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Contrasting the Genetic Architecture
of 30 Complex Traits from Summary Association Data

Huwenbo Shi,1 Gleb Kichaev,1 and Bogdan Pasaniuc1,2,3,*

Variance-component methods that estimate the aggregate contribution of large sets of variants to the heritability of complex traits have

yielded important insights into the genetic architecture of common diseases. Here, we introduce methods that estimate the total trait

variance explained by the typed variants at a single locus in the genome (local SNP heritability) from genome-wide association study

(GWAS) summary data while accounting for linkage disequilibrium among variants. We applied our estimator to ultra-large-scale

GWAS summary data of 30 common traits and diseases to gain insights into their local genetic architecture. First, we found that common

SNPs have a high contribution to the heritability of all studied traits. Second, we identified traits for which the majority of the SNP

heritability can be confined to a small percentage of the genome. Third, we identified GWAS risk loci where the entire locus explains

significantly more variance in the trait than the GWAS reported variants. Finally, we identified loci that explain a significant amount

of heritability across multiple traits.
Introduction

Large-scale genome-wide association studies (GWASs) have

identified thousands of SNPs associated with hundreds of

traits and diseases.1–4 However, only a fraction of the trait

variance can be explained by the risk SNPs reported by

GWASs. The so-called ‘‘missing-heritability problem’’ is

partly due to the fact that GWASs impose a stringent signif-

icance threshold, which neglects small-effect variants that

fail to reach genome-wide significance at current sample

sizes. As an alternative, analysis of variance components

aggregates the effect of all SNPs regardless of their signifi-

cance5 and has yielded important insights into the genetic

architecture of complex traits.6–11

Heritability has been traditionally estimated with twins

or pedigree12 information, and more recent works have

shown that SNP-based heritability (i.e., the proportion of

trait variance explained by a given set of SNPs) can be esti-

mated from unrelated individuals.8 Standard approaches

for estimating SNP heritability rely on estimating the ge-

netic relationships between pairs of individuals (estimated

genome-wide or across a subset of the genome).8,13,14

Therefore, these analyses require individual-level genotype

data, which prohibits their applicability to ultra-large

GWASs that, as a result of privacy concerns, are typically

available only at the summary level. To solve this bottle-

neck, recent methods have shown that SNP heritability,

both across the genome and for different functional cate-

gories in the genome, can be accurately estimated with

only summary GWAS data.6,7 Although these methods

have enabled powerful analyses making insights into the

genetic basis of complex traits, they rely on the infinites-

imal-model assumption (i.e., that all SNPs contribute to

the trait), which is invalid at most risk loci.6,7 To overcome
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this drawback, alternative approaches have proposed

imposing a prior on the sparsity of effect sizes to further

increase accuracy of estimating SNP heritability.15 A poten-

tially more robust approach is to not assume any distribu-

tion for the effect sizes at causal variants and treat them as

fixed effects in the estimation procedure. Indeed, recent

works have shown that SNP heritability can be estimated

under maximum likelihood from polygenic scores under

a fixed-effects model assuming no linkage disequilibrium

(LD) among SNPs.11

Here, we introduce Heritability Estimator from Summary

Statistics (HESS), an approach for estimating the trait vari-

ance explained by all typed SNPs at a single locus in the

genome while accounting for LD among SNPs. We build

upon recent works11,16 that have treated causal effect sizes

as fixed effects and model the genotypes at the locus as

random correlated variables. Our estimator can be viewed

as a weighted summation of the squares of the projection

of GWAS effect sizes onto the eigenvectors of the LD ma-

trix at the considered locus, where the weights are

inversely proportional to the corresponding eigenvalues.

Through extensive simulations, we show that HESS is un-

biased when in-sample LD is available, regardless of disease

architecture (i.e., the number of causals and distribution of

effect sizes). We extend our method to use LD estimated

from reference panels17 and show that a principal-compo-

nent-based regularization of the LD matrix18 yields

approximately unbiased and more consistent estimates of

local SNP heritability than existing methods.6

We applied HESS to partition common SNP heritability

at each locus in the genome by using GWAS summary

data for 30 traits spanning over 10 million SNPs and 2.4

million phenotype measurements. First, we show that

common SNPs explain a large fraction (ranging anywhere
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from 20% to 90% across the studied quantitative traits) of

the total familial heritability estimated from twin studies.

Second, we showcase the utility of estimates of local SNP

heritability in finding loci that explain more trait variance

than the top associated SNP at the locus—an effect likely

due to multiple signals of association. Third, we contrast

the polygenicity of all 30 traits by comparing the fraction

of total SNP heritability attributable to loci with the high-

est local SNP heritability. We have found that most of the

30 selected traits are highly polygenic and that a small

number of traits are driven by a small number of loci.

Finally, we report 36 ‘‘heritability hotspots’’—genomic re-

gions that attain a significant contribution to the SNP

heritability of multiple traits. Taken together, our results

provide insights into traits where further GWASs and/or

fine-mapping studies are likely to recover a significant

amount of the missing heritability.
Material and Methods

Overview of Methods
We introduce estimators for the trait variance explained by typed

variants at a single locus (local SNP heritability, h2
g;local) from sum-

mary GWAS data (i.e., Z scores, effect sizes, and their SEs). We

derive our estimator under the assumption that effect sizes

at typed variants are fixed and genotypes are drawn from a

distribution with a pre-specified covariance structure. The covari-

ance (i.e., the pairwise correlation between any variants at a

locus, LD) can be estimated in sample from the GWAS genotype

data or from external reference panels (e.g., 1000 Genomes

Project17). Our estimator can be viewed as a weighted summation

of the squared projections of GWAS effect sizes onto the eigen-

vectors of the LD matrix at the considered locus. The finite

sample size of a GWAS, as well as the reference panels used for

estimating LD, induces statistical noise that needs to be

accounted for if estimation is to be accurate. Given that the top

projections make up the bulk of the summation, truncated singu-

lar value decomposition (SVD) lends itself as an appropriate

regularization method to account for noise in the estimated

LD matrices. Finally, we extend our approach to consider multi-

ple independent loci each contributing to the trait and show

how our local estimator can be employed when the total

genome-wide SNP heritability is known (or estimated from other

methods).

Estimating SNP Heritability at a Single Locus from

GWAS Summary Data
Let yi ¼ xT

i bþ ei, where yi is the trait value for individual i, xi are

the standardized (i.e., mean 0 and unit variance) genotypes of in-

dividual i at p typed SNPs in the locus, b ¼ ðb1;/; bpÞ is the vector
of fixed effect sizes for the p SNPs, and ei � Nð0;s2e Þ is the environ-
mental effect. If we assume that b is fixed and X is random, the

phenotypic variance is

Var½y� ¼ Var½Xb� þ s2
e ¼ bTCov½X�bþ s2

e ¼ bTVbþ s2
e ;

(Equation 1)

where V is a p 3 p variance-covariance matrix of the genotype

vector (i.e., the LD matrix). If we make a standard assumption

that the phenotypes are standardized (i.e., Var[y] ¼ 1), it follows
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that the amount of variance contributed by the p SNPs to the trait

(i.e., local SNP heritability) is h2
g;local ¼ bTVb. If the true effect-size

vector b and the LD matrix V are given, then computing h2
g;local is

trivial. In reality, however, the vector b is unknown and is esti-

mated in a GWAS involving n samples and p SNPs, where bbGWAS;i

is estimated as the marginal standardized regression coefficient

for SNP i:

bbGWAS;i ¼
1

n
XT

i y ¼ 1

n
XT

i

��
X1 / Xp

�
bþ e

�
¼
�
1

n
XT

i X1 /
1

n
XT

i Xp

�
bþ 1

n
XT

i e ¼
X
j¼1

p

rijbj þ
1

n
XT

i e;

(Equation 2)

whereXi denotes standardized genotypes for SNP i across the n in-

dividuals, and rij denotes the LD between SNPs i and j. If we extend

to p SNPs at the locus, it follows that bbGWAS ¼ Vbþ ð1=nÞXTe,

where V is the LD matrix. When b is fixed and e is random,bbGWAS is a random variable with E½bbGWAS� ¼ E½Vbþ ð1=nÞXTe� ¼
Vb and Cov½bbGWAS� ¼ Var½Vbþ ð1=nÞXTe� ¼ ð1=n2ÞXTCov½e�X ¼
ðs2e =nÞV ¼ Vð1� h2

g;localÞ=n. By central limit theorem, bbGWAS �
NðVb;Vð1� h2

g;localÞ=nÞ.
As the GWAS sample size (n) increases, bbGWAS converges to

bGWAS ¼ Vb. By simple substitution in Equation 1, it follows

that an estimator for h2
g;local is�

bT
GWASV

�1
�
V
�
V�1bGWAS

� ¼ bT
GWASV

�1bGWAS: (Equation 3)

Unfortunately, the finite sample size of the GWAS induces

statistical noise in the estimation of bGWAS, which leads to biased

estimation if we simply replace bGWAS with bbGWAS above as

E½bbT

GWASV
�1bbGWAS� ¼ trðV�1Cov½bbGWAS�Þ þ bTVb. However, we

can correct for the bias trðV�1Cov½bbGWAS�Þ as follows.

Let bh2

g;local be an unbiased estimator of h2
g;local; then by definition,

E½bh2

g;local� must satisfy E½bh2

g;local� ¼ h2
g;local. Then it follows that

E
hbbT

GWASV
�1bbGWAS

i
¼ tr

 
1� h2

g;local

n
V�1V

!
þ h2

g;local

¼
1� E

hbh2

g;local

i
n

pþ E
hbh2

g;local

i
: (Equation 4)

A sufficient condition for Equation 4 to hold is ð1� bh2

g;localÞp=nþbh2

g;local ¼ bbT

GWASV
�1bbGWAS. Solving for bh2

g;local gives an unbiased

estimator for h2
g;local:

bh2

g;local ¼
nbbT

GWASV
�1bbGWAS � p

n� p
: (Equation 5)

Following quadratic form theory,19 the variance of bh2

g;local is

Var
hbh2

g;local

i
¼
�

n

n� p

	2
 
2p

 
1� h2

g;local

n

!
þ 4h2

g;local

! 
1� h2

g;local

n

!
:

(Equation 6)

Because h2
g;local, the true local SNP heritability, is unknown, we

use bh2

g;local instead. For h2
g;local near 0, Var½bh2

g;local�zð4=ðn�
pÞ2Þh2

g;local þ ð2p=ðn� pÞ2Þ through Taylor expansion around 0.

Thus, the plug-in principle yields an estimation of Var½bh2

g;local�
approximately equal to the truth in the expectation. For smallbh2

g;local (as expected for most loci and traits), Var½bh2

g;local� is domi-

nated by 2p=ðn� pÞ2.
16



Accounting for Rank Deficiencies in LD
In the above derivation, we made the assumption that the inverse

of the LD matrix V exists. In practice, however, as a result of pairs

of SNPs in perfect LD, V is usually rank deficient, and thus V�1

does not exist. In such cases, we use the Moore-Penrose pseudoin-

verse20 Vy. Let q ¼ rank (V); by rank decomposition, V ¼ VAVB,

where VA˛Rp3q and VB˛Rq3p are matrices with full column

rank and full row rank, respectively. Then, trðVyVÞ ¼
trðVy

BV
y
AVAVBÞ ¼ trðVBV

y
BV

y
AVAÞ ¼ trðIqÞ ¼ q. Accounting for the

rank-deficient LD matrix, we obtain an unbiased estimator,bh2

g;local ¼ ðnbbT

GWASV
ybbGWAS � qÞ=ðn� qÞ. We make the same adjust-

ment (replacing p with q) in the variance estimator for bh2

g;local.

Adjusting for Noise in External Reference LD
When genotype data of GWAS samples are not available, we substi-

tute the in-sample LDmatrixVwith external reference LDmatrix bV
estimated from the 1000 Genomes Project17 with a population that

matches the GWAS samples. However, because of limited sample

size, external reference LD matrices contain statistical noise that

biases our estimate. We apply truncated-SVD regularization to re-

move noise from the external reference LDmatrix as follows.

First, note that bbT

GWASV
ybbGWAS ¼

Pq
i¼1si ¼

Pq
i¼1ð1=wiÞ

ðbbT

GWASuiÞ2, where wi and ui are the eigenvalues and eigenvectors,

respectively, of the LD matrix V, and q ¼ rank (V). For external

reference LD matrix bV with eigenvalues and eigenvectors bwi andbui, respectively, the same decomposition holds except that si is re-

placed with bsi ¼ ð1=bwiÞðbbT

GWAS
buiÞ2. In our previous works,21,22 we

proposed regularizing bV by using ridge-regression penalty. This

regularization method is equivalent to replacing bwi with bwi þ l,

where l is the ridge-regression penalty. The ridge-regression pen-

alty shrinks the quadratic term bbGWAS
bVybbGWAS toward 0, which

can lead to downward bias. We also notice that a large l is needed

to drive down the noise (bsi for large i), which diminishes the true

signal at the same time. Here, we show through simulations that

most of the signal in bbT

GWASV
ybbGWAS comes from si, where

i � q, and that bsizsi for i � q (see Figure S1). These results moti-

vate us to apply truncated SVD to remove noise in bV, i.e., we esti-

mate bbT

GWASV
ybbGWAS by

Pk
i¼11=bwiðbbT

GWAS
buiÞ2, where k � q. Let

gðbbGWAS; kÞ ¼
Pk

i¼1ð1=bwiÞðbbT

GWAS
buiÞ2; through eigen decomposi-

tion of bV, it can be shown that

E
h
g

bbGWAS; k

�i
¼

k


1� h2

g;local

�
n

þ
Xk
i¼1

bwi


buT

i b
�2

: (Equation 7)

Because the true local SNP heritability is h2
g;local ¼

Pq
i¼1wiðuT

i bÞ2, if
we assume bui ¼ ui for i � q, Equation 7 is an approximation of

h2
g;local with bias kð1� h2

g;localÞ=n. Correcting for this bias yields

the estimator for the single-locus case:

~h
2

g;local ¼
ng

bbGWAS; k

�
� k

n� k
: (Equation 8)

In theory, the variance of ~h
2

g;local is Var½~h2

g;local�zð4=ðn� kÞ2Þbh2

g;local þ ð2k=ðn� kÞ2Þ. In practice, however, this gives an underes-

timation of the truth. Thus, we replace k with q ¼ rank (V).

Extension to Multiple Independent Loci
For genomes partitioned into m independent loci, the linear

model for individual i’s trait value becomes yi ¼ xT
i;1b1 þ.þ

xT
i;mbm þ ei, where xi;j denotes the genotypes at the pi SNPs in

the ith locus for individual i, and bi denotes the effect sizes of
The A
SNPs in this locus. On the basis of the revised model, we decom-

pose Var[y] into

Var½y� ¼ Var½X1b1� þ/þ Var½Xmbm� þ s2
e

¼ h2
g;local;1 þ/þ h2

g;local;m þ s2
e ; (Equation 9)

where h2
g;local;i denotes the local SNP heritability contributed by the

ith locus. In the case of multiple independent loci, the noise term

s2e is equal to 1�Pm
j¼1h

2
g;local;j. Thus, in order to correct for the bias

generated by s2e , we need to know h2
g;local;j for all j. After accounting

for bias and adjusting for noise in external reference LD ð bViÞ ac-
cording to the strategies outlined in previous sections, we arrive

at the estimator

bh2

g;local;i ¼
ng

bbGWAS;i; ki

�
�


1�Pm

j¼1;jsi
bh2

g;local;j

�
ki

n� ki
; (Equation 10)

which defines a system of linear equations involving m variables

ðbh2

g;local;iÞ and m equations. We can solve a similar system of linear

equations to obtain the variance estimate

Var
hbh2

g;local;i

i
¼
�

n

n� ki

	2�
2ki
bs2
e

n
þ 4bh2

g;local;i

	 bs2
e

n

þ
�

ki
n� ki

	2 Xm
j¼1;jsi

Var
hbh2

g;local;j

i
; (Equation 11)

where bs2
e ¼ 1�Pm

j¼1
bh2

g;local;j.

In the special case when k1 ¼ / ¼ km ¼ k (i.e., all loci use

the same number of eigenvectors in the truncated-SVD regulariza-

tion of LD matrices), Equation 10 simplifies as follows: bh2

g ¼Pm
i¼1
bh2

g;local;i ¼
Pm

i¼1ðngðbbGWAS;i; kÞ�ð1� bh2

g þ bh2

g;local;iÞkÞ=ðn� kÞ ¼
ðn=ðn� kÞÞPm

i¼1 gðbbGWAS;i; kÞ � ðk=ðn� kÞÞ ðm�mbh2

g þ bh2

g Þ: This

yields the following estimate for the total genome-wide SNP

heritability:

bh2

g ¼ n

n�mk

Xm
i¼1

g

bbGWAS;i; k

�
� mk

n�mk
; (Equation 12)

which has variance

Var
hbh2

g

i
¼

 n

n�mk

�2Xm
i¼1

Var
h
g

bbGWAS;i; k

�i
z

 n

n�mk

�2 2mk

ðn� kÞ2:

(Equation 13)

Thus, if k is chosen such that n � mk is small (i.e., n/(n � mk) is

large), the estimates of genome-wide SNP heritability become un-

stable with large variance. To ensure stable estimates and reduce

variance (at the cost of some bias), we recommend choosing k

such that n/(n � mk) is less than 2 when using our estimator for

genome-wide estimation.

Known Genome-wide SNP Heritability
In many cases, the estimate of total genome-wide SNP heritability

ðh2
g Þ and its variance ðVar½h2

g �Þ are known (e.g., estimated from in-

dividual-level data). In those cases, one can simply plug h2
g into

Equation 10 to obtain local estimates of heritability h2
g;local;i:

bh2

g;local;i ¼ g

bbGWAS;i; k

�
� k

n



1� h2

g

�
; (Equation 14)

from which we conclude

Var
hbh2

g;local;i

i
¼ Var

h
g

bbGWAS;i; k

�i
þ
�
k

n

	2

Var
h
h2
g

i
: (Equation 15)
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Table 1. Estimates of Total SNP Heritability and the Amount of h2
g Attributable to Loci Containing GWAS Index SNPs, h2

g ;local;GWAS, and
Index SNPs Only, h2

GWAS

Trait h2
g (% SE) h2

pub (%) h2
g=h

2
pub h2

GWAS (% SE) h2
g ;local;GWAS (% SE) h2�

g ;local;GWAS (% SE) Enrichmenta (SE)

BMI1 16.5 (0.5) 4223 0.39 1.6 (0.001) 3.1 (0.1) 3.1 (0.1) 3.7 (0.4)

Height2 59.4 (0.3) 6923 0.86 13.9 (0.002) 32.0 (0.2) 24.0 (0.2) 1.5 (0.1)

Hemoglobin24 17.9 (2.1) 3725 0.48 2.2 (0.003) 1.9 (0.3) 1.8 (0.3) 7.6 (1.4)

Mean cell hemoglobin24 29.3 (2.2) 5226 0.56 7.2 (0.003) 6.2 (0.4) 6.1 (0.4) 9.9 (1.9)

Concentration of mean
cell hemoglobin24

10.9 (2.5) 4827 0.23 0.4 (0.003) 0.5 (0.2) 0.5 (0.2) 6.7 (1.8)

Mean cell volume24 26.3 (2.0) 5226 0.51 6.5 (0.004) 5.7 (0.4) 5.6 (0.4) 8.1 (1.3)

Packed cell volume24 16.7 (2.5) 3025 0.56 1.4 (0.003) 0.9 (0.2) 0.8 (0.2) 6.0 (1.4)

Red blood cell count24 22.0 (2.3) 5626 0.39 3.6 (0.004) 2.6 (0.3) 2.6 (0.3) 6.4 (1.6)

Number of platelets28 27.5 (1.5) 5725 0.48 3.5 (0.003) 3.9 (0.3) 3.9 (0.3) 5.7 (0.9)

Fasting glucose29 22.3 (2.3) 6630 0.34 2.6 (0.002) 1.7 (0.2) 1.6 (0.2) 8.0 (2.5)

Fasting insulin29 19.9 (2.4) 3631 0.55 – – – –

HBA1C32 20.8 (2.3) 7530 0.28 1.8 (0.003) 0.9 (0.2) 0.9 (0.2) 6.6 (1.9)

HOMA-B29 20.3 (2.4) 7233 0.28 0.6 (0.001) 0.4 (0.1) 0.4 (0.1) 7.5 (1.9)

HOMA-IR29 19.9 (2.4) 3831 0.52 – – – –

HDL3 39.4 (0.9) 4234 0.94 5.8 (0.002) 10.7 (0.2) 10.5 (0.2) 4.6 (1.3)

LDL3 33.0 (1.0) 4034 0.82 7.8 (0.002) 8.4 (0.2) 8.3 (0.2) 5.1 (0.9)

TC3 35.5 (0.9) 5035 0.71 8.0 (0.002) 9.3 (0.2) 9.3 (0.2) 4.3 (0.6)

TG3 34.8 (0.9) 4036 0.87 5.2 (0.002) 8.0 (0.2) 8.0 (0.2) 5.8 (1.4)

Education years37 19.9 (0.8) 4037 0.50 0.1 (0.002) 0.2 (0.0) 0.2 (0.0) 3.2 (1.4)

Forearm BMD38 17.4 (2.2) 8439 0.21 0.3 (0.001) 0.5 (0.1) 0.5 (0.1) 22.4 (7.7)

Femoral-neck BMD38 24.1 (2.1) 8439 0.29 2.0 (0.003) 2.0 (0.2) 2.0 (0.2) 7.1 (1.0)

Lumbar spine38 25.1 (2.0) 8439 0.30 2.2 (0.003) 2.2 (0.3) 2.2 (0.3) 6.1 (0.8)

Age at menarche40 27.8 (0.7) 4941 0.57 2.6 (0.002) 3.8 (0.2) 3.7 (0.2) 2.9 (0.2)

College37 19.4 (0.8) 4037 0.48 0.1 (0.001) 0.1 (0.0) 0.1 (0.0) 3.5 (0.9)

RA42 66.3 (0.9) 5543 1.21 11.2 (0.003) 22.0 (0.3) 22.1 (0.3) 9.8 (4.3)

SCZ44 64.5 (0.7) 8145 0.80 6.2 (0.004) 9.2 (0.2) 9.2 (0.2) 2.3 (0.1)

Crohn disease46 35.9 (1.8) 5347 0.68 3.8 (0.002) 5.9 (0.4) 5.9 (0.4) 4.8 (0.7)

Inflammatory bowel
disease46,b

35.3 (1.4) – – 4.9 (0.002) 6.7 (0.3) 6.6 (0.3) 4.6 (0.5)

Ulcerative colitis46 31.9 (2.1) 5847 0.55 2.7 (0.002) 4.1 (0.3) 4.1 (0.3) 5.4 (1.0)

Type 2 diabetes48 25.4 (1.6) 2649 0.98 1.3 (0.002) 1.1 (0.2) 1.1 (0.2) 3.9 (0.7)

h2�
g;local;GWAS is the same as h2

g;local;GWAS except that GWAS index SNPs were excluded from the computation. In Table S2, we report h2y
g;local;GWAS, which we obtained

by excluding all GWAS hits. We also report estimates of familial heritability ðh2
pubÞ obtained from twin or family studies. At the bottom of the table, we list case-

control traits where our estimate of h2
g is biased as a result of ascertainment.

aSimilar to Finucane et al.,7 we define enrichment as the ratio between the fraction of h2
g attributable to h2�

g;local;GWAS and the genomic fraction covered by these loci.
We obtained SEs by a jackknife over the loci.
bInflammatory bowel disease refers to the union of Crohn disease and ulcerative colitis.
In general, the sum of local SNP heritability bh2

g ¼Pm
i¼1
bh2

g;local;i is

not necessarily equal to h2
g as a result of variance in bh2

g;local;i.

Given that Var½bh2

g � ¼ Var½Pm
i¼1
bh2

g;local;i�zð2mk=ðn� kÞ2Þ þ ðmk=nÞ2
Var½h2

g �, we recommend choosing k such that mk/n is less than

0.5 to ensure stable estimate and reduce variance.We assessed esti-

mation of the local SNP heritability with or without known

genome-wide SNP heritability by using the height GWAS data
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(see Table 1) with a previously reported h2
g ¼ 0.50.2 The estimates

of local SNP heritability were virtually indistinguishable between

the two approaches (R ¼ 1.0; see Figure S8).
Simulation Framework
We used HAPGEN250 to simulate genotypes for 50,000 individuals

by starting with half of the 505 European (EUR) individuals in the

1000 Genomes Project17 for SNPs with minor allele frequency
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(MAF) greater than 5% in randomly selected regions spanning

0.75–1.5 Mb on chromosome 1. We reserved the other half of

the EUR individuals as an external reference panel. From the simu-

lated genotypes of the 50,000 individuals, we then simulated phe-

notypes according to the linear model y ¼ Xbþ e, where X is the

standardized genotype matrix with mean 0 and variance 1 at each

column.

We investigated the performance of our method under a wide

range of simulations. We first selected a subset C of jC j causal

SNPs at random and then simulated the effect sizes at these

SNPs as bC � Nð0; ðh2=jC j ÞIjC j Þ, where h2 is the heritability to be

simulated. We drew e from Nð0; ð1� h2ÞInÞ such that E½y� ¼ 0,

Var½y� ¼ 1, and the SNP heritability for this locus is h2. For

fixed b, we then generated replications of trait values y by re-draw-

ing e. Finally, we computed summary statistics, bbGWAS, according

to the procedures outlined in previous sections. We simulated

500 sets of summary statistics for each simulation scenario.

Although C and b were fixed within each of the 500 sets of

simulated summary statistics, they varied across different set of

simulations.

We also investigated simulations where b varied across simu-

lated individuals. In each of the 500 sets of simulated GWAS sum-

mary statistics, we first selected a subset C of jC j causal SNPs at

random. Then, for each individual, we drew bC;i from Nð0;aih
2Þ

for i ¼ 1;/; jC j , where a governs the proportion of heritability

contributed by each SNP and satisfies
PjC j

i¼1ai ¼ 1. In the special

case when ai ¼ 1=jC j for all i, each causal SNP contributes the

same proportion of heritability. Here, C and a were fixed in each

simulation set but varied across the 500 sets of simulations.

Given that in simulations we assume that all SNPs are typed and

that environmental effect ðeÞ is drawn independently for each in-

dividual, cryptic relatedness among individuals in the 1000 Ge-

nomes Project17 will have minimal effect on our estimates.
Empirical Datasets
We obtained publicly available GWAS summary data for 30 traits

in individuals of European ancestry from 11 GWAS consortia

(see Table 1). For quality control, we restricted our analysis to

GWASs involving at least 20,000 samples and excluded sex chro-

mosomes. We used the same definition of independent loci as in

Berisa and Pickrell51 (1.6 Mb on average). To reduce statistical

noise in the LD matrix, we focused on estimating heritability

attributable to common SNPs (i.e., SNPs with a MAF greater than

5% in the EUR 1000 Genomes data17). Prior to estimating herita-

bility, we also removed SNPs with ambiguous alleles in compari-

son to the reference panel (Table S1) and applied our estimator

as defined in Equation 10. For each trait, we chose k, the number

of eigenvectors used for estimating local heritability across all loci,

on the basis of the GWAS sample size (see Material and

Methods)—a large k for a GWAS with a large sample size and a

small k for a GWAS with a small sample size. To avoid inflation

due to noise in LD, we capped k at a maximum of 50 (see Table

S2). To ensure stable estimates, we also recommend filtering out ei-

genvectors with corresponding eigenvalues less than 1.

Most GWASs apply a genomic control (GC) factor ðlGCÞ to c2 sta-

tistics to correct for inflation due to population structure52 and

publish GC-corrected effect-size estimation ðbbGWAS;GCÞ. We note

that all of the summary GWAS data we analyze in this work

are adjusted for population structure to various degrees and have

at least one round of genomic correction. However, recent

works6,53 have shown that lGC cannot distinguish between infla-
The A
tion and true polygenicity and overestimates the correction factor

needed for population stratification. Although dividing the c2 sta-

tistics by lGC has little effect on computing the ratios between

local and genome-wide heritability,7 it can result in underestima-

tion of both local and genome-wide SNP heritability—when

applied on GC-corrected summary data directly, our method

can produce negative and uninformative estimates of local

and total SNP heritability. To account for this, we first estimate

lGC from summary GWAS data and re-inflate the effect sizes

ðbbGWAS;GCÞ with estimated
ffiffiffiffiffiffiffiffi
lGC

p
before obtaining estimates of

local SNP heritability. We estimate lGC on the basis of the observa-

tion that at a locus with no heritability (i.e., h2
g;local;i ¼ 0),

E½bbT

GWAS;GC;iV
y
i
bbGWAS;GC;i� ¼ ð1=lGCÞðqi=nÞ, where bbGWAS;GC;i ¼bbGWAS;i=

ffiffiffiffiffiffiffiffi
lGC

p
denotes the GC-corrected effect-size vector, and

E½bbT

GWAS;iV
y
i
bbGWAS;i� ¼ qi=n, where bbGWAS;i is the vector of effect-

size estimation without GC correction. To estimate lGC, we treat

the bottom 50% of all loci with the smallest estimated local SNP

heritability as loci for which h2
g;local;i ¼ 0 and regress the vector

ðqi=nÞ against the vector ðbbT

GWAS;GC;iV
y
i
bbGWAS;GC;iÞ. We note that us-

ing the bottom 50% of all loci is a conservativemeasure to account

for ascertainment in choosing loci and can result in estimated lGC

less than 1. In practice, we only re-inflate bbGWAS;GC if the estimated

lGC is greater than 1. We report estimated lGC for all 30 traits in

Table S1. Overall, our estimated lGC is consistent with the reported

lGC. For example, our estimated lGC for BMI (1.33), high-density

lipoprotein (HDL; 1.13), low-density lipoprotein (LDL; 1.16),

total cholesterol (TC; 1.16), and triglycerides (TG; 1.18) are

consistent with the reported lGC for BMI (1.38)1 and lipid traits

(1.10–1.15).3

We define GWAS hits as SNPs with p values less than 5 3 10�8.

To avoid overestimation due to LD tagging, for each locus, we only

select the most significant (i.e., smallest p value) GWAS hit as the

index SNP. Heritability attributable to index SNPs, h2
GWAS, is then

estimated as
PI

i¼1
bb2

i , where bbi is the effect size of the ith index

SNP, and I is the number of index SNPs. We estimate the variance

of bh2

GWAS as Var½bh2

GWAS� ¼
PI

i¼1Var½bb2

i � ¼
PI

i¼1Var½ðZi=
ffiffiffi
n

p Þ2� ¼PI
i¼1Var½ð1=nÞc2

i � ¼ 2I=n2.

For case-control traits, an adjustment factor is needed to correct

for ascertainment.54 We note that this adjustment factor is

derived on the basis of the infinitesimal model and does not

apply to our method, which assumes a fixed-effects model.

Therefore, we report only unadjusted heritability estimates for

case-control traits. However, we note that the ratio between local

and genome-wide SNP heritability is not affected by this scaling

factor.
Results

Performance of HESS in Simulations

We used simulations to assess the performance of our pro-

posed approach under a variety of disease architectures.

First, we confirmed that by accounting for rank deficiency

in the LD matrix, we obtained unbiased estimation,

whereas the approach that uses the number of SNPs to

correct for bias generated by the quadratic form16 leads

to a severe underestimation of heritability (Figure S2). Sec-

ond, we found that using the top 10–50 eigenvectors of the

LD matrix (see Material and Methods) provides a good
merican Journal of Human Genetics 99, 139–153, July 7, 2016 143
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Figure 1. Estimates of Total SNP Heritability in theWhole-Chro-
mosome Simulation for Different Numbers of Eigenvectors
Included
We saw a slight downward bias when the number of eigenvectors,
k, was small (e.g., k ¼ 30) and an upward bias when k was large
(e.g., k ¼ 60). When k ¼ 50, we attained an approximately unbi-
ased estimate of total SNP heritability. Error bars represent twice
the SE.
approximation of the estimated heritability when LD is

estimated from external reference panels (Figure S1).

Because we used approximately independent loci,51 we

also assessed potential bias due to cross-tagging of herita-

bility resulting from LD across adjacent loci. We simulated

summary statistics based on 10,000 randomly selected

SNPs spread across the entire chromosome 22; 20% of

these SNPs were causal, and total SNP heritability varied

from 2% to 10%. For each simulation scenario, we simu-

lated 500 sets of summary statistics and used Equation 10

to estimate local SNP heritability. We estimated total SNP

heritability by summing all local estimates of SNP herita-

bility. We found that when HESS used the top k¼ 30 eigen-

vectors in the truncated-SVD regularization of LDmatrices,

it yielded a downwardly biased estimate of total SNP heri-

tability, whereas at k ¼ 50, HESS was approximately unbi-

ased (Figure 1). Therefore, we used k ¼ 50 as the default

unless otherwise noted.

Next, we compared HESS to the recently proposed LD

Score Regression (LDSC),6,7 which provides estimates of

heritability from GWAS summary data. Although LDSC is

not designed for local analyses as a result of model assump-

tions on polygenicity, it is able to estimate the trait vari-

ance attributable to any sets of SNPs. As expected, in our

simulations, where all individuals shared the same effect-

size vector (b), we found that LDSC was sensitive to the

underlying polygenicity and, in general, yielded biased

estimation of heritability. In contrast, HESS provided an

unbiased estimation of heritability across all simulated dis-

ease architectures when in-sample LD was available. For

example, in simulations where 20% of the variants at the

locus were causal and explained 0.05% of the heritability,

HESS yielded an estimate of 0.054% (SE ¼ 0.004%),
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whereas LDSC yielded 0.025% (SE ¼ 0.0009%) (Figure 2).

We attribute this to the fact that HESS does not make

an assumption on the distribution of effect sizes at causal

variants by treating them as fixed effects in the model.

When LD from the sample was unavailable and had to

be estimated from reference panels, both methods were

biased, but HESS (with k ¼ 30 or 50 eigenvectors in the

truncated-SVD regularization of the LD matrix) yielded re-

sults closer to the simulated heritability at randomly

selected loci with different widths (Figure 2, Figure S3,

and Figure S4). Similar results were obtained in simulations

where b was drawn independently for each individual (see

Figure S5). This is expected because when conditioned on a

fixed b, HESS is unbiased (i.e., E½bh2

g

b� ¼ h2
g ), and then the

expectation of the HESS estimate across all possible b is still

unbiased (i.e., E½bh2

g � ¼ E½E½ch2
g

b�� ¼ E½h2
g � ¼ h2

g ).

Finally, unlike LDSC, which employs a jackknife

approach to estimate variance in the estimated heritability

(thus requiring multiple loci), HESS provides a variance

estimator according to quadratic form theory (see Material

and Methods). Because external reference LD is typically

computed on the basis of much smaller samples than in-

sample LD, subtle patterns in in-sample LD cannot be

captured by external reference LD. Thus, external reference

LD matrices usually have lower rank than their corre-

sponding in-sample LDmatrices, resulting in underestima-

tion of Var½bh2

g;local;i� (see Equation 11). We verified this in

simulations and found that the variance estimator yielded

unbiased estimates when in-sample LD was available and

underestimated theoretical variance when external refer-

ence LD was used (Figure S6). We also note that cryptic

relatedness in GWAS samples can drive down the effective

sample size (n); thus, our estimates of SEs could be deflated

for GWASs in which the effective sample size is signifi-

cantly smaller than the actual sample size.

Common Variants Explain a Large Fraction of

Heritability

Having demonstrated the utility of HESS in simulations,

we next applied our method to empirical GWAS summary

data across 30 complex traits and diseases spanning more

than two million phenotypic measurements (see Material

and Methods, Table 1, and Table S1). We estimated the

local SNP heritability at 1,703 approximately independent

loci51 by using EUR individuals from 1000 Genomes to es-

timate LD.17 We first investigated the total contribution of

common variants (MAF > 5%) to the heritability of com-

plex traits. We summed up the local estimates provided

by our method to obtain an estimate for the total

genome-wide heritability for all genotyped SNPs. For traits

where the SNP heritability was previously reported, we

found a broad consistency between our estimate and

the existing estimates from the literature (see Table 1).

For example, HESS estimated a genome-wide SNP heritabil-

ity ðh2
g Þ of 16.5% (SE ¼ 0.5%) for BMI and 59.4%

(SE ¼ 0.3%) for height, whereas the previously reported es-

timates were 21.6% (2.2%) for BMI1 and 62.5% for height.2
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Figure 2. HESS Provides Superior Accuracy over LDSC in Estimating Local Heritability
HESS attains unbiased estimates when in-sample LD is used (top) and approximately unbiased estimates when reference LD is used
(bottom). The mean and SE in these figures were computed on the basis of 500 simulations, each involving 50,000 simulated GWAS
datasets. Error bars represent twice the SE.
We also found that our estimates of total SNP heritability

broadly correlate with those obtained by LDSC (see

Figure S7). Most importantly, we found that common

SNPs explain a large fraction (ranging from 21% for fore-

arm bone mineral density [BMD] to 94% for HDL) of the

previously reported familial heritability for all quantitative

traits we interrogated (Table 1). Although we observed a

very high contribution of common SNPs to case-control

traits as well, we note that our estimator can be biased as

a result of ascertainment in this case (see Material and

Methods).
Hidden Heritability at Known Risk Loci

Recent works10,55 have shown that the total heritability ex-

plained by all variants at GWAS risk loci ðh2
g;local;GWASÞ is

higher than heritability explained by GWAS index SNPs

ðh2
GWASÞ. This suggests that a fraction of the missing herita-

bility is due to multiple causal variants or poor tagging of

hidden causal variants at known risk loci. We used HESS

to quantify the gap between these two estimates of

heritability at known risk loci. We found several traits for

which h2
g;local;GWAS was significantly larger than h2

GWAS. For

example, h2
g;local;GWAS was over two times higher (32.0%
The A
[SE ¼ 0.2%]) than h2
GWAS (13.9% [SE ¼ 0.002%]) for height

(Table 1). The difference can be accounted for by incom-

plete tagging of hidden causal variant(s) or allelic heteroge-

neity (i.e., multiple causal variants). Indeed, conditional

analysis identified 36 GWAS loci containing multiple sig-

nals of association (for a total of 87 GWAS risk SNPs at

these loci) for height.56 Restricting to the 28 loci contain-

ing at least 2 of the 87 GWAS risk SNPs, we estimated

h2
g;local;GWAS at 4.6% (SE ¼ 0.06%), a 2.4-fold increase over

h2
GWAS ¼ 1.9% (SE ¼ 0.003%). These loci, 5.8% of all

GWAS loci for height, contributed to 14.2% of the differ-

ence between h2
g;local;GWAS and h2

GWAS across all loci, thus

suggesting that the difference is most likely due tomultiple

signals of association. To confirm this hypothesis, we

applied a conditional analysis from summary GWAS data

by using GCTA-COJO56 for the traits HDL, TG, rheumatoid

arthritis (RA), and schizophrenia (SCZ). We observed that a

moderate fraction (2%–16%) of GWAS loci showed multi-

ple signals of association (see Table 2), thus confirming

that contrasting h2
g;local;GWAS with h2

GWAS is indicative of

multiple signals of association.

In contrast, the majority of traits showed similar

h2
g;local;GWAS and h2

GWAS (see Table 1), suggesting that these
merican Journal of Human Genetics 99, 139–153, July 7, 2016 145



Table 2. GCTA-COJO Analysis of Summary Statistics for the Traits HDL, TG, RA, and SCZ

Trait
No. of Loci with
GWAS Hits

No. of GWAS Loci
with Multiple Signals h2

g;local;GWAS(% SE) h2
GWAS(% SE) Fraction (%)a

HDL3 92 15 6.1 (0.14) 2.8 (0.003) 67.3

TG3 66 9 4.6 (0.12) 3.0 (0.002) 57.1

RA42 51 4 14.8 (0.19) 4.3 (0.005) 97.3

SCZ44 103 2 0.3 (0.003) 0.2 (0.003) 3.6

We define loci with multiple association signals as loci containing at least two of the risk SNPs reported by GCTA-COJO.56 Here, we computed h2
g;local;GWAS and

h2
GWAS by restricting to the loci with multiple association signals.

aThe fraction of difference between h2
g;local;GWAS and h2

GWAS across all loci that is accounted for by loci with multiple signals of association.
loci have a single causal variant that is very well tagged by

the index GWAS variant. For example, it is known that

LDL is strongly regulated by a single non-coding func-

tional variant at the SORT1 locus3,57 and that BMD

(femoral neck) is strongly regulated by WNT16.58,59 We

also observed traits (e.g., mean cell hemoglobin, mean

cell volume, and red blood cell count) for which

h2
g;local;GWAS was estimated to be less than h2

GWAS. This seem-

ingly contradictory result is due to the fact that fewer

eigenvectors in the truncated-SVD regularization of LD

matrices were used for estimating h2
g;local;GWAS for GWASs

with small sample sizes (see Table S2), resulting in down-

ward bias (see Material and Methods).

Contrasting Polygenicity across Multiple Complex

Traits

Most studied common traits exhibit a strong polygenic

architecture (i.e., an abundance of small-effect loci contrib-

uting to a trait).1–3,9 We recapitulated this observation by

using the HESS analysis (Figures 3, S16, and S17) and found

a strong correlation between chromosome length and the

fraction of heritability it explains for most traits that we

have analyzed here (Figures 4 and 5). Consistent with pre-

vious findings,60 we also observed regions (such as fat mass

and obesity associated [FTO] on chromosome 16 and hu-

man leukocyte antigen [HLA] on chromosome 6) contrib-

uting disproportionately to the fraction of heritability for

HDL, BMI, and RA.

Next, we sought to quantify the variability in polygenic-

ity across traits. We rank ordered loci on the basis of their
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Figure 3. Manhattan-Style Plots of Regional Heritability across the
See Figures S16 and S17 for results across all traits.
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estimated local SNP heritability, summed their contribu-

tion, and plotted it against the percentage of genome

they occupy (Figure 6). For highly polygenic traits, we ex-

pected the cumulative fraction of total SNP heritability to

be proportional to the fraction of genome covered,

whereas for less polygenic traits, we expected to see a small

genomic fraction accounting for a large fraction of the to-

tal SNP heritability. For example, in SCZ and height, the

top 1% of loci with the highest local SNP heritability

contributed to 4.2% (SE ¼ 1.0%) and 6.5% (SE ¼ 1.5%),

respectively, of the total SNP heritability of these traits.

This is consistent with previous reports on the degree of

polygenicity of these traits.2,3,9 At the other extremes, RA

and lipid traits (HDL, LDL, TC, and TG) had a lower degree

of polygenicity, such that the top 1% of loci accounted for

14%–30% of the total SNP heritability. However, the low

polygenicity of RA was mostly driven by the HLA region

on chromosome 6. After removing estimates of local SNP

heritability at loci overlapping the HLA region for all traits,

we observed that RA showed a moderate degree of polyge-

nicity for the rest of the genome (see Figure S9). We also

note that the different degrees of polygenic signals across

traits reflect both a difference in disease architecture (i.e.,

distribution of effect sizes) and a difference in the sample

sizes for the GWAS summary data.

A different perspective of polygenicity is to restrict to

GWAS risk loci (because they clearly contain risk variants)

and contrast the proportion of explained variance with the

proportion of the genome they occupy. We observed a

wide distribution across traits reflecting diverse genetic
8 9 10 11 12 13 14 15 16 17 18 19 20 2122

Genome for the Traits Height, HDL, and SCZ
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g per Chromosome across the 30 Traits Studied

Here, we obtained the chromosomal heritability by summing local heritability at loci within the chromosome. For each chromosome,
we plot the box plots of estimates at the 30 considered traits. Chromosomes are ordered by size. With some notable exceptions, all traits
show a strong polygenic signature of genetic architecture.
architectures, as well as different sample sizes for the

GWASs performed for these traits. For example, approxi-

mately 30% of loci across the genome harbored a risk

variant for height and accounted for 50% of the total

SNP heritability (a 1.5-fold enrichment). On the other

hand, although only 5% of the loci contained GWAS risk

variants for HDL, these loci collectively explained 25% of

the SNP heritability of HDL (a 4.6-fold enrichment;

Figure 7).
Loci Contributing to Heritability of Multiple Traits

It has been previously established that a number of the 30

traits investigated in this study share a genetic basis.61

Correlating estimates of local SNP heritability across the

entire genome can serve as a proxy for the magnitude of

pleiotropy, and we can identify pairs of traits whose ge-

netic components tend to localize within the same regions

of the genome (Figure S10). Motivated by this, we searched

for specific pleiotropic loci that we define as loci that

contribute significant non-zero SNP heritability (one-tailed

p value < 0.05, Bonferroni corrected for 1,703 loci) for at

least 3 out of the 30 analyzed traits. In total, we identified

36 such loci distributed genome-wide (see Figure 8 and

Figure S11).

As expected, the HLA region (chr6: 26–34 Mb) dis-

played strong pleiotropic signal, particularly for immu-

nologically relevant phenotypes (see Figure 8). For

instance, the locus chr6: 32–33 Mb contributed a sig-

nificant amount of SNP heritability for eight traits and

had exceptionally strong signals for RA, ulcerative

colitis, and inflammatory bowel disease (see Figure 8).

We also observed several other pleiotropic loci, includ-

ing chr2: 199–202 Mb (contributing to age at menarche,

SCZ, and height), chr6: 134–136 Mb (contributing to

multiple red blood cell traits), and chr19: 45–46 Mb

(contributing to multiple lipid traits). It is well known

that genetic correlations exist among red blood cell

traits,24,62,63 as well as among lipid traits.3,61 Interestingly,

previous research has also revealed that early age at
The A
menarche is associated with later onset of SCZ.64 Our re-

sults suggest that these genetic correlations and associa-

tions might be caused in part by the pleiotropic effect of

these loci.

We note that the selection of traits can bias the identifica-

tion of pleiotropic loci toward over-represented traits such

as height and lipid traits. Nevertheless, analyzing local

SNP heritability is still a useful tool for quantifying the frac-

tion of total SNP heritability contributed by a single locus

and provides valuable insights into identifying pleiotropic

loci.
Discussion

We have presented HESS, an unbiased estimator of local

SNP heritability from GWAS summary data. We extend

existing work16 that estimates heritability under the

fixed-effects model by proposing to regularize the external

reference LD matrix via truncated SVD and generalizing

the estimator to multiple independent loci. Through

extensive simulations, we demonstrate that HESS is unbi-

ased when given in-sample LD and yields more consistent

and less biased estimates of local SNP heritability than

LDSC given external reference LD. We applied HESS on

GWAS summary data of 30 complex traits from 12 GWAS

consortia and showed that our results recapitulate previous

findings. We then used these estimates of local SNP herita-

bility to contrast polygenicity of complex traits, found loci

with multiple causal variants, and identified heritability

hotspots. We note that enrichment of heritability at

GWAS risk loci could be leveraged into prioritizing GWASs

or fine mapping; for example, traits with small enrichment

of heritability at GWAS risk loci are more suitable for

larger GWASs, whereas traits with large enrichment of her-

itability at known risk loci could be investigated further

through fine mapping.

In this work, we focus on estimating local heritability

attributable to common autosomal variants (MAF > 5%)

and ignore potential heritability captured by the sex
merican Journal of Human Genetics 99, 139–153, July 7, 2016 147
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Figure 5. Heritability Attributable to Each Chromosome for Four Example Traits
We obtained the chromosomal heritability by summing local heritability at loci within the chromosome. We obtained SE by taking the
square root of the sum of variance estimation. See Figures S13–S15 for results across all traits. Error bars represent twice the SE.
chromosomes and rare variants. We also note that our

heritability estimates for case-control traits are not

adjusted for ascertainment because it is unclear whether

adjustment derived from the infinitesimal model can be

directly applied for the fixed-effects model. Thus, our re-

ported heritability estimation for case-control traits can

be biased as a result of ascertainment. Future work that ad-

dresses estimation of local heritability including both com-

mon and rare variants, sex chromosomes, and adjustment

of heritability estimates under the fixed-effects model for

case-control traits will further improve the utility of our

approach.

We conclude with several caveats and limitations of our

work. First, our method relies on independent LD blocks,

which are often hard to define as a result of LD leakage

across multiple loci. In this work, we attempt to minimize

LD leakage by using principled approaches to define

approximately independent loci. Second, when only
148 The American Journal of Human Genetics 99, 139–153, July 7, 20
external reference LD is available, our method can yield

biased estimates because external reference LD usually

has a lower rank than its corresponding in-sample LD.

Furthermore, cryptic relatedness in the GWAS data could

also bias our estimation procedure. This makes hypothesis

testing difficult. However, with in-sample LD and larger

reference panels, such as the Haplotype Reference Con-

sortium,65 this bias will be reduced because LD can be in-

ferred more precisely. We also note that our estimated

lGC can be a potential source of bias; thus, our genome-

wide estimate should be interpreted with caution. Third,

for stable estimation, the number of eigenvectors used (k)

in the truncated-SVD regularization should be chosen on

the basis of the GWAS sample size—GWASs with large sam-

ple sizes can afford a large k, whereas GWASs with small

sample sizes should use a small k. We recommend applying

our method to summary data obtained from GWASs

involving around or above 50,000 samples. For GWASs
16
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with small sample sizes, when genome-wide SNP heritabil-

ity is known, one can still apply Equation 14 to obtain sta-

ble estimates of local heritability. We also note that

although using the same number of eigenvectors for all

loci facilitates the study of the statistical properties of our
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estimator, this approach might not be optimal for all

loci. We conjecture that selecting k according to a more

principled approach (e.g., on the basis of the distribution

of eigenvalues) might reduce bias, and we leave such inves-

tigation as future work.
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