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Introduction to Coalescence 
 
In our discussion of identity by descent (or inbreeding), we looked forward in time.  In the absence of 
mutation or migration, the probability of IBD increased over time approaching 1.  This means, that 
eventually all the alleles in the population will be descended from a single common ancestor allele.  In 
coalescent theory, we look backward in time to ask when two alleles last shared a common ancestor. 
 

 
From book by A. Cutter (2019). 
 
Time to coalescence for two alleles 
In an ideal population of N diploids, the probability that two alleles have descended from the same 
allele in the previous generation (i.e., the probability of coalescence) is, 
 
PC = 1/(2N) 
 
And the probability of not coalescing is 
 
PNC = 1 - PC = 1 -  1/(2N)  
 
The probability that two alleles coalesce (t + 1) generations ago is 
 

PC,t+1 =  
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---------------------------------------- 
Q4.1)  Explain why this equation makes sense. 
---------------------------------------- 
 
This result is an example of the well-studied geometric distribution that has the general form  P(x) = 
b(1 – b)x-1.   
For this distribution, it is known that E(x) = 1/b and V(x) = (1 – b)/b2. 
 
In our case, b = 1/(2N), so that E(T) = 2N and V(T) = 4N2(1 - 1/(2N)) @ 4N2 

--------------------------------------------------------------------- 
Aside on the Exponential Distribution 
If independent events are occurring at a rate of c events per instant of time, then the time until the first 
event follows an exponential distribution  

 
which has the properties E(t) = 1/c and V(t) = 1/c2.   
 
Because the expected number of coalescent events between two alleles per generation is equal to the 
probability the two alleles coalesce in 1 generation, we could use the exponential distribution to describe 
the time to coalescence with c = 1/(2N).  There are some subtle differences because the exponential 
distribution assumes time is continuous rather than parceled into discrete generations.  Provided that N 
is not too small, the expected time to coalescence will be long so that time is effectively continuous. 
 
Much of the work done in formal coalescence theory assumes that N is large and time is continuous.  
Although I do not use it here, most coalescent work measures time on the coalescent time scale t = 2N 
generations. A bit more formally, this proceeds as follows. 
 
The probability of going from i to i – 1 samples in a single generation is  
 

𝑃(𝑖 → 𝑖 − 1) = )𝑖2+
1
2𝑁 -1 −

1
2𝑁. -1 −

2
2𝑁.⋯-1 −

𝑖 − 1
2𝑁 . 

 
Note this is  

𝑃(𝑖 → 𝑖 − 1) = )𝑖2+
1
2𝑁 + 𝑂 -

1
𝑁2. 

 
Instead, we multiply P(i ® i – 1) by 2N (the coalescent time scale) and the take the limit as N ®¥  
 

lim
6→7

(2𝑁 ∗ 𝑃(𝑖 → 𝑖 − 1)) = )𝑖2+ 
 
This gives the rate of coalescence on the coalescent time scale. A rate is the expected number of events 
per unit time. So in the simplest case of i = 2, we expect coalescence to take 1 time unit (2N 
generations). 
Note that 𝑃(𝑖 → 𝑖 − 𝑘)~𝑂 ) ;

6<
+ so that for k ≥ 2, lim

6→7
(2𝑁 ∗ 𝑃(𝑖 → 𝑖 − 𝑘)) = 0 

--------------------------------------------------------------------- 
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Expected divergence between two alleles: If two alleles coalesced t generations ago, then each allele is 
will have accumulated µt mutations in that time, where µ is the mutation rate.  Assuming that each 
mutation is different (infinite sites model of mutation), then the number of differences separating two 
sequences will be 2µt.  The expected value is 2µE(t) = 4Nµ.  The quantity 4Nµ arises so often in 
population genetics that it gets its own symbol q =4Nµ. 
 
Coalescence of multiple alleles. 
Previously, we considered the time to coalescence of 2 alleles.  Now lets consider 3 alleles. 
 
With 3 alleles, the expected number of coalescent events in one generation is: 
 

E(# of pairwise coalescent events) =  

 
---------------------------------------- 
Q4.3)  Explain why. 
---------------------------------------- 
 
We can again employ the exponential distribution, to get the distribution of times to the first 
coalescence, 
 

P(1st coalescence in gen t+1) =  
 
which has the expected value of E(t) = 2N/3 
 
The expectations and the probability given above apply only for so long as there are 3 separate alleles.  
After the first coalescence, only two alleles remain and we need to use the equations we previously 
derived for considering two alleles.  The expected time for the coalescence of all 3 alleles would simply 
be the expected time to the first coalescence when the there are 3 alleles (2N/3) plus the expect time to 
the first (and only remaining) coalescence when there are two 2 alleles (2N), giving a total time of 2(1+ 
1/3)N. 
 
In general, if we are considering k alleles then 
 

E(# of pairwise coalescent events) =  

 
Again using the exponential distribution, 
 

P(1st coalescence in gen t+1) =  

 

and E(tk) =  
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E(tk) is the expected time to go from k to (k – 1) alleles. 
 
Let us now consider all 2N alleles in the population and find the expected time for all of them to 
coalesce. 
 
E(time to coalescence of all alleles) = 

   

 
------------------------------------------------------------------------- 

Using the general relationship,  

------------------------------------------------------------------------- 
 
E(time to coalescence of all alleles) = 4N(1-1/(2N)) @ 4N. 
 
Thinking forward in time, rather than backwards, this result tells us the expected time it takes a new 
allele to drift to fixation, given that it eventually becomes fixed. 
 
Recall that if there are only two alleles, the expected time to coalescence between them will be 2N.  
The result above indicates that half of the expected time to coalescence comes from the last two alleles. 

 
Figure from 2004 book by S. Rice. 
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Expected Amount of Polymorphism 
We want to know how many variable sites (X) we can expect to find in a sample of k alleles.  Assuming 
each mutation occurs at a unique site (i.e., the infinite sites model of mutation), X will be equal to the 
number of mutations that have occurred during the total time over all the branches of these k alleles 
back to a common ancestor.  If µ is the mutation rate per generation and Yk is the total time over all the 
branches of these k alleles back to a common ancestor, then X = µ Yk.  Thus, we just need to calculate 
Yk.  To do so, consider that there are k lineages that experience time to coalesce to (k - 1) and there are 
(k - 1) that experience time to coalesce to (k - 2), and so on until there are only two lineages that 
experience the time to coalesce to 1 common ancestor.  We previously calculated the time it takes to go 
from k to (k - 1) lineages as E(tk) = 4N/(k(k – 1)).  We can now calculate the expected value of Yk as, 
 

E(Yk) =  

 
Thus, the expected number of variable sites is simply 
 
E(X) = µ E(Yk) =4𝑁𝜇∑ ;

A
BC;
AD;   

 
---------------------------------------- 
Q4.4)  Here we assumed an infinite sites model of mutation (each mutation affected a different site).  In 
reality, there are a finite number of sites.  The infinite sites assumption will be a problem when the 
mutation rate is high relative to the inverse of the coalescent time.  Why is this a problem and explain 
whether it would cause us to over- or under-estimate X using the formula above.   
---------------------------------------- 
 
Mutation-Drift Balance:  Heterozygosity 
We know that drift erodes variation and mutation introduces it.  How much sequence variation do we 
expect if when both processes are acting?  One way to address this issue is to ask about the average 
heterozygosity,  , i.e., the probability that two randomly chosen alleles will have different sequences.  
Note here we aren't paying attention to how different two sequences are (infinite alleles rather than 
infinite sites). 
 
Two alleles will only be different if there has been a mutation event since they descended from a 
common ancestor.  We can follow the two alleles back in time until SOMETHING happens and ignore 
all the generations where nothing happens.  The ‘something’ will either be that they coalesce or that 
there has been a mutation event.  The probability that the something is a mutation gives the average 
heterozygosity: 
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---------------------------------------- 
Q4.5)  What were we assuming in denominator of the 3rd line? 
 
Q4.6)  Go back to our discussion of inbreeding (IBD) and mutation.  Discuss the two results. 
---------------------------------------- 
 
Structured coalescent – 3 approaches  
In the coalescent model above, there was no “structure”.  Any two alleles could be sampled and the 
expected time to coalescence would be the same; in this sense any two alleles were equivalent.  
However, there are a number of important biological situations where we do not expect any two alleles 
to have the same average coalescence time.  Rather, there is some underlying structure that affects how 
likely two alleles are to coalesce in a given generation.   

We will consider two examples.  First, consider the island model of population subdivision.  
When a species is distributed across space in a series of demes where individuals tend to mate locally 
and rarely migrate, then two alleles within a deme will be more closely related, on average, than two 
alleles chosen from different demes. The expected time to coalescence is shorter for alleles from the 
same deme than for two alleles chosen from different demes.  Intuitively, this is because two alleles in 
different demes cannot coalesce in the immediately preceding generation, there must first be a 
migration event that brings the two alleles into the same deme before coalescence can occur.  The 
second case we will consider is selfing.  In species with high rates of selfing, two alleles chosen from a 
single individual have a much higher rate of coalescing in the immediately preceding generation than 
two alleles sampled from different individuals.  In both cases, at any given instant, the two alleles being 
considered can be in one of three states.  Depending on the biological situation, there may be many 
more than three states but we will only consider the three state case but the same types of approaches 
can be applied to more complicated situations. 
 
 Island Model Selfing 
State 1 Both alleles in same deme ? 
State 2 Alleles in separate demes ? 
State 3 Coalesced Coalesced 

Table 4.1.  Possible states for two alleles in the models considered here. 
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There are a variety of ways to model the structured coalescent and we will look at three different 
approaches.  It is worth noting that the distribution of coalescence times in the structured coalescence 
will not be an exponential distribution as it is in the simple unstructured coalescence model.  In some 
structured models, the entire distribution can be calculated analytically but it can be tricky to do so.  
Here we will focus only the mean coalescence times. 
 
Before going into the three approaches, a few notes and parameter definitions for the two models we 
will examine.  Note we also make a few assumptions. 
 
Island model:  We assume that there are d demes, each consisting of n diploid individuals (total 
population size is N = dn). There is a low migration rate m among demes (m is the probability that an 
individual migrates out of a deme in a given generation).  Migration is random among demes (i.e., 
some demes are not more strongly connected by migration than others).  We will assume that n >> 1 
and m << 1.  From this, we can ignore the possibility of more than one “event” occurring per 
generation (i.e., no more than one migration event or a coalescence). 
 

 
From 2004 book by S. Rice. 
 
Selfing model:  We assume that individuals reproduce by (sporophytic) selfing with probability S and 
otherwise by random mating.  The population is of size N. 
 
Approach 1:“Time to leave current state”  
This type of approach was used by Nordborg (1997, Genetics) and others.  This is called “First Step 
Analysis” in Wakeley’s (2009) book. 
 
In our model, we have three states (see table above). Let aij be the probability of moving from state i 
this generation to state j in the immediately preceding generation.  We will assume the third state 
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represents coalescence, which is an absorbing state so a31 = a32 = 0 and a33 = 1.  The other probabilities 
are given below. 
 

Transition 
Probability 

Island Model Selfing Model 

a11 1 – (a12 + a13)   ? 
a12 2m ? 
a13 1/2n ? 
a21 2m/(d – 1) ? 
a22 1 – (a21 + a23) ? 
a23 0 ? 

Table 4.2.  Transition probabilities between states. 
 
Q4.7)  Go through the transition probabilities for the island model in Table 4.2 and explain why each 
one is what it is.  (Remember the assumptions listed in the description of the island model.) 
 
Q4.8)  Go through the transition probabilities for the selfing model in Table 4.2 and explain why each 
one is what it is.   
 
Let’s consider the expected time to coalescence from State 1, E[TC1].  As long as it remains in State 1, 
coalescence cannot occur.  So, at a minimum, the coalescence time will be at least as long as the 
expected time to leave State 1.  In any given generation, the probability of leaving State 1 is (1 - a11).  
So the average waiting time to leave State 1 is 1/(1 - a11).  [The waiting time to leave State 1 is 
geometrically distributed with parameter b = (1 - a11) and the mean of the geometric distribution is 
1/b].  Conditional on leaving State 1, the two alleles could move into either State 2 or State 3 
(coalescence).  In the latter case, there is no additional time to coalescence.  In the former case, we 
need to add in the expected coalescence time for two alleles in State 2, but weighted by the probability 
of moving into State 2 rather than State 3.  The leaves us with: 
 

𝐸[𝑇H;] =
1

1 − 𝑎;;
+	

𝑎;2
𝑎;2 + 𝑎;L

𝐸[𝑇H2] +	
𝑎;L

𝑎;2 + 𝑎;L
∗ 0 

 
  𝐸[𝑇H;] =

;
;CMNN

+	 MNO
MNOPMNQ

𝐸[𝑇H2]	    [4.1a] 

 
Using the same logic, we obtain 
 

  𝐸[𝑇H2] =
;

;CMOO
+	 MON

MONPMOQ
𝐸[𝑇H;]	     [4.1b] 

 
 
Simultaneously solving the two equations above for E[TC1] and E[TC2], we obtain 
 

𝐸[𝑇H;] =
𝑎;2 + 𝑎2; + 𝑎2L

𝑎;2𝑎2L + 𝑎;L(𝑎2; + 𝑎2L)
 

and 

𝐸[𝑇H2] =
𝑎;2 + 𝑎2; + 𝑎;L

𝑎;2𝑎2L + 𝑎;L(𝑎2; + 𝑎2L)
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Making the appropriate substitutions into [4.1] for the island model, this means that the expected time 
to coalescence for two alleles sampled from the same deme is E[TC1] = 2dn and the expected time to 
coalescence for two alleles sampled from separate demes is E[TC2] = 2dn + (d – 1)/2m. 
 
As expected from intuition, E[TC2] > E[TC1] and reducing the migration rate increases E[TC2].  
Curiously, E[TC1] depends on the number of demes but not on the migration rate.  An explanation for 
this result is that as m gets small the probability of migration to another deme decreases but the effect 
of a migration event on the time to coalescence gets bigger so in the end there is no net effect.  Note the 
solution for E[TC1] cannot be correct if m = 0, because then each deme is a completely independent 
population and we can apply our result from analyzing an unstructured population, E(T) = 2n ¹ 2nd.  If 
we had we calculated the variance for our structured model, we would see that V[TC1] ® ¥ when 
m ® 0, indicating that the associated average, E[TC1], is not meaningful.  (Later we will see a method 
that lets us calculate the variance too.) 
 
Under the infinite sites model of mutation, the number of base-pair differences between two alleles 
should be a linear function of their time since coalescence.  By comparing multiple sequences from 
each of multiple demes, it is possible, in principle, to use the equations above to estimate deme size n 
and number d. 
 
If we pick two alleles at random from anywhere in the metapopulation 
 

𝐸[𝑇H.] =
1
𝑑 𝐸

[𝑇H;] + -1 −	
1
𝑑.𝐸

[𝑇H2] = 2𝑑𝑛 +
(𝑑 − 1)2

2𝑑𝑚  
 
 
 
Because variation between alleles is directly proportional to coalescence time, we can measure FST as  

𝐹WX =
𝐸[𝑇H.] − 	𝐸[𝑇H;]

𝐸[𝑇H.]
=

(𝑑 − 1)2

1 − 2𝑑 + 𝑑2(1 + 4𝑚𝑛)	 

 
This does not match the result we found in the “Identity By Descent” section because there we 
implicitly assumed an infinite number of demes.  If we do the same here, we recover the classic result. 
 

lim
Y→7

𝐹WX = lim
Y→7

(𝑑 − 1)2

1 − 2𝑑 + 𝑑2(1 + 4𝑚𝑛) = 	
1

1 + 4𝑚𝑛 

 
<< I have removed the other two approaches as we will not be covering them.  Consequently, there will 
be a gap in the numbering of equations. >>> 
 
Coalescent times for neutral sites linked to selected sites 
So far we have assumed complete neutrality.  Now we will consider the coalescence of neutral sites 
that are linked to sites under selection.  We will consider two forms of selection at a linked site: 
balancing selection and background selection. We will use the same idea as population structure to 
examine selection at a linked locus. 
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Balancing Selection at a Linked Locus 
Imagine that there is balancing selection on locus S such that the S1 allele is maintained at frequency p 
and the S2 allele at frequency q = (1 – p). In a population of N diploids, there will be 2N1 = 2Np copies 
of the S1 allele and 2N2 = 2Nq copies of the S2 allele, i.e., N1 = Np and N2 = Nq.  Image a closely linked 
neutral locus.  From the perspective of this neutral locus, we can think of the S1 alleles as representing 
one deme and the S2 alleles as representing a second deme. An allele at the neutral locus that is 
currently in deme 1 (i.e., linked to an S1 allele) can 'migrate' to deme 2 via recombination.  Remember 
that m1 is defined as the probability that an allele in deme 1 came from deme 2 in the previous 
generation.  We want to know what the probability that an allele at the neutral locus that is linked to S1 
was linked to S2 in the previous generation.  Let G11, G22, and G12 be the number of S1 homozygotes, S2 
homozygotes and the heterozygous individuals (here G12 represents all heterozygotes, S1S2 + S2S1).  
Because recombination is only relevant in heterozygotes, the number of 'migrant' alleles (not 
individuals) onto the S1 background is rG12 and the same is true for the number of migrant alleles onto 
the S2 background.  We can then write, 
 
m1 = rG12/2N1 and m2 = rG12/2N2 
(Note m1 = rG12/2N1 is the number of alleles that migrated onto the S1 haplotype over the total number 
of S1 alleles.) 
 
Assuming G12 = 2pqN, we get, 
 
m1 = rq and m2 = rp 
 
Using this in eq 4.7 we get 
 

E(T11) =     [Eq.4.10a] 

 

E(T22) =     [Eq.4.10b] 

 

E(T12) =      [Eq.4.10c] 

 
 
If two alleles at the neutral locus are picked at random (we don't know whether they are linked to S1 or 
S2), what is their expected time to coalescence? 
 

E(T) =  

 
Recall that in the absence of balancing selection, E(T) = 2N.  The result above shows that balancing 
selection can increase the time to coalescence of closely linked neutral alleles.  Sequence variation 
among alleles increases with their time to coalescence.  Thus regions of the genome experience 
balancing selection should also have elevated levels of neutral variation.  Note that per base pair 
recombination rates are ~10-8/bp 
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---------------------------------------- 
Q4.16)  Show how to go from Eq. 4.7 to 4.10. 
 
Q4.17)  Why might it be bad to assume G12 = 2pqN? 
---------------------------------------- 
 
You could also obtain the results in [4.10] using the “time to leave current state” approach by having 
four states: 
State 1: both on the S1 background 
State 2: both on the S2 background 
State 3: one on the S1 background and the other on the S2 background 
State 4: coalesced 
 

Transition probability Balancing Selection Background Selection 
a12 0 0 
a13 2qr 2qr 
a14 1/(2Np) 1/(2Np) 
a21 0 0 
a23 2pr 2 p(hs + r) 
a24 1/(2Nq) 1/(2Nq) 
a31 pr p(hs + r) 
a32 qr qr 
a34 0 0 

Table 4.3.  Transition probabilities for 4 state model (diploid with two different haplotype genetic 
backgrounds).  Note that aii = 1 - Sj¹i aij 
 
Simultaneously solve the three equations: 
 𝐸[𝑇H;] = 	

;
;CMNN

(1	 + 𝑎;2	𝐸[𝑇H2] 	+	𝑎;L	𝐸[𝑇HL]	)   [4.11a] 
 
 𝐸[𝑇H2] = 	

;
;CMOO

(1	 + 𝑎2;	𝐸[𝑇H;] 	+	𝑎2L	𝐸[𝑇HL]	)    [4.11b] 
 
 𝐸[𝑇HL] = 	

;
;CMQQ

(1	 + 𝑎L;	𝐸[𝑇H;] 	+	𝑎L2	𝐸[𝑇H2]	)   [4.11c] 
 
Substituting in the transition probabilities for the balancing selection model in Table 4.3 returns the 
same coalescent times given in [4.10].   
 
 
Background Selection at a Linked Locus 
We now consider the case where a linked locus experiences recurrent deleterious mutation.  
Specifically, the wild-type S1 allele mutates to the deleterious alternative S2 at rate µ.  Fitnesses of the 
three genotypes S1S1, S1S2, and S2S2, are 1, 1 – hs, and 1 – s. We make the typical assumptions of the 
canonical mutation-selection balance model, µ << hs, so the frequency of the deleterious S1 allele is q = 
µ/hs.  Furthermore, for this coalescence analysis, we also need to assume that this frequency is stable, 
requiring Nq >> 1. 
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As in the balancing selection model, we can use m1 = qr.  However, the other migration term is m2 = pr 
+ pu/q because there are two ways for our focal neutral site to move onto an S2 background from an 
S1background in the preceding generation.  The focal neutral site can change backgrounds via 
recombination (which happens with probability pr). Alternatively, an S1 background in the immediately 
preceding generation can mutate into an S2 background. The chance that the focal S2 was created by 
mutation in the immediately preceding generation is pu/q (because pu is the mutational input per 
generation of S2 alleles and q is the total frequency of S2 alleles, i.e., pu/q is the probability that a given 
S2 allele was created by mutation in the immediately preceding generation).  You can think of pu/q as 
the being the probability of being a newly created S2 allele (“pu”) given that it is an S2 allele (“/q”). 
Because q = µ/hs, we can write m2 = p(r + hs). 
 
Now, we can use N1 = Np, N2 = Nq, m1 = qr and m2 = p(r + hs) in [4.7].  The resulting solution is a bit 
messy but can be greatly simplified if we assume that q, hs, r ~ O(x) and that 1/N ~ O(x3), i.e., doing a 
Taylor series on the result after using these assumptions.  Then, we find that  
 

 𝐸[𝑇.] = 𝑝2𝐸[𝑇;;] + 2𝑝𝑞𝐸[𝑇;2] +	𝑞2𝐸[𝑇22] = 2𝑁 \1 −	 ]

);P ^
_`+

Oa  [4.12] 

 
which is (almost) the same result derived by other quite different methods by Hudson & Kaplan (1995, 
Genetics) and by Nordborg, Charlesworth, and Charlesworth (1996, Genetical Research). In 
constructing our model, we said that the number of 'migrant' alleles (not individuals) onto the S1 
background is rG12 (because recombination is only relevant in heterozygotes) and the same is true for 
the number of migrant alleles onto the S2 background.  However, remember that the heterozygotes have 
reduced fitness so it should really be r(1 - hs)G12 instead.  If we use r' = r(1 - hs) in place of r in [4.12] 
we recover the Nordborg et al (1996) result. 

Though we obtained [4.12] using the moment generating functions approach, we could just as 
well have used the “time to leave current state”, following from [4.11] and using the appropriate values 
form Table 4.3.  Nordborg (1997, Genetics) used a similar approach to obtain the same result. (Note, if 
we assume 1/N ~ O(x2) the result does not exactly match Nordborg (1997).  Nordborg argues that Nµ 
>> 1 and his analysis is using an approximation that is based on the limit as N ® ¥.) 

Let us consider [4.12].  The term in parenthesis shows the reduction in coalescent time due to 
background selection.  Remembering that pairwise diversity π is proportional to coalescent time, the 
effect of background selection at site i on the focal neutral site can be thought of as 

 
𝐵A =

c
cd
= )1 −	 ]e

(;Pfe)O
+      [4.13] 

 
as where ri = ri/hisi and π0 is the level of diversity in the absence of background selection.   
 Using q = µ/hs, we can re-write [4.13] as 

 
𝐵A =

c
cd
= )1 −	 ]e

(;Pfe)O
+ = 	 )1 −	 ge

he	ie(;P	je/he	ie)O
+  [4.14] 

 
Based on this result, Nordborg et al. 1996 (p. 162, with adjustments to match the notation used here) 
wrote: 

As is intuitively expected, diversity decreases with lower ri and higher µi. The effect of the 
selection coefficient is slightly more complicated. Differentiating [4.14] with respect to si, we see 
that the effect on diversity increases as si decreases, up to a maximum at hisi = ri, and decreases 
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thereafter. In other words, a weakly selected locus can cause strong background selection if it is 
tightly linked, but its importance declines rapidly with increasing ri, whereas a strongly selected 
locus causes weaker background selection (i.e. greater π/π0), but can do so from a greater distance. 

 
Below is a plot of Bi as a function of ri.  The solid line is hs = 0.001 and the dashed line is hs = 0.005.  
(Other parameter: µ = 10^-6) 

 
 
 
 
Assuming multiplicative fitness effects and linkage equilibrium, the effects of background selection 
from multiple sites is be given by the product 

 

𝐵 =l-1 −	
𝑞A

(1 + 𝜌A)2
.

A

≈ 𝑒𝑥𝑝 q−r	
𝑞A

(1 + 𝜌A)2A

s = 𝑒𝑥𝑝 q−r	
𝜇A

ℎA𝑠A(1 + 𝜌A)2A

s 

         [4.15] 
 
If we consider mutation only in the region where recombination distance is a linear function of physical 
distance (double crossovers can be ignored) and make the simplifying assumption that all mutations 
have the same effect (hs) and occur at equal rate, then Nordborg et al (1996) showed  
 

𝐵 = 𝑒C
v

w(;Chi) 
 
where U is the total deleterious mutation rate in this region and M is the map length of the region (in 
Morgans). They pointed out that “the proportional effect of background selection is approximately the 
same as the density of new mutations per map unit, as pointed out previously by Hudson & Kaplan 
(1994, 1995) and Barton (1995) for the case of a neutral locus located in the center of a block of 
selected loci.” 
 
 The strength of background selection will vary across the chromosome (due to variation in 
mutation rate and gene density).  Consequently, some parts of a chromosome will experience stronger 
reductions in diversity (i.e., a smaller Ne than other regions) and, in a metapopulation context, this can 
lead to elevated FST (which depends on Nem) in some chromosomal regions compared to others.  One 
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needs to consider this before assuming that regions of high FST must be due to divergent ecological 
selection. 
 
 
Coalescent Simulations 
It can be difficult or impossible to analytically calculate the distribution of coalescence times or metrics 
related to coalescence times (e.g., Tajima’s D) in many cases.  An alternative is using simulations.  In 
principle, we could perform forward simulations to ask how likely a given set of parameters (e.g., N, µ, 
m, etc) would be to produce the observed results.  This would be very computationally intensive 
because it would require tracking 2N alleles over a very long time and most of that information would 
not be used because the real data is represent by only a few samples (n << N).  Coalescent simulations 
offer a fast and efficient alternative.  In its simplest form, the process works as follows: 

A) Choose the model structure. (Allow for changes in population size? Allow for population 
subdivision?)   

B) Choose a set of parameter values you want to simulate.   
C) Build a genealogy: 

a. Start with k = n samples  
b. Determine the rate of “something” that could affect the genealogy happens (e.g., a 

coalescence, a migration, etc.).  Let’s call that rate rk. 
c.  Draw from an exponential distribution with rate rk a waiting time for “something” to 

happen. Record this waiting time. 
d. Determine which type of events by using probability of event type x relative to the total 

probability of “something” happening and pick at random which samples were involved. 
Adjust the system to reflect this event (e.g., one sample migrated, two samples 
coalesced).  If the event was a coalescence, you now have 1 fewer samples (i.e., k goes 
from n to n – 1) 

e. If k = 1, then stop, otherwise repeat b-e. 
f. From the record of the waiting times and the corresponding events, a genealogy can be 

constructed 
D) Mutations can be added to the genealogy.  For a branch of length t, randomly sample a random 

number from a Poisson distribution with mean µt (assuming for the sake of explanation that t is 
measured in generations rather than in units of 2N generations). Add that many mutations to 
that branch. 

E) Calculate your metric of interest (e.g., π, Tajima’s D, etc.). 
F) Repeat steps C-E numerous times to generate a distribution of your metric of interest under the 

specified parameters. 
G) You can use this distribution to determine the probability of observing something close to the 

true value of your observed metric of interest under the specified model. 
H) If you repeat steps A-G for other parameter values (or other model structures), you can then 

answer whether one model structure or set of parameter values is more likely than others.  (Or 
you can be Bayesian about the whole thing if you like.) 

 
 
Coalescent Simulations with Recombination (ancestral recombination graph) 
It is a little less obvious how to incorporate recombination into coalescent simulations.  When there is 
recombination, different sites in a sequence may have different coalescent histories so the coalescent 
history of the sequence is represented by a complicated graph rather than a single tree, and this is very 
difficult to deal with analytically.  However, if we consider a short enough region such that the rate of 
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recombination is not too high, then it is still relatively straightforward to perform coalescent 
simulations as outlined by Hudson (1983).  Before thinking about the algorithm, let’s think about 
recombination moving backwards in time. Starting with a single sample, a recombination event splits 
that sample into two samples, though only part of each new sample contains material from our original 
sample. 
 

 
Copied from Hein, Schierup, and Wiuf. 2004. Gene Genealogies, Variation and Evolution. 

 
 
Starting with a single sample of length L, a recombination event splits that sample into two samples, 
each of length L, though only part of each new sample contains material from our original sample.  We 
call the parts that were in our original sample as “ancestral material”; that is the material we care about. 
 Without recombination, when we started with k = n samples, the number of samples never 
increased; it stayed the same or decreased. With recombination, we can get an increase in the number 
of samples because every recombination event splits a sample, increasing by one the number of 
samples we need to track. 
 As long as recombination is low and N is large, we can safely assume the following: (a) no 
more than one of our samples is involved in recombination at a time; (b) recombination events and 
coalescence events do not occur at the same time.  With these two assumptions (and other standard 
assumptions), there are only two possible events that can occur:  (i) one of the k samples is split by 
recombination or (ii) two of the k samples coalesce.  (For simplicity, we are ignoring other possible 
events like migration.)  The chance per generation that any particular sample is split by sex is r.  
Measuring time on the coalescent time scale (in units of 2N generations), recombination occurs at rate 
2Nr = r/2 per sample (where r = 4Nr is the population scaled recombination parameter).  While we 
have k samples, the total rate of recombination for our sample is kr/2.   On this time scale, the total rate 
of coalescence is )𝑘2+ = k(k–1)/2.  Remember, that recombination causes the number of samples (k) to 
increase whereas coalescence causes the number of samples to decrease. Because the rate of 
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coalescence is of order k2 whereas the rate of recombination is of order k, we expect the number of 
samples to shrink in the long run, i.e., we will eventually find a grand common ancestor for the entire 
length of the sequence, though it might take a while.   

In their book, Gene Genealogies, Variation and Evolution, Hein, Schierup, and Wiuf (2004), 
provide a basic outline for a coalescent simulation algorithm and an illustrated example, which I show 
below: 

 

 
 

---------------------------------------- 
Q4.18) With respect to Step 2 above, explain why you should use that value as the rate for the 
exponential distribution. 
 
Q4.19) With respect to Step 3 above, explain why you should use that value as the probability that the 
event is a coalescence.  
---------------------------------------- 
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 Hein et al (2004) point out that the simple algorithm given above has two features that reduce 

its efficiency.  First, some parts of the sequence may completely coalesce long before the entire 
sequence does and it is unnecessary to track these parts after they coalesce.  Second, recombination 
could generate a sample that carries no ancestral material (as in the 3rd event back in time of the 
illustrated example) and it is unnecessary to track such samples.  Appropriate adjustments can be made 
to the simple algorithm to deal with these issues and improve simulation efficiency. 

 
--------------------------------------- 
Q4.20) Explain what is happening at each step in the figure above. 
---------------------------------------- 
 
 
Linkage disequilibrium among neutral alleles  
McVean (2002 Genetics) showed how a coalescent approach could be used to predict the strength of 
linkage disequilibrium for neutral sites. 
 
Because average disequilibrium will be zero (derived neutral SNPs are not expected to be found 
together more or less often than expected by chance), we instead focus on the square of disequilibrium.  
The square of the correlation coefficient is 

 
    𝑟2 ≡ zO

{|(;C{|){}(;C{})
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where D = fAB – fAfB.  There is no simple analytical expression for the expected value of r2.  Instead, we 
consider the related quantity 
 
    𝜎2 ≡ �[zO]

�[{|(;C{|){}(;C{})]
  [4.16]   

 
He showed that this measured of disequilibrium could be expressed in terms of covariances of 
coalescence times for different sets of sequences 
 

𝜎2 =
𝐶𝑜𝑣�𝑡�(A,�), 𝑡�(A,�)� − 2𝐶𝑜𝑣�𝑡�(A,�), 𝑡�(A,B)� + 𝐶𝑜𝑣�𝑡�(A,�), 𝑡�(B,�)�

𝐸�𝑡�(A,�)�𝐸�𝑡�(B,�)� + 𝐶𝑜𝑣�𝑡�(A,�), 𝑡�(B,�)�
 

 
where tx(i,j) is the time to coalescence of site x in sample i and sample j.  Qualitatively, s2 is large when 
there is a covariance in coalescence time between two sites (x and y) when both sites come from the 
same pair of samples is strong relative to when both sites are not from the same pair of samples. 
Recombination puts two sites from the same sample into different samples, so that the coalescent 
history of that site can then be different from the other.  This reduces linkage disequilibrium.  
 
He showed that  
    𝜎2 = ;�Pf

22P;LfPfO
      [4.26] 

 
 
where r = 4Nr.  The same result was obtained by Ohta and Kimura (1971) using a very different 
approach. 
 
This result as presented here ignored two complications.  First, as mentioned above, s2 approximates 
E[r2] only if allele frequencies aren’t too extreme.  Technically, then our calculation should be 
conditional on polymorphism being present in the sample at some minimum level.  However, McVean 
(2002) notes that the error introduced by this problem is small.  Second, we have done expectations 
assuming a very large (infinite) sample.  McVean notes that “For finite sample size, a modification is 
required to include the possibility that i, j, k, and l are not all distinct…” (see his paper for the 
modification) but later says that the modification is negligible for large n (e.g., n = 50). 
 
Finally, we note that as r becomes large, then [4.26] becomes 
 
    𝜎2 ≈ ;

f
      [4.27] 

 
 
(This final approximation can be obtained by substituting r = 1/z into [4.26], then doing a 1st order 
Taylor series around z = 0 and then replacing z with 1/r.) 
 
Remembering that r = 4Nr = 2r/(1/2N) we can think of this linkage disequilibrium measure depending 
on the rate of coalescence relative to the rate recombination. 


