these GWS associations.

Such a step might converge with the development of methods for estimating SNP heritabil-
ity. As noted, such methods have already been instrumental in learning about missing heritability
(e.g., 196) and polygenicity (e.g., 102, 155). Yet most approaches rely on strong assumptions about
genetic architecture and are sensitive to varying these assumptions (70, 165).Notably, earlier work
assumed that the contributions of SNPs to genetic variance are normally distributed and do not
depend on their frequency, i.e., that E(a2|x) ∝ [x(1 − x)]−1. More recent work assumed the more
flexible α model, in which E(a2|x) ∝ [x(1 − x)]α for some α, which is estimated from data. Es-
timates of α are generally negative, suggesting, as we would expect, that mutations with larger
effect sizes are more strongly selected against (e.g., 151, 165). Nonetheless, there is little reason to
think that selection produces genetic architectures that are well approximated by the α model. A
principled approach would be to parameterize the relationship between frequency and effect size
in terms of the distribution of selection coefficients and the relationship between selection coef-
ficients and effect sizes, and to directly estimate these parameters. If feasible, such an approach
could be highly informative about selection and produce more reliable heritability estimates. An
alternative approach may be to build on the recent method of Pasaniuc and colleagues (70), who
relied on the LDmatrix among pairs of SNPs to estimate SNP heritability without making strong
assumptions about genetic architecture. Extensions of this method may allow for the distribution
of heritable variance (or even the joint distribution of frequencies and effect sizes) to be estimated
across SNPs genome-wide, which in turn could be used to estimate key evolutionary parameters.

Such evolutionary inferences can inform answers to question of practical import, notably about
the merits of different study designs.We already described how they could be used to predict the
gains from increased study sizes and the utility of moving from genotyping to resequencing. Sim-
ilar reasoning can also help to quantify the benefits of increasing the size of imputation reference
panels in genotyping-based studies. Additionally, knowing more about evolutionary parameters
could inform phenotypic prediction, e.g., by providing bounds on how precise we can expect it to
be both within and across ancestries (under specific assumptions).

More fundamentally, these inferences will help to elucidate the evolutionary processes that un-
derlie phenotypic variation in complex traits. If the first decade of GWASs is any indication, we
should expect increases in the scale and quality of studies in the near future to greatly increase our
knowledge about the genetic architecture of a wide variety of traits. Applying evolutionary infer-
ences to these data will teach us about the mutational target sizes and about direct and pleiotropic
selection shaping genetic variation in a wide variety of traits. Testing the fit of alternative models
will also enlighten us about the effects of other factors, such as how recent changes in environment
may have impacted the genetic architecture (38). In turn, comparing inferences for different traits
may help explain differences in their genetic architecture and resolve long-standing puzzles about
phenotypic variation, such as the greater heritability in morphological compared with life history
traits (178).

4. POLYGENIC ADAPTATION

Given that many selected traits are highly polygenic (see Sections 2.1 and 2.4), the adaptive
response to changing selective pressures must often involve shifts in such traits, accomplished
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through changes to allele frequencies at the many segregating loci that affect them. We would
therefore expect polygenic adaptation in complex traits to be ubiquitous. This view traces back to
the dawn of population and quantitative genetics (47, 192) and has been supported by more than
a century of studies of the response to artificial selection on many traits in plants and animals,
and more recently by GWASs revealing the highly polygenic basis of variation in many traits in
humans (see Section 2.1).

The quest for the genetic basis of adaptation in humans has also lent support to this view.When
genome-wide polymorphism data sets first became available, this search was largely predicated on
the monogenic model of a hard selective sweep (78, 114), in which adaptation proceeds by the
fixation of a new or initially rare beneficial mutation of large effect (e.g., 120, 146, 179). Subsequent
analyses echoed studies of artificial selection in other species, indicating that hard sweeps were
rare, at least over the past ∼500,000 years of human evolution (33, 63). Yet it seems plausible
that humans adapted in myriad ways during this time period, and they definitely experienced
substantial changes in selection pressures, notably duringmore recent expansions across the globe.
These considerations, bolstered by the aforementioned evidence, have largely shifted the search
for the genetic basis of human adaptation toward polygenic adaptation (134, 135).

4.1. Models of Polygenic Adaptation

Theoretical work on polygenic adaptation has focused primarily on two scenarios. The first is
motivated by the response to sustained artificial selection, which is modeled as either truncation
selection (142) or stabilizing selection, with the optimal phenotype moving at a constant rate in
a given direction (e.g., 22, 29, 89, 90, 112, 113). In natural populations, however, quantitative
traits are unlikely to be subject to long-term continuous change in one direction. Instead, they
are likely subject to long-term stabilizing selection, with intermittent shifts of the optimum in
different directions (see Section 2.4). Other studies therefore assume a scenario in which a sudden
change of environment induces an instantaneous shift in the optimum of a trait under stabilizing
selection (37, 60, 75, 93, 169).While one can envisionmore elaborate scenarios—e.g., in which the
optimum and/or strength of stabilizing selection vary frequently—this simple scenario provides a
sensible starting point for thinking about polygenic adaptation in nature, and is our focus here.We
further assume that the effective population size is appreciable (unlike in many cases of artificial
selection) and set aside complications arising from LD and pleiotropy.

Lande (93) considered the phenotypic response to selection under this scenario in the infinites-
imal limit, in which genetic variation arises from infinitely many segregating loci with infinitesi-
mal effect sizes. In this limit, the new optimum is approached at a rate that is proportional to both
the additive genetic variance in the trait, VA, and the strength of stabilizing selection, VS

−1. The
distance from the new optimum t generations after an instantaneous shift of � at time 0 is thus
D(t ) = � · exp(−VAt/VS). As an illustration, withVA/VS ≈ 1/20, half the distance to the new opti-
mum is traversed in ∼14 generations. Importantly, this is much faster than when adaptation arises
from one or a few beneficial alleles, even if the beneficial alleles were segregating prior to the onset
of selection—let alone if new mutations were required (see, e.g., 33). Polygenic adaptation can be
so rapid because it requires only tiny changes to allele frequencies at the numerous loci contribut-
ing to genetic variation. When the number of segregating loci and their effect sizes are finite,
the phenotypic response to selection can be more complicated than in Lande’s approximation,
because it involves changes to higher moments of the phenotypic distribution (21, 60, 69, 175).
Nonetheless, so long as the trait is highly polygenic, it remains the case that small increases in the
frequencies of numerous segregating alleles that affect the trait in the same direction allow popu-
lations to rapidly adapt to large shifts in optimum, even of many phenotypic standard deviations.
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The genetic basis of the adaptive response is largely shaped by the genetic architecture of
the trait prior to the shift in optimum (37, 60, 75). To see why, consider the expected change in
frequency per generation of an allele with effect size a and frequency x, at various times after the
shift (21, 37, 60, 75, 194), which is given by

E(�x) ∼= 1
2VS

D(t )ax(1 − x) − 1
4VS

a2x(1 − x)
(
1
2

− x
)

3.

[assuming that |a| � √
VS and � <

√
VS (74)]. The first term on the right-hand side corresponds

to directional selection: It pushes alleles with effects that are aligned with the shift to higher fre-
quencies, but its strength weakens as the distance to the new optimum,D, decreases. The second
term corresponds to stabilizing selection: It acts to reduce the frequency ofminor alleles regardless
of the direction of their effect, and dominates when D is small. In particular, it shapes the genetic
architecture at mutation–selection–drift balance, prior to the shift in optimum (when D = 0; see
Equation 2). As reviewed in Section 3.2, the expected contribution to variance is then greatest for
sites with intermediate and large effects,where it is approximately constant atE(2a2x(1 − x)) ∼= vS,
implying that for such sites, on average, x(1 − x) declines roughly as 1/a2.

Immediately after the shift in optimum, the change in allele frequency due to directional se-
lection is proportional to ax(1 − x) and thus is greater for alleles with intermediate effect sizes
than for alleles with large effects (60). In turn, the contribution of an allele to phenotypic change
is proportional to a2x(1 − x) and is therefore fairly insensitive to its effect sizes (so long as it is
sufficiently large) (60). Shortly afterward, once the population mean has largely caught up with
the new optimum (and D is small), stabilizing selection dominates the allelic dynamics. Because
large-effect alleles started at low frequencies and are not likely to have neared a frequency of 1/2
by this time, they are highly unlikely to further increase in frequency, let alone fix, with stabilizing
selection now acting against them. Alleles with intermediate effects that are aligned with the shift
reach higher frequencies by this time and are therefore more likely to increase in frequency at
this second stage, eventually leading to an excess fixation of intermediate-effect, aligned alleles.
As a result, and counterintuitively, over longer timescales, the contribution of intermediate-effect
alleles to phenotypic change supplants the contribution of alleles with large effect (60). Eventually,
the contribution of all transient frequency changes is replaced by fixations at a small subset of loci,
and the equilibrium architecture is restored around the new optimum.

Such considerations clarify that the response to changes in selection pressures is governed by
the initial genetic architecture. However, we have yet to understand precisely how the change
in the phenotypic distribution across individuals depends on genetic architecture and to better
characterize the allelic trajectories that underlie the response. The trajectories are particularly
important because they determine how polygenic adaptation will affect patterns of linked, neutral
genetic variation (8) and how we might go about identifying and interpreting population genetic
footprints of polygenic adaptation. We would also like to understand how the response to selec-
tion on a quantitative trait is affected by pleiotropy, LD among selected loci, and demographic
parameters, notably the effective population size.

Nonetheless, our current understanding provides a basis for a few useful, educated guesses.
One is that polygenic adaptation likely has minimal effects on the genetic architecture of a trait,
because at most loci it causes only tiny changes to allele frequencies and thus only weakly per-
turbs the distribution of allele frequencies (although we cannot rule out larger perturbations if,
e.g., the environment fluctuates on particular timescales). If this reasoning is correct, then even
in the presence of polygenic adaptation, the genetic architecture of complex traits will be shaped
predominantly by long-term stabilizing (and sometimes directional) selection and will be well
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approximated by existing models (Section 3.2). Another plausible guess is that polygenic adapta-
tion arises predominantly from standing variation and primarily from variants that were segre-
gating at relatively high MAFs, which would suggest modest effects on levels of neutral genetic
variation at linked sites. Lastly, if polygenic adaptation causes, on average, only tiny changes to
allele frequencies per locus, its effect at any individual locus will easily be masked by the effects
of genetic drift and/or selection on other traits affected by the locus or by those in LD with it.
Therefore, identifying polygenic adaptation is likely to require pooling the evidence for changes
in frequencies across many loci affecting a given trait.

4.2. Identifying Polygenic Adaptation in Humans

All the methods recently proposed for identifying polygenic adaptation in humans are based on
combining signals of changes in allele frequency across many loci that affect a given trait and
testing whether these changes tend to affect the trait in a given direction. GWASs facilitate such
tests by identifying many loci that are associated with variation in a given trait and estimating
allelic effects at these loci. The signal of coordinated frequency changes is usually tested against
an empirical null model, generated by matching key attributes of the test set to random sets of
putatively neutral sites.

In theory, a statistically significant result provides strong evidence that directional selection
acted on genetic variation affecting the trait, due to selection on that trait or on genetically cor-
related traits. Importantly, such a finding could reflect a corresponding change in the mean trait
value in response to a shift in optimal phenotype and/or a response to a countervailing shift in the
environmental contribution to the phenotype (e.g., due to a change of diet) without a change in
trait value.

In practice, the reliance on subtle signals aggregated over many loci identified in GWASs ren-
ders tests extremely sensitive to systematic biases (10, 13, 14, 121, 163). As an illustration, imagine
a GWAS for height based on a sample taken from two genetically differentiated populations,
where the individuals sampled from one are, on average, taller than those from the other, due to
environmental rather than genetic differences between them. Without appropriate controls for
population structure, the effect-size estimate of a given SNP would reflect a sum of a true genetic
effect, arising from the causal loci that it tags, and an environmental contribution, which arises
because the allele-frequency difference between populations at the SNP absorbs some of the en-
vironmental difference in heights among the individuals sampled from them (144). Consequently,
alleles with higher frequencies in the tall population will tend to be identified as increasing height,
and SNPs that are highly differentiated between populations will tend to have larger effect-size
estimates and smaller p values.

Both of the existing approaches for identifying polygenic adaptation are sensitive to the prob-
lems highlighted by our example. The first set of methods relies on frequency differences of trait-
increasing alleles among extant populations (13, 144, 173). In our example, higher frequencies of
height-increasing alleles would be found in the taller population, and the frequency differences
would be greater at SNPs with larger estimated effect sizes or lower p values. The second set in-
stead leverages genealogical footprints of past increases in the frequency of trait-increasing (or
trait-decreasing) alleles in a single population (39, 45, 166). In our example, there would be ev-
idence for past increases in the frequency of height-increasing alleles in the tall population, and
again, the evidence would be stronger for SNPs with larger estimated effect size or lower p values.
While all current GWASs employ controls for population structure, it is currently not known
how well these correct for biases in tests of polygenic adaptation: They may obscure true sig-
nals or create artifactual ones (or both). Recent work suggests that much of the existing evidence
for polygenic adaptation is driven by subtle biases in GWAS estimates (see below). Nonetheless,

www.annualreviews.org • Evolution of Complex Traits and GWASs 22.21
Review in Advance first posted on 
July 5, 2019. (Changes may still 
occur before final publication.)

A
nn

u.
 R

ev
. G

en
om

. H
um

. G
en

et
. 2

01
9.

20
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

C
ol

um
bi

a 
U

ni
ve

rs
ity

 o
n 

07
/1

4/
19

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



GG20CH22_Sella ARjats.cls June 21, 2019 15:25

assuming that systematic biases in GWASs will be overcome, the methods that have been used are
likely to be valuable; we therefore briefly review them.

As noted, the first approach relies on allele-frequency differences among extant populations [or,
by extension, in archaic ones (111)]. In the first such study in humans, Turchin et al. (173) con-
sidered allele frequencies at SNPs significantly associated with a trait in two populations. They
applied a sign test to assess whether the number of SNPs in which trait-increasing alleles had a
higher frequency in one population was significantly different from that expected by chance (also
see 49, 123). They also examined whether the average frequency of trait-increasing alleles in one
population was significantly greater than in the other, compared with the expectation under neu-
trality. To that end, they constructed an empirical null distribution using appropriately matched
sets of putatively neutral SNPs (i.e., for average frequency of each SNP in the test set). Berg &
Coop (13) generalized this approach to more than two populations. Rather than a simple aver-
age over frequencies, they considered a trait’s mean polygenic score in each population,

∑
i âix̂i, in

which the estimated frequency of an allele at SNP i, x̂i, is weighted by its estimated effect, âi. Poly-
genic scores should predict the genetic contribution to a trait more accurately than the number of
trait-increasing alleles (see Section 2.2), suggesting that, in principle, they should provide greater
power. Berg & Coop (13) tested for overdispersion and outliers of mean polygenic scores among
populations relative to empirical null distributions constructed using sets of putatively neutral
SNPs. Importantly, in addition to matching test and control SNPs for average frequency, they also
accounted for the effects of shared ancestry among populations under neutrality (also see 124, 144).

The second set of methods relies on genealogical signatures of past increases in the frequency
of trait-increasing (or trait-decreasing) alleles in a single population. Field et al. (45) introduced
the first method in this vein, relying on large genomic samples from a single population. They
reasoned that a recent and rapid change in allele frequency driven by selection would result in
shorter terminal branches in the genealogy of the favored allele, and therefore that the haplotypes
flanking the beneficial alleles should carry fewer mutations that are singletons in the sample (for
related ideas used to study purifying selection, see, e.g., 82). Focusing on a biallelic SNP, they relied
on the distribution of distances to the nearest singleton across individuals carrying each genotype
in order to estimate the (log) ratio of the mean tip-branch lengths corresponding to the two al-
leles; they then standardized these estimates within bins of derived allele frequencies to define
the singleton density score (SDS). Large deviations of SDS from an empirically constructed null
distribution should be well powered to detect the action of selection (notably since SDS utilizes
much more information than extant frequencies), with larger sample sizes affording sensitivity to
more recent selection (because of shorter tip lengths under the neutral null model). For complex
traits, they defined a signed version of SDS (tSDS), such that selection favoring trait-increasing
alleles corresponds to positive values.Given this setup, if selection acted to increase the trait value,
the tSDS of causal SNPs and of SNPs that tag them will tend to be positive, more so for SNPs
with lower GWAS p values.

Two recent methods take the same general approach but rely on explicit inferences of the
genealogies of SNPs associated with a trait rather than summaries of tip-branch lengths. This
approach has great potential, because the set of underlying genealogies provides complete infor-
mation about the evolutionary history of a sample.Notably, Edge &Coop (39) relied on estimated
genealogical trees to approximate the time course of allele frequencies at SNPs associated with
a trait and used them to approximate the time course of the polygenic score. They tested for
polygenic adaptation in a given time frame by comparing the change in polygenic score with an
empirically constructed null distribution. In principle, the test should be well powered farther back
in time than one based on SDS, with power increasing with sample size. Yet the reliability of the
estimated time course inevitably degrades substantially farther back in time, because the number
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of lineages remaining in the genealogy of the sample decreases, and thus so does power. In practice,
the performance of this method strongly depends on the quality of the genealogical inference.

Most recently, Speidel et al. (166) introduced a promising and computationally efficientmethod
for reconstructing genealogical trees in large samples, alongside a new test for polygenic adapta-
tion.Given the estimated tree for a SNP, they considered the number of lineages at the time of the
most recent common ancestor of the focal allele and tested whether the branching rate that led to
the current frequency of the allele is significantly greater than that of the other lineages present
when the allele first arose. Significance levels were derived based on the symmetry of branch-
ing rates expected under neutrality and thus depend only on the topology of the inferred tree.
For selection on complex traits, they tested whether derived trait-increasing (or trait-decreasing)
alleles at GWS SNPs showed stronger evidence of directional selection relative to randomly sam-
pled control alleles of the same frequency. The reliance on topology lends robustness to errors
in other features of the inferred trees, at the cost of averaging the signal of adaptation over time.
Speidel et al. (166) further argued that relying only on the direction of effects of alleles at GWS
SNPs, which are much less sensitive to biases in GWASs (14, 163), lends some robustness to these
biases, although their test could still be affected by biases in identifying the set of GWS SNPs.

More generally, all existing methods are affected by systematic biases in GWASs, such as those
illustrated by the height example described above. Notably, two recent studies indicate that the
reported evidence for polygenic adaptation of height in Europe, arguably the clearest example
until now, was largely if not entirely driven by such biases (14, 163). Specifically, the signatures
of adaptation that were based on the Genetic Investigation of Anthropometric Traits (GIANT)
meta-analysis GWAS do not replicate or are strongly attenuated based on a GWAS in the UK
Biobank, a newer, more homogeneous data set that allows better control for population structure.
Moreover, an earlier replication of the signature that relied on a sibling based-GWAS, which is
largely immune to effects of population structure, turned out to have resulted from a bug. Addi-
tionally, Berg et al. (14) showed that LD score regression (19), a popular method used to control
for the effects of population structure inGWASs, is not as robust as had been hoped, notably in the
presence of effects of selection at linked loci. Taken together, these analyses strongly suggest that
much of the reported evidence for polygenic adaptation in height, and plausibly in other traits, was
driven by subtle, systematic biases in GWASs. It remains unclear, however, to what extent more
recent results, relying on GWASs in the UK Biobank and more powerful methods (39, 166), are
still affected.

4.2.1. Future directions. How will we be able to tell? Ultimately, this is a question about the
relative magnitude of signals and biases. In that regard, modeling should help us develop quan-
titative expectations for the magnitude of shifts in allele frequencies and polygenic scores given
plausible shifts in, e.g., optimal trait values. Modeling may also provide a handle on the magni-
tude of biases in tests of polygenic adaptation and allow for better understanding of the trade-offs
between signals and biases offered by different choices, e.g., about the use of different subsets of
SNPs, or corrections for population structure, or sign tests versus polygenic scores. Other im-
portant factors that warrant consideration include the loss of power and possibly the bias caused
by relying on effect-size estimates in an extant population to infer selection in the past, notably
the past of other populations (e.g., due to gene–environment interaction effects and changes in
LD structure), the potential effects of asymmetric power to detect trait-increasing versus trait-
decreasing minor alleles in case–control GWASs (154), and the suitability of a neutral null model
versus one that assumes stabilizing selection. Nevertheless, modeling will necessarily be limited
by our imagination in devising appropriate scenarios.
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In that regard and more generally, better data sets and improved methodology will be crucial.
Indeed, it was the failure to replicate signature of polygenic adaptation using large and relatively
homogeneous UK Biobank samples that highlighted the sensitivity to these biases. Once family-
based GWASs, which are largely immune to effects of population structure, become sufficiently
large to facilitate well-powered estimates of effect sizes, they will offer a promising way forward
(see, e.g., 201).More generally,while the problems posed by biases inGWASs seem quite daunting
at present, the pace at which powerful new methods and better data sets are emerging allows for
cautious optimism.

Assuming these problems are overcome and polygenic adaptation in multiple traits and pop-
ulations is identified, what is next? One challenge will be to place adaptation events in a given
trait in the context of human evolutionary history, namely within the complex web and chronol-
ogy of population splits and admixture events and introgression from archaic humans (e.g., 55,
62, 129). Some methodology to address this challenge has already been developed, primarily us-
ing extant allele frequencies (15, 39, 111, 136). Another challenge will be to home in on targets
of selection—e.g., to infer whether signals of adaptation for multiple traits in a given population
reflect selection on each of the traits or rather selection on fewer traits that are genetically cor-
related with the others. Berg et al. (15) took an important step in this direction by extending the
Pearson–Lande–Arnold framework (see Section 2.4) to handle changes in polygenic scores over
many generations.A related challenge will be to learnwhatmight have driven past selection events.
With this goal in mind, Berg et al. (15) tested for correlations between polygenic scores in extant
populations and ecological variables, controlling for the relatedness among populations. Beyond
the inherent interest in selection pressures that led to polygenic adaptation, successfully relating
inferences of adaptation with their putative drivers would serve to enhance our confidence in such
inferences.

5. DISCUSSION

Understanding the evolutionary processes that produce heritable variation in complex traits is
essential to interpreting the results of GWASs. GWASs measure the distribution of heritability
in the genome, a distribution that reflects the outcome of numerous mutational perturbations
to the phenotype, each of which is typically too small to measure in experimental assays. Thus,
GWASs offers unique insight into biological function. Importantly, however, the relationship be-
tween function and heritability is not straightforward: The mutations detected in GWASs are
those that have been sifted through the sieve of evolution. Specifically, the relationship between
the effect of an allele on a trait and its frequency, which together determine the contribution of a
locus to heritability, is shaped in nontrivial ways by selection and demography.Understanding how
evolutionary processes shape the distribution of heritability in the genome is therefore essential
to making sense of GWASs.

In turn, GWASs may well end up providing the kind of data that evolutionary biologists were
missing in order to elucidate the processes that maintain heritable variation in complex traits and
that underlie their adaptation.We now think that ubiquitous heritable variation in complex traits
is maintained primarily by a balance between mutation and selection. In principle, the key features
of this balance can be inferred from the genetic architecture revealed by GWASs of these traits.
We also think that polygenic adaptation via complex traits should be ubiquitous and a major mode
of adaptation. In principle, we can learn about polygenic adaptation in recent human evolution
by combining GWAS data with population genetic analyses. We have tried to articulate concrete
challenges and avenues toward achieving these goals throughout the review; doubtless there is
much more to say.
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Some of the most exciting prospects for progress involve connecting the evolution of complex
traits with other aspects of biology. At the molecular end, we could envision relating the processes
that shape heritable variation with the cellular processes that translate this variation into pheno-
typic differences. Notably, Pritchard and colleagues (17, 100) recently proposed simple models
relating phenotypic variation in complex traits to allelic effects on gene expression. We also have
evolutionary models that relate mutational effects on multiple, selected complex traits with the
genetic architecture of a given trait (157). By combining these approaches, we can ask, e.g., how
cis-acting mutational effects on gene expression translate into contributions to trait heritability.
Doing so may help to explain why the heritability of many complex traits is widely distributed
across the genome, rather than being concentrated around specific genes and pathways that are
important to those traits (e.g., 17, 102, 155). It may also help to interpret GWAS results in terms
of function—the initial goal of these efforts. For example, it may turn out that low-frequency,
large-effect associations are more indicative of genes that directly affect a trait, whereas common,
smaller-effect ones are indicative of more general attributes of gene regulatory networks (17, 100,
122). Thus, we believe that the integration of evolutionary models and GWAS data may also turn
out to be key to learning about biology from GWASs.

At the organismal end, we would like to understand how high-dimensional phenotypic vari-
ation is encoded in genomes and molded by selection. GWASs in humans reveal that heritable
variation in many traits is extremely polygenic (e.g., 17, 102, 155) and highly pleiotropic (e.g.,
128), while other evidence suggests that many traits must be held fairly constant for the organism
to function. In turn, theory suggests that there are inherent limitations on the number of traits
that can be independently selected (7). These considerations raise theoretical questions about how
selection can shape heritable variation in many traits simultaneously. They also suggest that ex-
tensions of approaches by Pearson (125), Lande & Arnold (94), Robertson (143), and Price (131)
and their application to large data sets, which include genomic and high-dimensional phenotypic
information, may allow us to estimate an effective number of selected traits and understand how
selection acts on myriad traits simultaneously and effectively (see, e.g., 147).
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