
Some Issues in Perturbative String
Theory

Ashoke Sen

Harish-Chandra Research Institute, Allahabad, India

Puri, January 2014



Plan

1. Mass renormalization problems in perturbative string
theory

2. Solution Roji Pius, Arnab Rudra, A.S.

3. Other possible applications



Perturbative string theory is based on the first quantized
approach.

Instead of computing Feynman diagrams we compute
correlation functions of the first quantized theory on Riemann
surfaces.

A g-loop, n-point amplitude is given by integral of the moduli
space of Riemann surfaces of genus g and with n punctures
(marked points) where the vertex operators are inserted.∫

Mg,n

〈
n∏

i=1

Vi

〉

Mg,n: moduli space of Riemann surfaces with genus g and n
punctures.

Vi: BRST invariant vertex operators



String amplitudes are supposed to compute on-shell
S-matrix elements but this is not quite so.

The S-matrix elements in a QFT are given by the LSZ
procedure

lim
k2

i→−m2
ai,p

G(n)
a1···an(k1, · · · kn)

n∏
i=1

{Z−1/2(ki,ai)(k2
i + m2

ai,p)}

Z(ki,ai): wave-function renormalization factors

mai,p: renormalized physical mass of the external state.

We define Z(ki,ai) and mai,p by looking for poles in two
point Green’s function

G(2)
a1,a2

(k1,k2) = δa1a2 (2π)Dδ(k1 + k2)
Z(k1,a1)

k2
1 + m2

a1,p



S-matrix elements of a QFT

lim
k2

i→−m2
ai,p

G(n)
a1···an(k1, · · · kn)

n∏
i=1

{Z−1/2(ki,ai)(k2
i + m2

ai,p)}

In contrast, string amplitudes compute what in a QFT can
be called ‘truncated Green’s function on classical mass
shell’:

lim
k2

i→−m2
ai

G(n)
a1···an(k1, · · · kn)

n∏
i=1

(k2
i + m2

ai
)

mai: tree level mass of the i-th external state carrying
momentum ki and other quantum numbers ai.

The limit k2
i → −m2

ai
is forced on us by world-sheet

conformal invariance / BRST invariance.

(Need vertex operators of dimension (0,0)).



String amplitudes:

lim
k2

i→−m2
ai

G(n)
a1···an (k1, · · · kn)

n∏
i=1

(k2
i + m2

ai
) ,

The S-matrix elements:

lim
k2

i→−m2
ai,p

G(n)
a1···an (k1, · · · kn)

n∏
i=1

{Z−1/2(ki,ai)(k2
i + m2

ai,p)}

The effect of Z(ki,ai) can be easily taken care of, but the
effect of mass renormalization is more subtle.

⇒ String amplitudes compute S-matrix elements directly if
m2

ai,p = m2
ai

but not otherwise.

This includes external massless gauge particles / BPS
states.



A common excuse

“We can find the renormalized masses by examining the
poles in the S-matrix of massless and/or BPS states which
do not suffer mass renormalization.”

Does not work when a conservation law prevents the
appearance of the massive state under consideration as a
single particle intermediate state in the scattering of
massless states.

Example: In SO(32) heterotc string theory there is a
massive state in the spinor representation of SO(32)

– cannot appear as a single particle intermediate state in
the scattering of massless states which belong to adjoint
or singlet representation of SO(32).



Even if we are not interested in massive states in string
theory, this question is important for internal consistency
of perturbative string theory.

A complete theory must be able to address all questions
which can be asked within that theory.



How do we proceed?

1. Many indirect approaches to this problem have been
discussed in the past. Weinberg; Seiberg; A.S.; Ooguri & Sakai; Das; Rey; · · ·

2. Direct approach is to define off-shell Green’s function.

We can think of two routes:

a. String field theory

– many attempts but not much progress beyond tree level /
bosonic string theory. Witten; Zwiebach; Berkovits; Berkovits, Okawa, Zwiebach

b. Pragmatic approach: Generalize Polyakov prescription
without worrying about any string field theory origin.

Cohen, Moore, Nelson, Polchinski; Alvarez Gaumé, Gomez, Moore, Vafa; Polchinski; Nelson



String field theory may be needed to address big issues
like finding non-perturbative vacuum.

However the pragmatic approach should be sufficient to
address issues within the perturbative domain, like mass
renormalization or small shifts in the vacuum.

We shall follow this pragmatic approach.

Main problem: The off-shell amplitudes are not invariant
under a Weyl rescaling of the metric, or equivalently, under
conformal transformations.



Example: Off-shell tree level 3 tachyon amplitude in closed
bosonic string theory

A = 〈V1(z1)V2(z2)V3(z3)〉, Vi = c c̄ eiki·X

A = |z1 − z2|δ3−δ1−δ2 |z2 − z3|δ1−δ2−δ3 |z1 − z2|δ2−δ1−δ3

δi =
1
2

k2
i − 2 .

On-shell condition: δi = 0

Unless the tachyon is on-shell the result depends on the
choice of coordinate system.

– not invariant under

z→ (az + b)/(cz + d), ad− bc = 1



Conclusion

Off-shell amplitude depends on spurious additional data
like the world-sheet metric, or equivalently the choice of
world-sheet coordinates in which the metric is flat.

– looks problematic at the first sight.

However this is not very different from the situation in a
gauge theory where off-shell Green’s functions of charged
fields are gauge dependent.

Nevertheless the renormalized mass and S-matrix
elements computed from these are gauge invariant.

Can the story be similar in string theory?



Strategy: Pius, Rudra, A.S.

1. Find a systematic way to characterize the additional data
on which the amplitudes depend.

2. Show that the renormalized mass and S-matrix elements
do no depend on this additional data.



Characterization of the additional data Nelson

Given a Riemann surface we introduce two types of
coordinates:

z: some reference coordinate system on the Riemann
surface

wi: local coordinate used to insert the i-th vertex operator
Vi into the correlator.

z = fi(wi)

zi ≡ fi(0): location of the i-th vertex operator in
z-coordinates.



Genus g string amplitude:∫
Mg,n

〈∏
i

fi ◦ Vi(0)

〉

Mg: moduli space of genus g Riemann surface with
n-punctures

fi ◦ Vi(0): Conformal transform of Vi by fi

e.g. if Vi is a primary of dimension (h,h) then

fi ◦ Vi(0) = |f′i(0)|2h Vi(fi(0)) = |f′i(0)|2h Vi(zi)

The correlation function 〈· · · 〉 is computed using
z-coordinate system.

The result depends on the choice of local coordinates wi
but is independent of the choice of reference coordinate z.



Example: Tachyon 3-point function on the torus

z = fi(wi)

A = 〈f1 ◦ V1(0)f2 ◦ V2(0)f3 ◦ V3(0)〉
= |f′1(0)|δ1 |f′2(0)|δ2 |f′3(0)|δ3 〈V1(z1)V2(z2)V3(z3)〉
= |f′1(0)|δ1 |f′2(0)|δ2 |f′3(0)|δ3

|z1 − z2|δ3−δ1−δ2 |z2 − z3|δ1−δ2−δ3 |z1 − z2|δ2−δ1−δ3

Under z→ z′ = (az + b)/(cz + d) ≡ h(z), fi(z)→ h(fi(z)).

f′i(0)⇒ h′(zi) f′i(0) = f′i(0)/(czi + d)2

(zi − zj)⇒ (zi − zj)/{(czi + d)(czj + d)}

The amplitude A remains invariant.



A = |f′1(0)|δ1 |f′2(0)|δ2 |f′3(0)|δ3

|z1 − z2|δ3−δ1−δ2 |z2 − z3|δ1−δ2−δ3 |z1 − z2|δ2−δ1−δ3

Consider change in local coordinates wi → w̃i with

wi = hi(w̃i), hi(0) = 0

z = fi(wi) = fi(hi(w̃i)) ≡ f̃i(w̃i)

f̃′i(0)→ f′i(0)h′i(0), zi → zi

A→ A |h′1(0)|δ1 |h′2(0)|δ2 |h′3(0)|δ3

Thus A depends on the choice of local coordinates.

Local coordinate system near the punctures is the
spurious data on which the off-shell amplitude depends.



Goal: Prove that renormalized mass and S-matrix elements
are independent of the choice of local coordinates.

However instead of working with most general choice of
local coordinates we work within a restricted class.

We add an extra condition – gluing compatibility – on the
choice of local coordinates.

(Inspired by bosonic string field theory) Zwiebach



Consider a genus g1, m-punctured Riemann surface glued
to a genus g2, n-punctured Riemann surface by plumbing
fixture at one each of their punctures:

w1w2 = e−s+iθ, 0 ≤ s <∞, 0 ≤ θ < 2π

w1,w2: choice of local coordinates at the punctures which
are glued.

Corresponds to removing a disk around w1 = 0 on the first
Riemann surface and a disk around w2 = 0 on the second
Riemann surface and gluing them at the boundaries to get
a new Riemann surface.

g1 g2
x

x
xx

x
x

This gives a family of genus g1 + g2 Riemann surface with
(m+n-2) punctures.



Since the original Riemann surfaces were equipped with
choices of local coordinate system around each puncture,
gluing induces a choice of local coordinate system around
each of the (m+n-2) punctures of the new Riemann surface.

g1 g2
x

x
xx

x
x

Our demand: Choice of local coordinates at the punctures
of the genus g1 + g2 Riemann surface must agree with the
one induced from the local coordinates at the punctures
on the original Riemann surfaces.

Goal: Prove that renormalized mass and S-matrix elements
are independent of the choice of local coordinates within
this class.



Gluing compatibility allows us to divide the contributions
to off-shell Green’s functions into 1-particle reducible
(1PR) and 1-particle irreducible (1PI) contributions.

Two Riemann surfaces joined by plumbing fixture
m

Two amplitudes joined by a propagator

Riemann surfaces which cannot be obtained by plumbing
fixture of other Riemann surfaces contribute to 1PI
amplitudes.

1PI amplitudes do not include degenerate Riemann
surfaces and hence are free from poles in the external
momenta.

We can now carry out the usual field theory manipulations
with this.



Example: Two point function

At genus 1, all amplitudes are 1PI (ignoring tadpoles).

(A 2-punctured torus cannot be obtained by gluing two
lower genus surfaces).

At genus 2, we can get a subset of the Riemann surfaces
by gluing two 2-punctured tori using plumbing fixture

– declared to be 1-particle reducible.

Identify the contribution from the rest of the Riemann
surfaces as 1PI.

The net contribution to two point amplitude

+ + · · ·1PI 1PI 1PI



+ + · · ·1PI 1PI 1PI

In bosonic string theory and Neveu-Schwarz (NS) sector of
superstring and heterotic string theories we can convert
this into an algebraic expression for the 2-point amplitude:

F = F̂ + F̂∆F̂ + · · · = F̂(1−∆F̂)−1 = (1− F̂∆)−1F̂

F: Full 2-point amplitude

F̂: 1PI contribution to two point amplitude

∆: tree level propagator

∆ ∝
∫

dsdθexp
[
−s(L0 + L̄0) + iθ(L0 − L̄0)

]
∝ (L0 + L̄0)−1δL0,L̄0

(represents the effect of gluing two Riemann surfaces
using plumbing fixture)



Two point amplitude

F = F̂(1−∆F̂)−1 = (1− F̂∆)−1F̂

Full propagator

+ F

Π = ∆ + ∆F∆ = (∆−1 − F̂)−1

If k is the momenta carried by external states then poles of
Π in the −k2 plane give the renormalized mass2.

Are these independent of the choice of the local coordinate
system?



Π = ∆ + ∆F∆ = (∆−1 − F̂)−1

Since string theory has infinite number of states, the
matrices Π, ∆, F , F̂ etc. are all infinite dimensional.

To study the propagator of states with tree level mass m
we can ‘integrate out’ all states at other mass levels and
dump their contribution with the 1PI amplitude.



∆ has block diagonal form:

∆ =



∗
.
.
∗

(k2 + m2)−1 I
∗

.
.
∗


Define PT: Projection operator into states of tree level mass m.

∆̄ ≡ ∆− (k2 + m2)−1PT

⇒ ∆̄ =



∗
.
.
∗

0
∗

.
.
∗





Important point: ∆̄ has no poles at k2 + m2 = 0, even
though it has poles at other mass levels.

Define

F̄ ≡ F̂ + F̂∆̄F̂ + · · · = F̂(1− ∆̄F̂)−1 = (1− F̂∆̄)−1F̂

F̃ ≡ PTF̄PT, VT = PT Π PT

F̄ and F̃ also have no poles at k2 + m2 = 0.



∆̄ ≡ ∆− (k2 + m2)−1PT

F̄ = F̂(1− ∆̄F̂)−1 = (1− F̂∆̄)−1F̂

F = F̂(1−∆F̂)−1 = (1− F̂∆)−1F̂

Π = ∆ + ∆F∆ = (∆−1 − F̂)−1

VT = PT Π PT, F̃T = PT F̂ PT

From these is easy to derive the following relations

VT = PT(k2 + m2 − F̃T)−1PT

= PT

[
(k2 + m2)−1 + (k2 + m2)−1F̃T(k2 + m2)−1

+(k2 + m2)−1F̃T(k2 + m2)−1F̃T(k2 + m2)−1 + · · ·
]

PT



VT = PT(k2 + m2 − F̃T)−1PT

VT is a finite dimensional matrix labelled by the states
which have tree level mass m.

Renormalized mass2: Values of −k2 where VT has poles

– i.e. k2 + m2 − F̃T has zero eigenvalues.

Are the locations of these poles independent of the choice
of local coordinates?



Some added complications

At a given tree level mass, string theory contains physical
as well as unphysical states.

e.g. a vertex operator of the form cc̄V with V dimension
(1,1) matter sector primary operator represents physical
state.

Other vertex operators with same L0, L̄0 eigenvalues
represent unphysical states (secondaries in matter sector
and/or ghost excitations).

Off-shell, quantum corrections cause mixing between
physical and unphysical states.

⇒ Only renormalized physical masses can be expected to
be independent of the choice of local coordinates.



How do we sort out the renormalized physical masses
from the renormalized unphysical masses?

– done in several steps.

1. Identify a set of special states which do not mix with
unphysical states at the same mass level due to
symmetries.

Example: States on the leading Regge trajectory

For these states the mixing problem is absent and we can
prove that the renormalized masses and S-matrix elements
are independent of the choice of local coordinate system.



2. For general states quantum corrections mix physical,
unphysical and pure gauge states.

Physical⇔ BRST invariant

Pure gauge⇔ BRST trivial

Unphysical⇔ BRST non-invariant

We develop an algorithm to block diagonalize the quantum
corrected propagator and identify the quantum corrected
physical block.

– satisfies the requirement that in the zero coupling limit
the quantum corrected physical states approach a linear
combination of tree level physical states and pure gauge
states.



3. We show that in the scattering amplitudes of massless,
BPS and special states only physical poles appear as
intermediate states.

Since the former are independent of the choice of local
coordinates, this shows that the physical masses are
independent of the choice of local coordinates.



Some technical details

Let F(k) be the matrix describing the off-shell two point
amplitude of special states at mass level m.

Then the special state propagator at mass level m is given
by

+ F

(k2 + m2)−1 + (k2 + m2)−2F(k)

This is expected to be of the form

Z(k)1/2(k2 + M2
p)−1Z1/2(k)†

M2
p: Diagonal physical mass2 matrix.

Z(k): Wave-function renormalization matrix with no pole
near k2 = −m2.



(k2 + m2)−1 + (k2 + m2)−2F(k) = Z(k)1/2(k2 + M2
p)−1Z1/2(k)†

Now suppose we change the local coordinate system.

We would want to test if it leaves Mp unchanged and only
changes Z(k).

Define δY(k) = δZ(k)1/2Z(k)−1/2

Then we want

(k2 + m2)−1 + (k2 + m2)−2(F(k) + δF(k))

= (1 + δY(k)){(k2 + m2)−1 + (k2 + m2)−2F(k)}(1 + δY(k)†)

⇒ δF(k) = δY(k)(k2 + m2 + F(k)) + (k2 + m2 + F(k))δY(k)†

Note: Since Z(k) is analytic near k2 + m2 = 0, the same
must hold for δY(k).



Computation of δF

– arises from variation of local coordiates at one of the two
puctures where the vertex operator is introduced.

The variation of the vertex operators are ∝ (k2 + m2) since
for (k2 + m2) = 0 they are dimension zero primaries.

– call them (k2 + m2)δH(k) and (k2 + m2)δH(−k)

δF = (k2 + m2) + x + (k2 + m2)x +

+: δH vertex, x: ordinary vertex



δF = (k2 + m2) + x + (k2 + m2)x +

+ x = + x + + x1PI 1PI F

≡ δY + δY (k2 + m2)−1 F

⇒ δF = (k2 + m2) δY + δY F + (k2 + m2) δY† + F δY†

– the desired relation.

δY, being 1PI, has no pole near k2 + m2 = 0.



This proves that the renormalized masses of special states
are independent of the choice of local coordinates.

Similar analysis can be used to prove the other results.



For the future

1. Extend the analysis to Ramond sector.

2. Use this algorithm to compute two loop renormalized
mass of SO(32) spinors in heterotic string theory.

3. Many other problems in string theory require
intermediate off-shell formalism even though eventually we
want to compute on-shell quantities.

Apply the general off-shell formalism to those cases.



Example: In many compactifications of SO(32) heterotic
string theory on Calabi-Yau 3-folds, one loop correction
generates a Fayet-Ilioupoulos term.

Net effect: Generate a potential of a charged scalar φ of the
form

c(φ∗φ− Kg2)2

c,K: positive constants, g: string coupling
Dine, Seiberg, Witten; Dine, Ichinose, Seiberg; Atick, Dixon, A.S.

It is clear that there is a supersymmetric vacuum at
|φ| = g

√
K, but on-shell techniques do not tell us how to

carry out systematic perturbation expansion around the
new vacuum.

The general off-shell formalism we have discussed may be
useful for giving a systematic algorithm for computing
S-matrix around the shifted vacuum.



4. Other possible applications are likely to crop up as we
understand this off-shell formalism better.


