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SNP-heritability, the proportion of phenotypic variance attrib-
utable to the additive effects of a given set of SNPs, is a funda-
mental quantity in genetics1; it provides an upper bound on 

risk prediction from a linear model2 and, when defined as a function 
of all SNPs on an array, yields insights into the ‘missing heritability’ 
of complex traits3–5. Traditionally, SNP-heritability is estimated by 
fitting variance components models with restricted maximum like-
lihood (REML)3,6–9. With some exceptions8, REML-based methods 
are not scalable to biobanks that assay hundreds of thousands of 
individuals (for example, UK Biobank10). SNP-heritability can also 
be estimated by assessing the deviation in marginal association 
statistics as a function of LD scores11–14; such methods can scale to 
millions of individuals. More recently, a randomized extension of 
Haseman–Elston regression15 was shown to estimate a single genetic 
variance component from individual-level data as accurately as 
REML methods but in a fraction of the runtime16.

To facilitate inference, all existing methods for genome-wide 
SNP-heritability inference make assumptions on genetic architec-
ture, which is typically parametrized by polygenicity (the number 
of variants with effects larger than some small constant δ) and 
minor allele frequency (MAF)/LD-dependence (the coupling of 
effects with MAF, local LD or other functional annotations)17. Since 
the true genetic architecture of any given trait is unknown, exist-
ing methods are susceptible to bias and often yield vastly different 
estimates even when applied to the same data9,14,18. Although multi-
component methods that stratify SNPs by MAF/LD ameliorate some 
of these robustness issues7,18,19, fitting multiple variance components 
to biobank-scale data with REML is highly resource-intensive8 and 

it is unclear whether multi-component methods based on sum-
mary statistics produce accurate estimates of total SNP-heritability. 
Alternate methods that explicitly model MAF/LD-dependency6,9,14 
are also sensitive to model misspecification6,9,14,18,19. In addition, 
genetic architecture varies across traits and populations due to, for 
example, variable degrees of negative selection acting on different 
traits in different populations17,20–25. Methods that jointly infer SNP-
heritability and parameters such as the strength of negative selection 
or polygenicity14,23,26 are computationally intensive and/or sensitive 
to LD-dependency. Thus, it remains unclear which estimates of 
SNP-heritability computed from biobank-scale data are reliable.

In this study, we investigate whether genome-wide SNP-
heritability can be accurately estimated under a generalized random 
effects (GRE) model that makes minimal assumptions on genetic 
architecture. Under this model, every causal effect has an arbitrary 
SNP-specific variance and SNP-heritability is defined as the sum 
of the SNP-specific variances (Methods). To the best of our knowl-
edge, all existing methods make additional assumptions on top 
of the GRE model (Table 1). For example, GREML3 (and several 
other methods8,16,27) imposes an inverse relationship between MAF 
and allelic effect size whereas Linkage Disequilibrium Adjusted 
Kinships (LDAK) assumes that each SNP-specific variance is 
inversely proportional to both MAF and LD tagging6,9. We derive a 
closed-form estimator for SNP-heritability as a function of marginal 
association statistics and in-sample LD and show that this estimator 
is consistent (approaches the true SNP-heritability as sample size 
increases) and unbiased (its expectation is equal to the true SNP-
heritability) when the number of individuals exceeds the number of 
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SNPs. Most importantly, the accuracy of this estimator is invariant 
to genetic architecture. While the GRE estimator is similar in form 
to previously proposed ‘fixed effect estimators’28,29, our approach 
differs from previous work in two main ways. First, SNP-heritability 
defined under a fixed effect model is different from the estimand 
of interest here (Methods). Second, previous methods have applied 
the estimator locally to identify regions contributing dispropor-
tionately to the genome-wide signal28,29; here we define a different 
genome-wide estimator (equation (1)) that requires large-scale gen-
otype data. In addition, previous work has applied a singular value 
decomposition (SVD)-based regularization to account for errors in 
LD estimation from reference panels29, which was unnecessary in 
the present work (Methods).

Through extensive simulations across a range of MAF/
LD-dependent architectures starting from real genotypes from the 
UK Biobank10 (337,205 individuals, 593,300 SNPs), we find that the 
GRE estimator is nearly unbiased across all architectures whereas 
existing methods are sensitive to model misspecification. For exam-
ple, across 126 distinct architectures, the maximum bias of the GRE 
estimator is 2% of the simulated SNP-heritability whereas strati-
fied LD score regression (S-LDSC)12,13 and SumHer14 yield biases 
between −64% and 28%. For completeness, we also contrast the 
GRE estimator with several REML-based methods in simulations 
at lower sample sizes (due to the computational burden of most 
REML methods) and find that, consistent with recent reports18, all 
REML-based methods are biased when their model assumptions 
are violated, and multi-component REML methods that stratify 
SNPs by MAF and LD score (GREML-LDMS-I18) are more accurate  
than single-component REML methods. The performance of 
the GRE estimator is similar to that of GREML-LDMS-I, thereby  
confirming that SNP-heritability can be accurately estimated with-
out stratifying SNPs or specifying a heritability model6,9,14.

Finally, we use marginal association statistics and in-sample 
LD from 290,641 unrelated British individuals and 459,792 SNPs 
(MAF > 1%) to estimate SNP-heritability for 22 complex traits in 
the UK Biobank10. Consistent with simulations, estimates from 
S-LDSC and SumHer differ from the GRE estimates by a median of 
−9% and 11%, respectively, across the 18 traits with SNP-heritability 

estimates exceeding 0.05. For example, for height, estimates from 
S-LDSC (0.56) and SumHer (0.63) are approximately 7% lower and 
5% higher, respectively, than our estimate of 0.60. Similarly, for 
hypertension, estimates from S-LDSC (0.14) and SumHer (0.18) 
are ±12.5% different from our estimate of 0.16. Taken together, our 
results demonstrate that SNP-heritability can be accurately esti-
mated from biobank-scale data without the prior knowledge of the 
genetic architecture of the trait, motivating the development of scal-
able methods with fewer modeling assumptions.

Results
Overview of the approach. We investigate the utility of an estimator 
derived under a model that makes minimal assumptions on genetic 
architecture. We model the standardized phenotype of an individual 
as β ϵ= +y xT , where x is an M-vector of standardized genotypes, β 
is the corresponding vector of standardized effects and ϵ σ~ N(0, )e

2  
is environmental noise (Methods). The effect size of each SNP is 
assumed to have mean zero and a finite SNP-specific variance (σi

2 
for SNP i) that is allowed to be 0; the covariance between all pairs of 
effects is assumed to be zero. We term this model the ‘GRE’ model  
as, to the best of our knowledge, all existing methods impose addi-
tional assumptions on top of this model. For example, the single-
component GREML model3 assumes σ = ∕h Mi g

2 2  for i = 1, …, M, 
whereas the most recent LDAK model9 assumes σ ∝ − .w f f[ (1 )]i i i i

2 0 75 
(where wi is a SNP-specific LD weight and fi is MAF) (Table 1). Under 
the GRE model, the SNP-heritability explained by the M SNPs is the 
sum of the SNP-specific variances: β σ≡ ∕ = ∑ =h yxVar[ ] Var[ ]g i

M
i

2 T
1

2 
(Methods).

Given genotype measurements across N individuals at M SNPs 
and assuming N > M, the estimator ĥ = β β̂ ̂ ̂ −

−

†

g
N q

N q
V2 T

, where β̂ is the 

vector of estimated marginal effects, ̂ †V  is the pseudoinverse of 
the in-sample LD matrix and q is the rank of the in-sample LD, is 
an unbiased estimator of SNP-heritability under the GRE model. 
That is, ĥ σ= ∑ == hE[ ]g i

M
i g

2
1

2 2 (Methods). Unfortunately, even the 
largest biobanks currently have N < M (for instance, UK Biobank 
has genotyped M ≈ 593,000 SNPs in N ≈ 337,000 unrelated white 
British individuals), which limits the utility of the above estimator. 

Table 1 | Existing methods to estimate SNP-heritability impose additional assumptions on top of the GRE model

Model Assumptions on βi Description

Generalized random 
effects

β =E[ ] 0i
, β σ=Var[ ]i i

2, σ ≥ 0i
2 Each SNP i has a non-negative SNP-specific variance σi

2. Total SNP-heritability is 
≡ σ∑ =hg i

M
i

2
1

2.

GREML-SC3,8,16 β ∕N h M~ (0, )i g
2 Each SNP explains an equal portion of hg

2. In other words, σ = ∕h Mi g
2 2  for all i = 1, …, M.

GREML-MC7,8,18,42,43 ∈∈∑β ∕( )N c h m~ 0, [SNP ]i c C i c c
2 hg

2 is partitioned by a set of disjoint SNP partitions C that span all M SNPs. Partition c ∈ C 
contains mc SNPs that have per-SNP variances ∕h mc c

2 . Total SNP-heritability is ∈= ∑h hg c C c
2 2.

LDAK6,9 β σN~ (0, )i i
2 , ∝σ − α+w f f[ (1 )]i i i i

2 1 Each SNP-specific variance is proportional to a function of fi (the MAF of SNP i) and to wi 
(a SNP-specific weight that is a function of the inverse of the LD score of SNP i). α controls 
the relationship between σi

2 and fi. The most recent recommendation by ref. 9 is to assume 
α = −0.25.

LDSC11 β =E[ ] 0i
, β = ∕h MVar[ ]i g

2 Each SNP explains an equal portion of hg
2 (similar to the GREML-SC model when hg

2 is 
defined with respect to the same set of M SNPs).

S-LDSC12,13,30 β =E[ ] 0i
, ∈β τ= ∑ a iVar[ ] ( )i a A a Each SNP-specific variance is a linear function of a set of annotations A where each a ∈ A 

represents a binary or continuous-valued annotation. a(i) is the value of annotation a at 
SNP i. τa is the expected contribution of a one-unit increase in annotation a to each SNP-
specific variance.

SumHer14 β =E[ ] 0i
, ∝β − α+w f fVar[ ] [ (1 )]i i i i

1 An extension of the LDAK model to operate on summary-level data; can also efficiently 
partition hg

2 by multiple annotations. The most recent recommendations by refs. 9,14 is to set 
α = −0.25.

Under the GRE model, the causal effects at any two SNPs are assumed to be independent (E[βiβj] = 0 for all i ≠ j) and genome-wide SNP-heritability is defined as ≡ σ∑ =hg i
M i

2
1

2, where each σi
2 can be an 

arbitrary non-negative real number as long as ≤ ≤h0 1g
2  (Methods). All existing methods make assumptions on the distribution of βi and/or the form of σi

2 that can be subsumed under the GRE model. To 
simplify notation, we assume for each model that phenotypes are standardized in the population (Var[yn] = 1 for every individual n).
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We therefore extend our approach by partitioning the genome by 
chromosome:

∑
β β

ĥ =
̂ ̂ ̂ −

−=

†
N q

N q

V
(1)

k

k k k k

k
GRE
2

1

22 T

where for chromosome k with pk SNPs, βk̂ is the pk-vector of esti-
mated effects, ̂ †Vk is the pseudoinverse of the in-sample LD matrix 
and qk is the rank of the in-sample LD. Although this estimator 
introduces bias, we show through extensive simulations that the 
magnitude of the bias is extremely small when N is sufficiently 
larger than pk.

The GRE estimator is robust in simulations. To investigate the 
bias and variance of ĥGRE

2 , we perform simulations starting from real 
genotypes (N = 337,205, UK Biobank10). First, we simulate 64 MAF/
LD-dependent quantitative trait architectures from chromosome 
22 (M = 9,654 typed SNPs) by varying the SNP-heritability h( )g

2 , 
proportion of causal variants (pcausal), distribution of causal variant 
MAF (CV MAF) and strength of coupling between effect size and 
MAF/LD; we use ‘LDAK-LD-dependent’ to describe causal effects 
that are coupled with ‘LDAK weights’ (Methods). To compare esti-
mates across different values of hg

2, we assess bias as a percentage 
of the simulated value of hg

2 (relative bias). Errors of individual 
estimates are also expressed as percentages of hg

2. Consistent with 
analytical derivations, the GRE estimator restricted to chromosome 
22 is unbiased across the 64 architectures (bias P value < 0.05/16 is 
considered significant to correct for 16 tests (architectures) at each 
value of hg

2; Methods) (Fig. 1a,c and Supplementary Table 1). The 
average relative bias across the 64 architectures is . × h0 00015% g

2 
and the largest bias under any single architecture is approximately 
± . × h0 2% g

2 (Supplementary Fig. 1a and Supplementary Table 1). 
In simulations of unascertained case-control studies (Methods), the 
GRE estimator is approximately unbiased across a range of disease 
prevalences (for = .h 0 10g

2 , relative bias range is [−0.20%, 0.30%]) and 
has larger variance for lower prevalences (Supplementary Fig. 2a,  
Supplementary Table 2). For ascertained case-control studies,  
estimates are downward-biased but invariant to architecture 
(when = .h 0 10g

2 , prevalence = 0.10 and Ncase = Ncontrol, relative bias 
is approximately −4%) (Supplementary Table 3). Masking 0%, 
50% or 100% of causal SNPs from the observed summary statistics 
induces downward-bias when CV MAF = [0.01, 0.05] due to lower 
average LD between the observed SNPs and masked causal SNPs 
(Supplementary Fig. 3). The analytical estimator of the standard 
error of the mean (Methods) is well-calibrated (Supplementary  
Fig. 4a and Supplementary Table 4). As expected, partitioning chro-
mosome 22 into disjoint, non-independent blocks induces upward 
bias that increases as block size decreases (Supplementary Fig. 5  
and Supplementary Table 5).

Next, we performed genome-wide simulations (N = 337,205 indi-
viduals, M = 593,300 SNPs) to assess ĥGRE

2  with the 22-block approx-
imation (equation (1)). Despite the approximation, ĥGRE

2  is highly 
accurate and robust across all 64 MAF- and LDAK-LD-dependent 
quantitative trait architectures (Fig. 1b,c). Across the 64 architectures, 
the bias ranges from . . × = . ×h h0 07% to 2 1% (average 0 97% )g g

2 2  
(Supplementary Fig. 1b, Supplementary Table 6). Across all 6,400 
simulations (64 genetic architectures × 100 simulation replicates), 
the largest error of any single estimate is approximately × h17% g

2 
(Fig. 1c). As N/M increases, the variance of ĥGRE

2  decreases while 
the relative bias appears to be approximately fixed, ranging between 
0.91% (N = 100,000) and 0.99% (N = 200,000) (Fig. 1d). These trends 
hold for a range of pcausal (Supplementary Fig. 6 and Supplementary 
Table 6), for unascertained case-control studies (Supplementary  
Fig. 2b and Supplementary Table 7), and in a smaller set of simu-
lations with N = 7,685 individuals of South Asian ancestry and 

M = 1,642 SNPs (Supplementary Table 8; Methods). Most impor-
tantly, the accuracy of the GRE estimator is invariant to the underly-
ing architecture (Fig. 1b). The analytical estimator for the standard 
error of the mean is downward-biased (and invariant to genetic 
architecture) with respect to the empirical standard deviation  
of ĥGRE

2  estimates (Supplementary Fig. 4b and Supplementary  
Table 9). For example, across 16 architectures where = .h 0 25g

2 , the 
empirical standard deviation of 100 independent estimates ranges 
from 0.0049 to 0.0064, whereas our estimated standard errors 
of the mean are approximately 0.0036 across all architectures 
(Supplementary Fig. 4b and Supplementary Table 9).

We investigate the effects of unmodeled substructure and/
or cryptic relatedness by filtering individuals at different kinship 
coefficient thresholds (Methods) and find that using stricter relat-
edness thresholds increases the variance of the estimates (due to 
smaller sample size) while reducing bias, albeit not significantly 
(Supplementary Fig. 7, Supplementary Table 10). To assess the 
impact of population stratification, we simulated an effect of the 
first genetic principal component (PC) on phenotype and com-
puted ordinary least squares (OLS) association statistics both with 
and without adjusting for the first PC (Methods). As expected, 
OLS without PC adjustment yields inflated estimates while OLS 
with PC adjustment yields approximately unbiased estimates 
(Supplementary Fig. 8 and Supplementary Table 11). However, 
even when a relatively large proportion of phenotypic variance is 
explained by the first PC (for example, = .h 0 25g

2 , σ = .0 05s
2 ), the 

maximum bias we observe using unadjusted association statistics is 
× h5% g

2 (bias P value = 2.7 × 10−9). Together, these results indicate 
that the GRE estimator is robust to modest amounts of unmodeled 
substructure and/or stratification. In all subsequent analyses, we 
compute ĥGRE

2  with the 22-block approximation as this provides suf-
ficiently accurate estimates and a fair comparison to other methods.

Comparison of methods to estimate SNP-heritability. We com-
pare ĥGRE

2  with existing state-of-the-art methods that are easily  
scalable to the full UK Biobank data (N = 337,205): LD score regres-
sion (LDSC), which assumes α = −1 and no coupling of effects with 
LD11; stratified LD score regression (S-LDSC), which partitions 
hg

2 by a set of annotations of interest12,13; and SumHer, a scalable  
extension of LDAK that explicitly models MAF/LD-dependency 
through a specific form of the SNP-specific variances14 (Table 1).  
To ensure a fair comparison, LD scores for all methods are com-
puted using in-sample LD among the M SNPs, and in all simula-
tions we aim to estimate the SNP-heritability explained by the same 
M SNPs (Methods).

As expected, ĥGRE
2  is robust across all architectures while LDSC, 

S-LDSC and SumHer are sensitive to model misspecification. For 
example, when = .h 0 25g

2  (Fig. 2), LDSC is approximately unbiased 
under the ‘single-component GREML model’ (relative bias = 0.04%, 
P = 0.86) but is sensitive to CV MAF and the degree of coupling 
between effect size and MAF/LD (for example, when pcausal = 1%, 
relative bias ranges from −44% to 50%) (Supplementary Table 12).  
Similarly, SumHer is accurate under the ‘LDAK model’ (relative  
bias = 5.3%) but highly sensitive to other architectures (when 
pcausal = 1%, relative bias ranges from −19% to 22%) (Fig. 2 and 
Supplementary Table 13). S-LDSC (MAF), which partitions hg

2 by 
10 MAF bins (Supplementary Table 14; Methods), is less biased 
than LDSC when effects are coupled with only MAF, but is signifi-
cantly downward-biased when effects are also coupled with LDAK 
weights (for = .h 0 25g

2 , relative bias range is [1.9%, 7.0%] when 
γ = 0 and [−58%, −37%] when γ = 1) (Fig. 2 and Supplementary  
Table 15). S-LDSC with 10 MAF bins and an additional ‘level of LD’ 
annotation, denoted S-LDSC (MAF + LLD) (Methods), produces 
similar results (for = .h 0 25g

2 , relative bias range is [1.8%, 6.5%] when 
γ = 0 and [−80%, −33%] when γ = 1) (Supplementary Table 16).  
In contrast, the relative bias of ĥGRE

2  ranges from 0.45% to 1.3% 
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across the same 16 architectures where = .h 0 25g
2  and pcausal = 1% 

(Fig. 2 and Supplementary Table 6). These trends hold for a range 
of hg

2 and pcausal: across 112 LDAK-LD- and/or MAF-dependent 
architectures, the average and range of the relative bias of each 
method are 0.96% [−0.06%, 2.1%] (GRE), −2.2% [−71%, 70%] 
(LDSC), −22% −62%, 8.7%] (S-LDSC (MAF)), −29% [−89%, 9.0%] 
(S-LDSC (MAF + LLD)) and 2.8% [−27%, 28%] (SumHer) (Figs. 1b 
and 2, Supplementary Figs. 9–12 and Supplementary Tables 6, 12, 
13, 15 and 16). Across 14 alternative LD-dependent architectures 
where SNP-specific variances are coupled with inverse LD scores 
instead of LDAK weights (‘LD score-dependent’ architectures; 
Methods and Supplementary Fig. 13), ĥGRE

2  remains nearly unbi-
ased (relative bias range [0.52%, 1.3%]) whereas S-LDSC (MAF), 
S-LDSC (MAF + LLD) and SumHer are generally downward-biased 
(Supplementary Fig. 14 and Supplementary Table 17).

For completeness, we compare to four widely used REML-
based methods: GREML, which assumes α = −1 and no coupling of 
effects with LD3; GREML-LDMS-I, a multi-component extension 
of GREML that partitions SNPs by MAF and LD score18; BOLT-
REML, a computationally efficient variance components estimation 
method with assumptions similar to those of GREML8; and LDAK, 
which assumes a specific form of the SNP-specific LD weights 
and recommends setting α = −0.25 (refs. 6,9) (Table 1). Because it 
is computationally intractable to apply the REML-based methods 
to thousands of genome-wide simulations with 337,205 individu-
als, we perform simulations using a reduced number of individu-
als (N = 8,430) and SNPs (M = 14,821) (Methods). As expected, the 

single-component methods (GREML, BOLT-REML and LDAK) 
are sensitive to MAF/LD-dependency whereas the GRE estimator is 
robust across all architectures. For example, when = .h 0 25g

2  (Fig. 3), 
GREML and BOLT-REML are accurate under the GREML model 
(GREML: relative bias = −14%, P = 6.0 × 10−3, Supplementary Table 
18; BOLT-REML: relative bias = −0.16%, P = 0.75, Supplementary 
Table 19) and LDAK is approximately unbiased under the LDAK 
model (relative bias = 0.16%, P = 0.77, Supplementary Table 20), 
but all three are sensitive to CV MAF, α and γ. Across 12 architec-
tures where pcausal = 1% (Fig. 3), the relative biases are within [−15%, 
7.9%] (GREML), [−14%, 9.1%] (BOLT-REML) and [−34%, 8.2%] 
(LDAK) (Supplementary Tables 18–20). In contrast, for the same 
12 architectures, ĥGRE

2  yields relative biases in the range [-2.1%, 
1.7%], which is comparable to the relative bias of GREML-LDMS-I 
(range [–2.9%, 1.5%]) using eight GRMs (4 LD quartiles × 2 MAF 
bins) that align with CV MAF (Fig. 3 and Supplementary Tables 21 
and 22). These trends hold over a range of hg

2 and pcausal: across 112 
LDAK-LD- and/or MAF-dependent architectures (Supplementary 
Figs. 15–19), the average and range of the relative bias are 0.09% 
[−4.9%, 6.4%] (GRE), −0.6% [−5.9%, 2.3%] (GREML-LDMS-I), 
−2.9% [−27%, 15%] (GREML), −1.8% [−25%, 18%] (BOLT-
REML) and −8.2% [−44%, 13%] (LDAK) (Supplementary Tables 
18–22). Similar trends are observed for LD score-dependent archi-
tectures (Supplementary Fig. 20 and Supplementary Table 23). In an 
extreme example where CV MAF is tightly concentrated near 1%, 
GREML-LDMS-I with the same eight GRMs as before is downward-
biased whereas the GRE estimator remains robust (Supplementary 
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1 chromosome-wide LD block. Black points and error bars represent the mean and ±2 s.e.m. that were used to test whether the bias under a single 
architecture is significant (Methods). b, Distribution of ĥGRE

2  in genome-wide simulations (M = 593,300 SNPs) where ĥGRE
2  was computed with 22 

chromosome-wide LD blocks. In a and b, each boxplot represents estimates from 100 simulations. Boxplot whiskers extend to the minimum and maximum 
estimates located within 1.5 × interquartile range (IQR) from the first and third quartiles, respectively. c, Distribution of errors for chromosome 22 and 
genome-wide simulations. Each violin plot represents the errors of 6,400 estimates (64 genetic architectures × 100 simulation replicates). d, Distribution 
of relative bias (as a percentage of hg

2) as a function of sample size (N = 100,000, 200,000 or 337,205) in genome-wide simulations. Each violin plot 
represents 64 estimates of relative bias. In c and d, the white diamonds mark the mean of each distribution.
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Fig. 21 and Supplementary Tables 18–22). While the variance of our 
estimator is larger than the variances of the REML-based methods 
(Fig. 3), our approach is designed for sample sizes several orders of 
magnitude larger than what we used in these simulations. In sum-
mary, our results confirm that it is possible to accurately estimate hg

2 
under the GRE model.

SNP-heritability of 22 complex traits in the UK Biobank. Finally, 
we compute ĥGRE

2  for 22 complex traits in the UK Biobank (290,641 
unrelated British individuals, 459,792 SNPs; Methods)10. For com-
parison, we also provide estimates from LDSC, S-LDSC (control-
ling for the baseline-LD model13,30) and SumHer. Of the 22 traits 
analyzed (6 quantitative, 16 binary), we focus on 18 traits for which 
ĥ > .0 05GRE

2  (Table 2). For the six quantitative traits, ĥGRE
2  ranges 

from 0.12 (smoking status) to 0.60 (height). Across the 12 binary 
traits, ĥGRE

2  ranges from 0.064 (autoimmune disorders) to 0.16 
(hypertension) (Table 2). These estimates are robust to the filtering 
of individuals based on relatedness (Supplementary Table 24). We 
also computed ĥGRE

2  from two additional sets of SNPs (MAF > 0.1% 
and MAF > 0.01%) and found that the estimates increase slightly  
for lower MAF thresholds (Supplementary Table 25), which is 
expected due to the increased number of SNPs. To enable a direct 
comparison between ĥGRE

2  and the quantities estimated by LDSC, 
S-LDSC and SumHer, we ran the summary-statistics-based  
methods with LD scores and regression weights computed from  
in-sample LD and estimate hg

2 defined as a function of the same  
set of SNPs (Methods). Across the 18 traits, S-LDSC (baseline-
LD/in-sample) and SumHer (in-sample) differ from ĥGRE

2  by a 
median of −9% and 11%, respectively (expressed as a percentage of  
ĥGRE

2 ) (Fig. 4 and Table 2). As expected11, LDSC (in-sample) yields 
inflated estimates.

To compare ĥGRE
2  to estimates reported in the literature, we  

also ran the summary-statistics-based methods with their recom-
mended parameter settings11,12,14,30 and with LD scores and regres-
sion weights computed from the 1000 Genomes Phase 3 reference 
panel (489 Europeans)31—we note that when running these methods  

as recommended, their estimands are not equivalent to our defi-
nition of hg

2 (see Methods and refs. 11,12,14,19 for details). Across the 
18 traits for which ĥ > .0 05GRE

2 , the median differences with respect 
to ĥGRE

2  are −11% for LDSC (1KG), −14% for S-LDSC (baseline-
LD/1KG) and 38% for SumHer (1KG) (Supplementary Fig. 22 and 
Supplementary Table 26). For nine of these traits, a previous study 
reported single-component BOLT-REML estimates (computed 
from a similar UK Biobank cohort27) that differ from our estimates 
by a median of 8% (Supplementary Table 26).

Runtime and memory requirement. We report the runtime and 
memory requirements for computing ĥGRE

2  with the 22-block 
approximation from 337,000 individuals and 593,000 SNPs. First, 
computing chromosome-wide LD has complexity O Np( )k

2  for chro-
mosome k with pk SNPs. In practice, this step does not impose a 
computational bottleneck because the computations can be paral-
lelized over SNPs. Second, the pseudoinverse of each LD matrix 
is computed via truncated SVD, which has complexity O p( )k

3  for 
chromosome k. For 50,000 typed SNPs this takes about 3 h and 
60 GB of memory. Lastly, given the pseudoinverse LD matrices 
and OLS association statistics, computing ĥGRE

2  has complexity 
+ ⋯ +O p p( )1

2
22
2 . For any of the traits analyzed in this study, this 

takes less than 1 h and requires 24 GB of memory; most of this time 
is spent loading the data into memory. For comparison, running 
LDSC, S-LDSC or SumHer consists of precomputing LD scores and 
SNP-specific weights and performing linear regression to estimate 
the variance parameters. Precomputing LD scores and SNP-specific 
weights can be parallelized over blocks of SNPs. The second step 
(least squares regression) is O(C2M) for M SNPs in the regression 
and C variance parameters.

Discussion
In this study, we show that SNP-heritability can be accurately esti-
mated under minimal assumptions on genetic architecture. Our 
proposed estimator allows the SNP-specific variances to capture 
arbitrary relationships between effect size and MAF/LD, and we 
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demonstrate through simulations that its accuracy is invariant to 
genetic architecture. We show that all existing methods impose 
additional assumptions on the GRE model, and we confirm through 

simulations that these methods can be sensitive to model misspecifi-
cation. One practical advantage of our approach over summary- 
statistics-based methods is that the estimand is always the same for 
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Table 2 | Estimates of hg
2 from the GRE approach, LDSC (in-sample), S-LDSC (baseline-LD/in-sample) and SumHer (in-sample) for 

22 complex traits and diseases in the UK Biobank (N = 290,641 unrelated British individuals, M = 459,792 typed SNPs)

Trait  GRE s.e.m. LDSC s.e.m. S-LDSC s.e.m. SumHer s.e.m.

Smoking status 0.122 3.90 × 10−3 0.178 7.70 × 10−3 0.110 8.50 × 10−3 0.132 4.30 × 10−3

Height 0.602 4.70 × 10−3 0.730 2.70 × 10−2 0.555 3.10 × 10−2 0.634 2.70 × 10−2

BMI 0.285 4.20 × 10−3 0.436 1.20 × 10−2 0.289 1.70 × 10−2 0.315 9.00 × 10−3

WHR 0.173 4.00 × 10−3 0.256 1.20 × 10−2 0.184 1.60 × 10−2 0.198 9.40 × 10−3

Systolic blood pressure 0.159 4.20 × 10−3 0.243 9.00 × 10 −3 0.134 9.70 × 10−3 0.177 5.70 × 10−3

Diastolic blood pressure 0.154 4.20 × 10−3 0.233 8.60 × 10−3 0.130 9.70 × 10−3 0.170 6.40 × 10−3

Eczema 0.116 4.20 × 10−3 0.165 1.10 × 10−2 0.107 1.20 × 10−2 0.130 8.80 × 10−3

Asthma 0.116 4.90 × 10−3 0.163 1.20 × 10−2 0.116 1.70 × 10−2 0.131 1.20 × 10−2

Hypertension 0.162 4.00 × 10−3 0.244 9.40 × 10−3 0.142 1.10 × 10−2 0.180 6.10 × 10−3

High cholesterol 0.082 5.10 × 10−3 0.127 1.30 × 10−2 0.138 5.80 × 10−2 0.088 8.30 × 10−3

Diabetes (any) 0.070 3.70 × 10−3 0.093 5.90 × 10−3 0.062 8.70 × 10−3 0.074 5.00 × 10−3

Type 2 diabetes 0.071 3.80 × 10−3 0.090 6.10 × 10−3 0.057 8.80 × 10−3 0.071 4.00 × 10−3

Hypothyroidism 0.088 5.20 × 10−3 0.142 1.30 × 10−2 0.078 1.20 × 10−2 0.110 1.70 × 10−2

Thyroid disorders 0.084 5.20 × 10−3 0.141 1.30 × 10−2 0.080 1.20 × 10−2 0.110 2.00 × 10−2

Endocrinopathies 0.069 5.10 × 10−3 0.084 7.00 × 10−3 0.058 9.90 × 10−3 0.068 5.00 × 10−3

Cardiovascular Diseases 0.143 5.30 × 10−3 0.228 1.10 × 10−2 0.140 1.40 × 10−2 0.164 6.00 × 10−3

Respiratory and ENT diseases 0.086 5.20 × 10−3 0.120 1.20 × 10−2 0.079 1.40 × 10−2 0.090 9.50 × 10−3

Psoriasis 0.019 5.00 × 10−3 0.071 3.10 × 10−2 0.035 1.20 × 10−2 0.059 4.20 × 10−2

Dermatologic disorders 0.023 5.00 × 10−3 0.049 1.40 × 10−2 0.034 9.90 × 10−3 0.031 1.10 × 10−2

Rheumatoid arthritis 0.008 5.00 × 10−3 0.041 2.10 × 10−2 0.010 7.90 × 10−3 0.021 1.20 × 10−2

Autoimmune disorders (broad) 0.063 5.10 × 10−3 0.105 1.20 × 10−2 0.050 9.50 × 10−3 0.079 1.70 × 10−2

Autoimmune disorders (certain) 0.015 5.00 × 10−3 0.052 2.60 × 10−2 0.005 7.60 × 10−3 0.047 3.40 × 10−2
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a given genotype matrix, whereas the definitions and interpretations 
of the estimands of LDSC, S-LDSC and SumHer depend on which 
SNPs are used in each step of inference (for example, the SNPs used 
to compute LD scores need not be the same SNPs defining the esti-
mand)11,12,19. Overall, our results show that while existing methods 
can yield biases, for the purpose of estimating total SNP-heritability, 
most methods are relatively robust.

We conclude with several caveats and future directions. First,  
the utility of ĥGRE

2  critically depends on the ratio between the  
number of SNPs (M) and the number of individuals (N)—as M/N 
increases, the eigenstructure of the in-sample LD matrix becomes 
increasingly distorted (larger eigenvalues are overestimated; smaller 
eigenvalues are underestimated)32. We mitigate this by assuming 
that chromosomes are approximately independent; as long as N 
exceeds the number of array SNPs per chromosome, ĥGRE

2  provides 
meaningful estimates of SNP-heritability. While the utility of our 
approach is limited by the availability of individual-level biobank-
scale data, this concern will abate as more biobanks are estab-
lished33–35. A major limitation remains with respect to imputed/
sequencing data as M will continue to be orders of magnitude 
larger than N for the foreseeable future. We defer an investigation of  
regularized estimation of LD in high-dimensional settings (M > N) 
to future work.

Second, the theoretical guarantees of ĥGRE
2  rely on the assump-

tion that OLS association statistics and LD are estimated from  
the same genotypes. While summary statistics have been made pub-
licly available for hundreds of large-scale genome-wide association 
studies (GWAS), in-sample LD is usually unavailable for these stud-
ies since most are meta-analyses36. In addition, summary statistics 
are often computed using linear mixed models to control for con-
founding, and previous works have noted that the LD computation 
must be adjusted to accommodate mixed model association statis-
tics36,37. Thus, the sensitivity of ĥGRE

2  to reference panel LD (with or 
without regularized LD estimation) and/or mixed model association 
statistics remains unclear29,38. Furthermore, we simulate phenotypes 
from typed SNPs because imputed genotypes have highly irregular 

LD patterns9,18. Although it would be more realistic to simulate from 
sequencing data18, our simulation design required individual-level 
genotype measurements in biobank-scale sample sizes.

Third, ĥGRE
2  does not correct for population structure/stratifica-

tion. In real data, we mitigate this by considering only unrelated 
individuals (> third-degree relatives) and including age, sex and 
the top 20 PCs as covariates when computing association statis-
tics. While recent work has found evidence of assortative mating 
for some traits in the UK Biobank (for example, height)39, our esti-
mates are robust to different relatedness thresholds, suggesting that 
adjusting for the top 20 PCs sufficiently controls for population 
stratification. Still, it remains unclear how to quantify the bias of 
our genome-wide estimator due to structure or assortative mating 
in real data. Future work is needed to extend the GRE approach to 
control for ascertainment bias15,16,40,41.

Finally, while previous works applied similar estimators (defined 
under fixed effects models) to estimate local SNP-heritability within 
small regions28,29, additional work is needed to extend our approach 
to perform partitioning of SNP-heritability by functional annota-
tions. Existing methods for partitioning SNP-heritability make 
various assumptions on genetic architecture8,12–14,30, motivating the 
development of new methods in this area.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41588-019-0465-0.
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Methods
The generalized random effects model. We model the phenotype for an 
individual n randomly sampled from the population as β ϵ= +y xn n n

T  where 
= …x xx ( )n n nM1

T is a vector of standardized genotypes measured at M SNPs for 
individual n, β β β= …( , , )M1

T is an M-vector of the corresponding standardized 
SNP effects and ϵ σ~ N (0, )n e

2  is environmental noise. We assume Var[yn] = 1 and 
that the genotype at each SNP i is centered and scaled in the population such that 
E[xni] = 0 and Var[xni] = 1; that is, = − ∕ −x g f f f( 2 ) 2 (1 )ni ni i i i

, where gni ∈ {0, 1, 2} 

is the number of copies of the effect allele at SNP i for individual n and fi is the 
population frequency of the effect allele at SNP i. We define the population LD 
between two SNPs i and j to be ≡v x xE[ ]ij ni nj  for all i ≠ j. The population LD matrix 

among the M SNPs is therefore ≡V xCov[ ]n
T . For simplicity, we use ‘SNP effects’ 

in lieu of ‘standardized SNP effects’ to refer to β. We assume that xn and β are 
independent given allele frequencies (f1, …, fM) and V.

Under the GRE model, the first two moments of βi are E[βi] = 0 and β σ=Var[ ]i i
2, 

where σi
2 can be any arbitrary non-negative finite number. We assume the covariance 

between the effects of different SNPs is 0 (that is, Cov[βi, βj] = E[βiβj] = 0 for all  
i ≠ j). Because the SNP-specific variances can capture any degree of polygenicity and 
any relationship between genomic features (for example, MAF and LD) and effect 
size, the GRE model encompasses most realistic genetic architectures (Table 1).

We define total SNP-heritability h( )g
2  to be the proportion of phenotypic 

variance attributable to the additive effects of a set of M SNPs whose genotypes  
are directly measured:
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Thus, hg
2 is defined with respect to a given population and a given set of SNPs. 

By definition, ≤ ≤h0 1g
2 . Similarly, we define regional SNP-heritability h( )k

2  to be 
the proportion of phenotypic variance due to the additive effects of the genotyped 
SNPs in region k. We assume that the set of SNPs that defines hk

2 is a subset of the 
M SNPs that define hg

2 (thus, ≤ ≤h h0 k g
2 2). If region k is the whole genome, =h hk g

2 2.

Estimating SNP-heritability under the GRE model. We are interested in 
estimating hg

2 under the GRE model (equation (2)). In a GWAS with N individuals 
genotyped at M SNPs, let = …X x x( , , )N1

T T T
 be the N × M matrix of standardized 

genotypes (each column of X has been standardized to have mean 0 and variance 1),  
y = (y1, …, yN)T be the N-vector of standardized phenotypes and ̂ = ∕NV X X(1 ) T  
be the M × M in-sample LD matrix (an estimate of population LD, V) with rank q, 
where 1 ≤ q ≤ M. Let X = (X1, …, XK) be the genotype matrices for K independent 
regions spanning all M SNPs (for example, chromosomes). For region k containing 
pk SNPs, Xk is the N × pk standardized genotype matrix and V̂k is the corresponding 
pk × pk in-sample LD matrix with rank qk (1 ≤ qk ≤ pk). We propose the following 
estimator for genome-wide SNP-heritability:
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where β ̂ = ∕N X y(1 )k k
T  is the pk-vector of marginal SNP effects estimated by OLS 

for region k and ̂ †Vk is the pseudoinverse of V̂k. Detailed derivations for ĥGRE
2  can be 

found in the Supplementary Note.

Analytical variance of ĥGRE
2 . Following quadratic form theory29,44, the variance of 

ĥGRE
2  in the single-block case is
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When using the K-block approximation, which assumes that the blocks are 
independent, we approximate equation (3) as the sum of the variances of the local 
SNP-heritabilities:
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Equation (3) is estimated by plugging in ĥGRE
2  and equation (4) is estimated by 

plugging in ĥ ĥ…( , , )K1
2 2 , the estimates of the regional SNP-heritabilities.

Simulation framework. We simulated phenotypes from real genotype array 
data (UK Biobank10) under a range of genetic architectures. We obtained a set 
of N = 337,205 unrelated British individuals by extracting individuals with self-
reported British ancestry who are > third-degree relatives (pairs of individuals 
with kinship coefficient < 1/2(9/2)) (ref. 10) and excluding individuals with putative 
sex chromosome aneuploidy. In all simulations, we standardize the genotypes 
before drawing phenotypes. That is, for each SNP i and individual n, we compute 

= − ∕ −x g f f f( 2 ) 2 (1 )ni ni i i i
, where gni ∈ {0, 1, 2} is the number of minor alleles and 

fi is the in-sample MAF.

Simulations of quantitative traits with no population stratification. Given X and a 
fixed value of hg

2, phenotypes are drawn according to the following model. The 
proportion of causal variants, pcausal, is set to 1, 0.01 or 0.001. Let ci ∈ {0, 1} be the 
causal status of SNP i. If pcausal = 1, ci = 1 for i = 1, …, M. If 0 ≤ pcausal < 1, we draw 
pcausal × M SNPs from the set of SNPs with MAF in one of three ranges: (0, 0.5], 
(0.01, 0.05] or (0.05, 0.5]. We use ‘CV MAF’ to refer to the MAF range from which 
the causal variants are drawn. Standardized effects and phenotypes are then drawn 
according to the model 

σ ∝ −γ α+c w f f[2 (1 )] (5)i i i i i
2 1

β β σ σ… ∼ …N( , , ) (0, diag( , , )) (6)M M1
T

1
2 2

β β… ∣ ~ −y y N hX I( , , ) ( , (1 ) ) (7)N g N1
T 2

where α controls the coupling of MAF and effect size, wi is a SNP-specific LD 
weight and γ ∈ {0, 1} specifies whether effects are coupled with the LD weights. 
We simulated two types of LD-dependent architectures by defining w1, …, wM to 
be either (1) the default ‘LDAK weights’ computed by the LDAK software6 or (2) 
the inverse unpartitioned ‘LD score’ of each SNP computed within a 2-Mb window 
( = ∑−w vi j ij

1 2 where j indexes the set of SNPs within a 2-Mb window centered on 

SNP i)11. When γ = 1, both the LDAK weights and inverse LD score weights cause 
SNPs in regions of higher LD to have smaller effects than SNPs in regions of lower 
LD. We set α to one of two values: α = −1 (a relatively strong inverse relationship 
between MAF and effect size) or α = −0.25 (a weaker inverse relationship between 
MAF and effect size). Each per-SNP variance is multiplied by a scaling factor so 
that σ∑ == hi

M
i g1
2 2. Note that σ = 0i

2  if ci = 0.
Finally, given phenotypes y = (y1, …, yN)T and genotypes = …X x x( , , )N1

T T T
, we 

computed marginal association statistics through OLS: β ̂ = ∕N X y(1 ) T .

Simulations of case-control phenotypes with no population stratification. To simulate 
case-control studies, we first draw each individual’s continuous liability (ln for 
individual n) according to equation (7). For a given population prevalence (0 ≤ dpop 
≤ 1), we computed the corresponding liability threshold L = Φ−1 (1 – dpop), where 
Φ is the cumulative distribution function of the standard normal distribution. Each 
ln was then converted into a case-control status: yn = 1 if ln ≥ L or yn = 0 if ln < L. 
For unascertained case-control studies, we assumed that the proportion of cases 
in the study is equal to the population prevalence (dGWAS = dpop). For ascertained 
case-control studies (dGWAS > dpop), we set dGWAS = 0.5 and selected a random set of 
controls to satisfy Ncase = Ncontrol.

We computed association statistics by regressing the binary case-control 
statuses on genotypes. The GRE estimator produces an estimate of SNP-
heritability on the observed scale ĥ( )obs

2 . Assuming we know the population 
prevalence, we converted ĥobs

2  to the liability scale with the transformation 
ĥ ĥ= − ∕ −d d f L d d(1 ) ([ ( )] (1 ))liab

2
obs
2

pop
2

pop
2 2

GWAS GWAS , where f is the standard 
normal probability density function45.

Simulations with population stratification. To simulate GWAS with population 
stratification, we draw phenotypes from a model where a covariate that is 
correlated to genotypes has a non-zero effect on phenotype. To this end, we 
simulated an effect of the first genetic principal component (PC1). Letting σs

2 be the 
proportion of total phenotypic variance explained by PC1, phenotypes were drawn 
from the model 

ββ β σ… ∣ ~ + − −y y N hX PC I( , , ) ( , (1 ) )N s g s N1
T

1
2 2

where β β σ∕ = =PC y PCVar[ ] Var[ ] Var[ ]s s s1
2

1
2. We compute association statistics 

from one of two models: β ϵ= +y XT , which ignores population stratification and 
other sources of confounding, or β ϵβ= + +y X PC s

T
1 , which controls for the effect 

of PC1.
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Comparison of methods in simulations. Unless otherwise specified, in all 
genome-wide simulations, we used real genotypes of N = 337,205 unrelated British 
individuals measured at M = 593,300 array SNPs to draw causal effects for all M 
SNPs and phenotypes for all N individuals. OLS summary statistics are computed 
for all M SNPs using the simulated phenotypes and real genotypes of all N 
individuals. We compare to three methods that operate on summary statistics and 
are computationally tractable for these simulations: LD score regression (LDSC)11, 
stratified LD score regression (S-LDSC)12,13 and SumHer14.

For LDSC and S-LDSC, we computed the unpartitioned LD score of each  
SNP as a function of its LD to all other SNPs in a 2-Mb window centered on 
the SNP. For each annotation included in S-LDSC, the partitioned LD score of 
each SNP is a function of its LD to all SNPs within a 2-Mb window that are in 
the annotation. For both LDSC and S-LDSC, LD scores were computed with the 
LDSC software (https://github.com/bulik/ldsc/) from a random sample of 40,000 
individuals to reduce the amount of memory required by the software. We ran the 
regression with an unconstrained intercept, using all M SNPs as observations in the 
response variable. Each SNP was weighted to account for heteroscedasticity and 
correlations between association statistics11. For both methods, hg

2 was estimated 
as a function of all M SNP-specific variances by using the flags --not-M-5-50 and 
--chisq-max 99999 (the latter option prevents the LDSC software from dropping 
high-effect SNPs).

We ran S-LDSC in two ways to account for MAF/LD-dependent architectures. 
S-LDSC (MAF) refers to S-LDSC with 10 binary MAF bin annotations (each bin 
contains exactly 10% of the typed SNPs), which is intended to mirror the ten MAF 
annotations in the ‘baseline-LD model’13 (see Supplementary Table 14 for precise 
MAF bin ranges for the UK Biobank Axiom Array). S-LDSC (MAF + LLD) refers 
to S-LDSC with the same 10 MAF bins and an additional continuous ‘level of LD’ 
(LLD) annotation computed by quantile-normalizing the unpartitioned LD scores 
within each MAF bin to a standard normal distribution13. While our definition of 
LLD is intended to mirror the LLD annotation in the baseline-LD model, we did 
not set the LLD of variants with MAF < 0.05 to 0 because our estimand of interest 
includes the effects of SNPs with MAF < 0.05 (ref. 13).

To run SumHer, we used the LDAK software (http://dougspeed.com/ldak/) to 
compute the default ‘LDAK weights’ using in-sample LD6,9,14. We then computed 
‘LD tagging’ (LD scores) using 1-Mb windows centered on each SNP and setting 
α = −0.25 as recommended14. The LDAK software is memory-efficient, allowing  
us to use all 337,205 individuals to compute LDAK weights and LD tagging.  
Unless otherwise specified, all default parameter settings were used to run  
SumHer in simulations.

We also performed simulations with N = 8,430 unrelated individuals at 
M = 14,821 array SNPs. These individuals and SNPs are a subset of the data used 
in the genome-wide simulations, chosen by selecting approximately 2.5% of 
individuals and the first 2.5% of SNPs from the beginning of each chromosome to 
preserve the LD structure among the SNPs. We ran single-component GREML3,46 
(GCTA software https://cnsgenomics.com/software/gcta/) and single-component 
BOLT-REML8 (https://data.broadinstitute.org/alkesgroup/BOLT-LMM/) with 
default parameters. We ran GREML-LDMS-I18,46 using eight GRMs created from 
two MAF bins (MAF ≤ 0.05 and MAF > 0.05) and four LD score quartiles; LD 
scores were computed using the GCTA software with the default window size 
of 200-kb. We ran LDAK using the default LDAK weights, setting α = −0.25 as 
recommended6,9.

A third set of simulations was performed using 7,685 individuals of South 
Asian ancestry in the UK Biobank. This group was composed of individuals of 
Indian (n = 5,716), Pakistani (n = 1,748) and Bangladeshi (n = 221) ancestry. Due to 
the small sample size, we used a reduced set of 803 SNPs from chromosome 21 and 
839 SNPs from chromosome 22 (1,642 SNPs in total) that were chosen so that N/pk 
for each chromosome k was similar to N/pk in the ‘white British’ cohort.

For a given genetic architecture, we generate 100 simulation replicates and 
obtain 100 estimates of hg

2 from each method. We estimate the bias of an estimator 
ĥg

2 under a given architecture as bias ĥ ĥ ĥ= − ≈ ∕ ∑ −=h i h[ ] E[ ] (1 100) ( )g g g i g g
2 2 2

1
100 2 2 

where ĥ i( )g
2  is the estimate from the ith simulation. To test whether the bias is 

statistically significant (null hypothesis: bias ĥ =[ ] 0g
2 ), we assess the z-score of 

the bias ( ĥ ĥ= ∕ . . .z bias[ ] s e m [ ]g gbias
2 2 , where ĥ. . .s e m [ ]g

2  is the standard error of 
the mean of 100 estimates), which follows a N(0, 1) distribution under the null 
hypothesis. The P value of the bias is computed with a two-tailed test. To enable a 
comparison of estimators across different values of hg

2, we assess the relative bias of 

an estimator under a single architecture ĥ ∕h(bias[ ] )g g
2 2  as a percentage of hg

2. In  
Fig. 1a,c, we compute the error of a single estimate as ĥ − ∕i h h( ( ) )g g g

2 2 2; errors are 
also reported as percentages of hg

2.

Analysis of UK Biobank phenotypes. We estimated SNP-heritability for 22 
complex traits (6 quantitative, 16 binary) in the UK Biobank10. We used PLINK47 
(https://www.cog-genomics.org/plink2) to exclude SNPs with MAF < 0.01 and 

genotype missingness > 0.01 as well as SNPs that fail the Hardy–Weinberg test at 
significance threshold 10−7. We retained only the individuals with self-reported 
British white ancestry and no kinship (that is, greater than third-degree relatives, 
defined as pairs of individuals with kinship coefficient < 1/2(9/2)) (ref. 10). After 
removing individuals who are outliers for genotype heterozygosity and/or 
missingness, we obtained a set of N = 290,641 individuals to use in the real data 
analyses. For all traits, marginal association statistics were computed through OLS 
in PLINK, using age, sex and the top 20 genetic PCs as covariates in the regression; 
these 20 PCs were precomputed by UK Biobank from a superset of 488,295 
individuals. Additional covariates were used for waist-to-hip ratio (adjusted 
for body mass index (BMI)) and diastolic/systolic blood pressure (adjusted for 
cholesterol-lowering medication, blood pressure medication, insulin, hormone 
replacement therapy and oral contraceptives). We computed ĥGRE

2  for each trait 
using in-sample LD estimated from all N individuals.

When using LDSC, S-LDSC or SumHer to estimate SNP-heritability, it is 
necessary to define and distinguish between the following sets of SNPs: the set of 
SNPs containing all possible causal SNPs of interest (used to compute LD scores 
and LDAK weights), the set of SNPs used as observations in the regression and 
the set of SNPs that defines the SNP-heritability estimand of interest. We ran 
two versions of LDSC, S-LDSC (controlling for the most recent baseline-LD 
model12,13,30) and SumHer14. First, to enable a direct comparison between  
ĥGRE

2  and the estimands of LDSC, S-LDSC and SumHer, we ran an ‘in-sample LD’ 
version of each method where the M typed SNPs are used to compute LD scores 
and LDAK weights, perform the regression and define the SNP-heritability 
estimand of interest. We refer to these as LDSC (in-sample), S-LDSC (baseline-LD/
in-sample) and SumHer (in-sample). To run LDSC (in-sample) and S-LDSC 
(baseline-LD/in-sample), we used the LDSC software to compute LD scores 
and regression weights within 2-Mb windows centered on each SNP, using a 
random sample of 40,000 individuals to reduce the memory requirement. To run 
SumHer (in-sample), we used the LDAK software to compute LD tagging from 
the genotypes of all N individuals, using 1-Mb windows centered on each SNP 
and setting α = −0.25 as recommended9,14. Unless otherwise specified, all other 
parameters were set to the default settings.

To enable comparisons between ĥGRE
2  and estimates reported in the literature, 

we also ran each method with its recommended parameter settings and LD 
estimated from reference panel sequencing data. We refered to these methods as 
LDSC (1KG), S-LDSC (baseline-LD/1KG) and SumHer (1KG) to indicate that 
LD is estimated from 489 Europeans in the 1000 Genomes Phase 3 reference 
panel31. We ran LDSC (1KG) and S-LDSC (baseline-LD/1KG) with LD scores 
and regression weights computed from 9,997,231 SNPs with minor allele count 
greater than 5 in the reference panel (1-cM windows), and we define the SNP-
heritability estimand to be a function of the array SNPs with MAF > 0.05 (refs. 11,12). 
We ran SumHer (1KG) using 8,569,062 SNPs with MAF > 0.01 in the reference 
panel to compute LDAK weights and LD tagging (1-cM windows) and to define 
the SNP-heritability estimand; we control for a multiplicative inflation of test 
statistics as recommended14. See refs. 11,12,14,19 for details about the definitions and 
interpretations of the estimands of LDSC, S-LDSC and SumHer.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The baseline-LD annotations used in Fig. 4 are available at https://data.
broadinstitute.org/alkesgroup/LDSCORE/. All individual-level genotypes and 
phenotypes were obtained from the UK Biobank (https://www.ukbiobank.
ac.uk); we do not have permission to release this data. The 1000 Genomes Phase 3 
reference panel can be downloaded at http://www.internationalgenome.org/data.

Code availability
Open source code implementing the GRE estimator and our simulation framework 
is available on Github at https://github.com/bogdanlab/h2-GRE.
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used to collect data.

Data analysis The code for the GRE estimator is available at https://github.com/bogdanlab/h2-GRE. We used LDSC v1.0.0 (https://github.com/bulik/
ldsc), GCTA v1.91.6beta (https://cnsgenomics.com/software/gcta/), BOLT-LMM v2.3.2 (https://data.broadinstitute.org/alkesgroup/BOLT-
LMM/), LDAK v5 (http://dougspeed.com/ldak/), PLINK v1.90 beta (https://www.cog-genomics.org/plink2), and Python 2.7.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The baseline-LD annotations used in Fig. 4 are available at https://data.broadinstitute.org/alkesgroup/LDSCORE/. All individual-level genotypes (used in Figs. 1-4) 
and phenotypes (Fig. 4) were obtained from the UK Biobank (https://www.ukbiobank.ac.uk); we did not have permission to release this data. The 1000 Genomes 
Phase 3 reference panel can be downloaded at http://www.internationalgenome.org/data.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No data were generated for this study. We report sample sizes for all publicly available data used in our study.

Data exclusions No data were excluded for our study.

Replication No replication was performed.

Randomization Randomization was not necessary for our study design or statistical analyses.

Blinding Blinding was not necessary for our study design.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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