Exotic phases of hadronic matter

Massimo Mannarelli INFN-LNGS

massimo@lngs.infn.it

Outline

Matter in extreme conditions

Color superconductors

Meson condensation

Conclusions

Some preliminary considerations

Why studying compact stars?

- 1. Because they are there.
- 2. They can help us to understand the properties of hadronic matter

The unavoidable problem

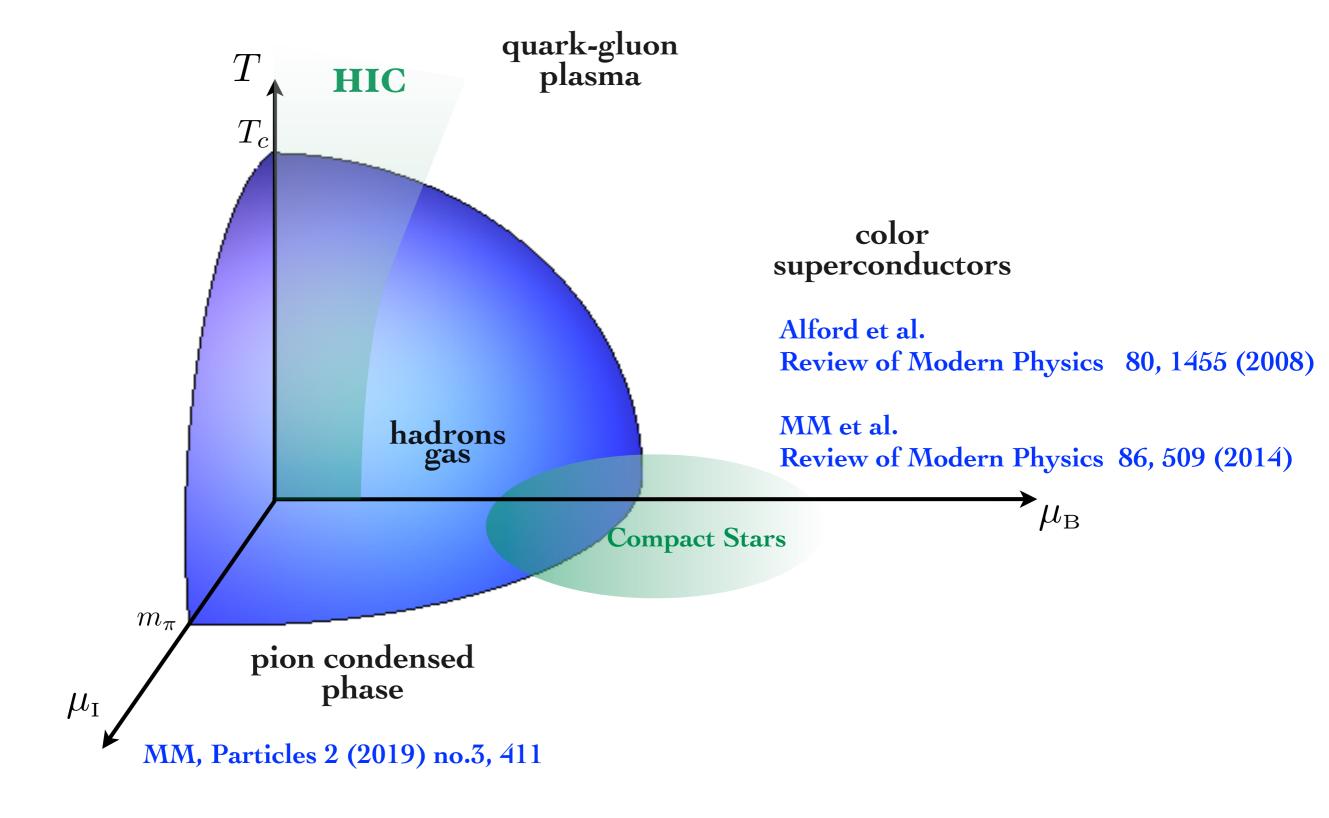
Compact stars are far away. We basically see their atmosphere and can measure few of their properties.

How to make progress

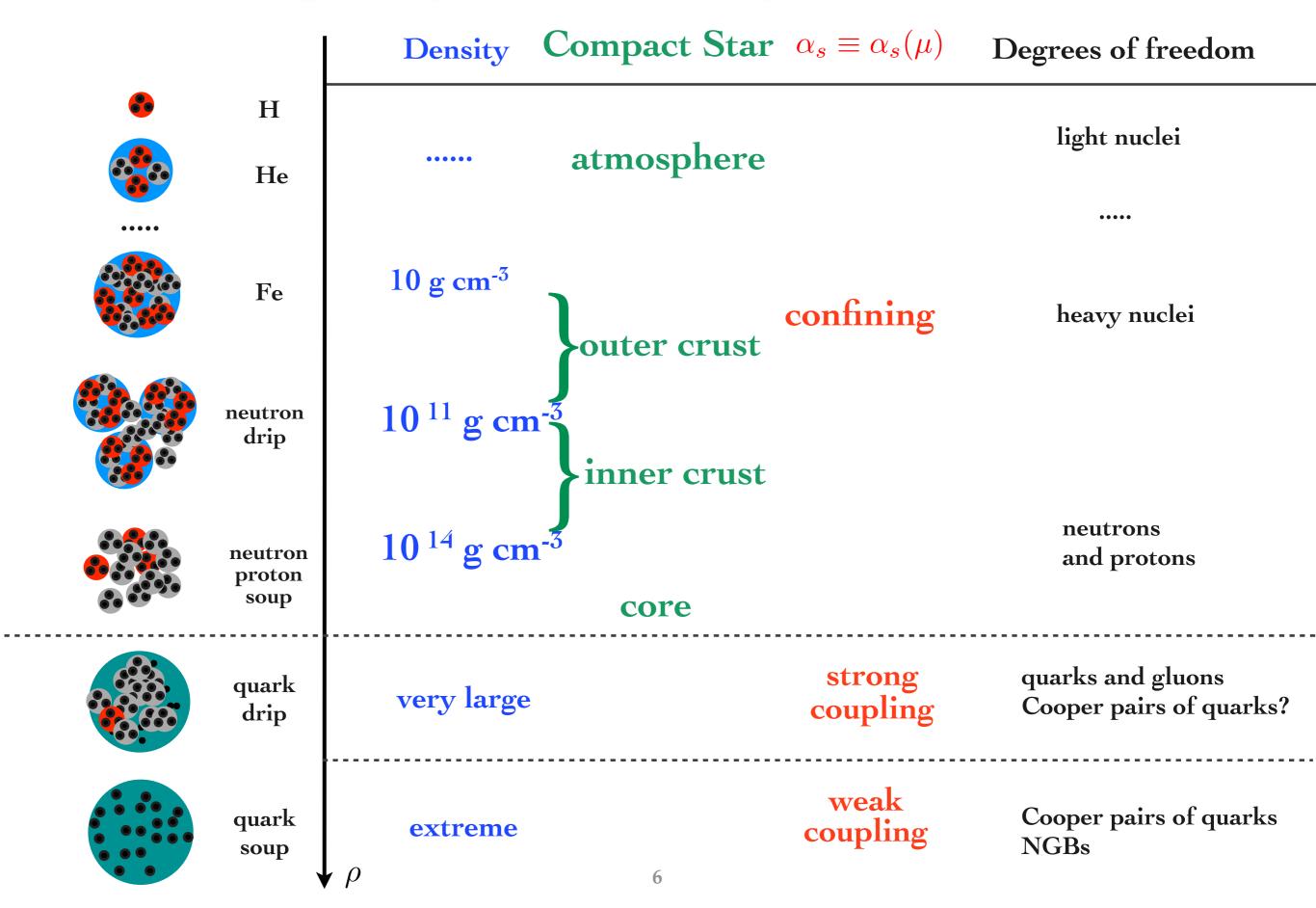
- 1) Careful and stoical observations
- 2) GW merging: since our childhood we know that smashing stuff and looking at the debris helps to understand how things work
- 3) Reasonable theoretical modeling

Matter in extreme conditions

The QCD phase diagram



Increasing baryonic density



Quark modeling

HADRONS

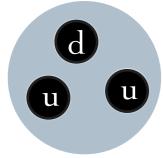
BARYONS

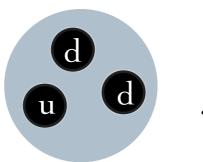
MESONS

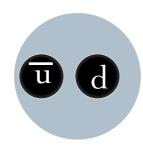
proton

neutron

pions







 $m_n \sim 1 \text{GeV} \gg m_{u,d}$ $r_n \sim 1 \text{fm} = 10^{-15} \text{m}$

$$m_{\pi} \sim 135 \text{ MeV} \gg m_{u,d}$$
 $r_{\pi} \sim 0.7 \text{fm}$

Building blocks of hadrons are quarks and gluons

Q	Qu	arks (mass	in MeV)
+2/3	u (3)	c(1300)	t(170000)
-1/3	d (5)	s (130)	b (4000)

Internal degree of freedom called color. Quarks can be: Red, Green or Blue. Gluons are the vector gauge bosons of the associated gauge group $SU(3)_c$

Quantum chromodynamics

$$\mathcal{L}_{QCD} = \bar{\psi}(i\gamma^{\mu}D_{\mu} + \mu\gamma_0 - M)\psi - \frac{1}{4}F_a^{\mu\nu}F_{\mu\nu}^a$$

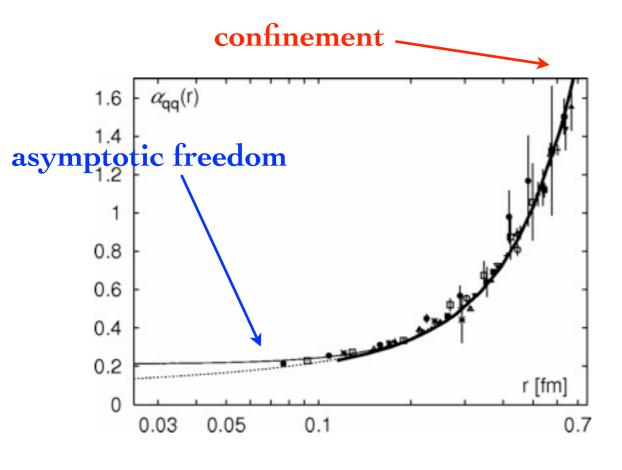
quark fields: $\psi_{\alpha,i}$

 $\alpha, \beta = 1, 2, 3$ color indices

i, j = 1, 2, 3 flavor indices

gluon gauge fields: A^a

 $a = 1, \dots, 8$ adjoint color index

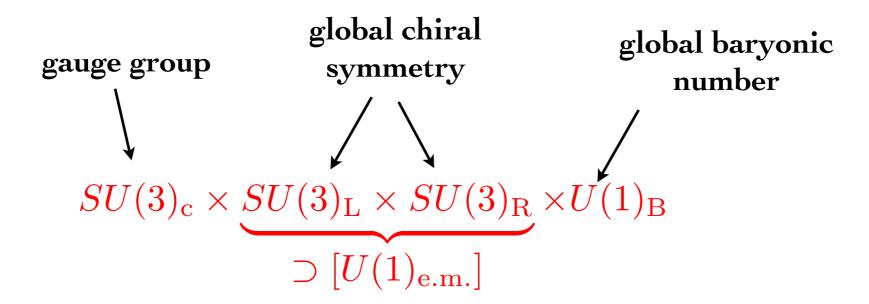


QCD non-Abelian gauge theory, non-perturbative at energy scales below the QCD energy scale $\Lambda_{\rm QCD}\sim 300\,{\rm MeV}$

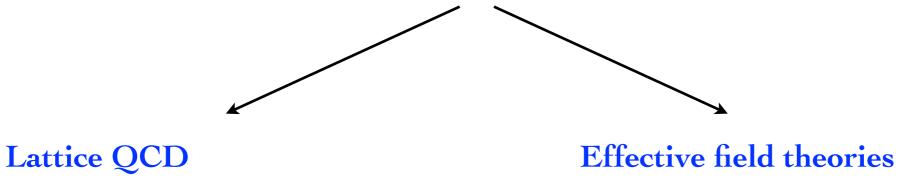
Kaczmarek and Zantow Physical Review D 71(11):114510

Symmetries of QCD

For three flavor <u>massless</u> quark matter



If we do not use QCD we want theories that preserve (part of) its symmetries

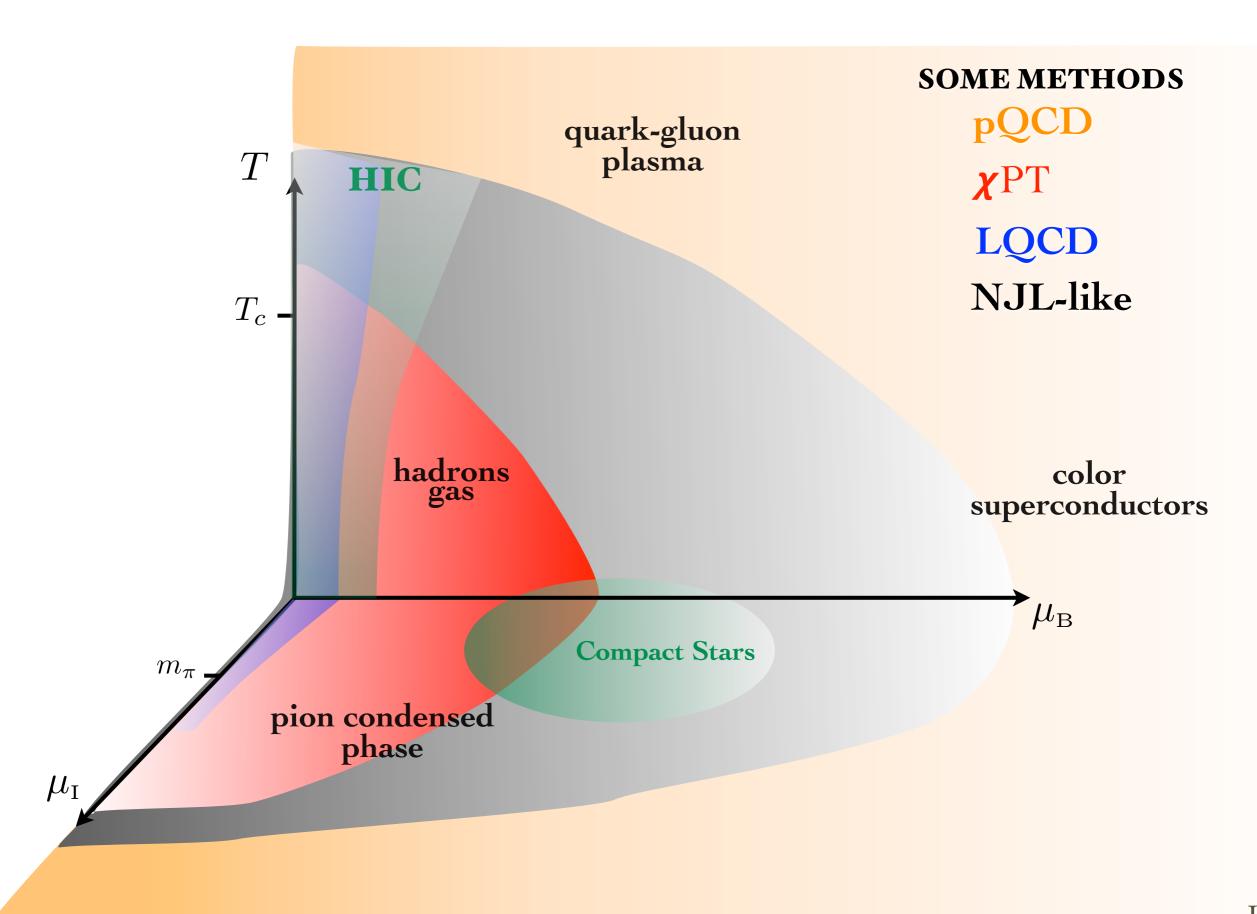


Discretization on a lattice.

Does not work at large densities

Preserve global symmetries of QCD Lack the gauge field dynamics

Phases of quark matter



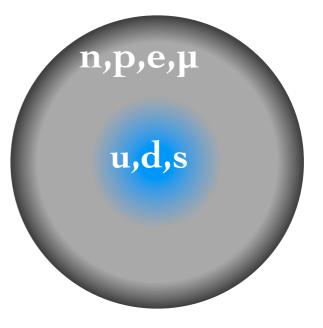
Color superconductors

Taxonomy of compact stars

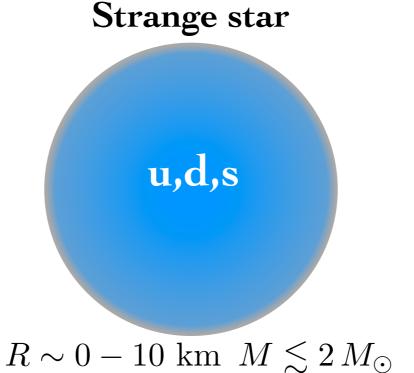
Neutron star

 $R \sim 10 \text{ km } M \simeq 1 - 2 M_{\odot}$

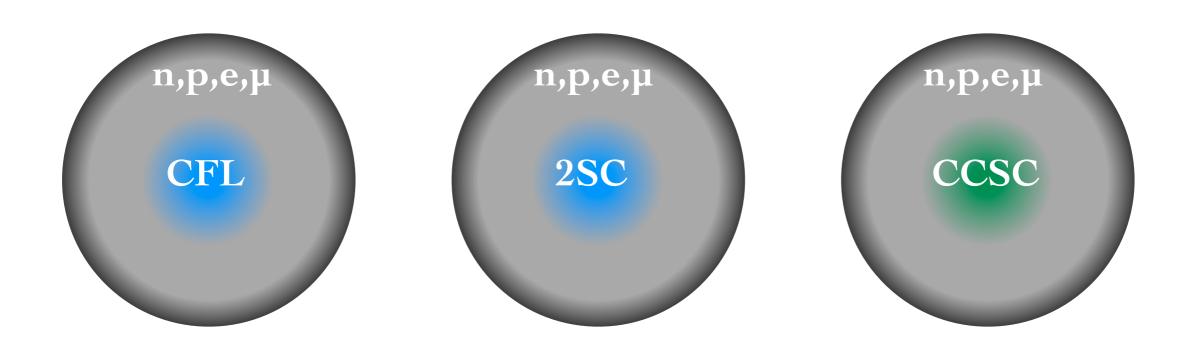
Hybrid star



 $R \sim 10 \text{ km } M \simeq 1 - 2 M_{\odot}$

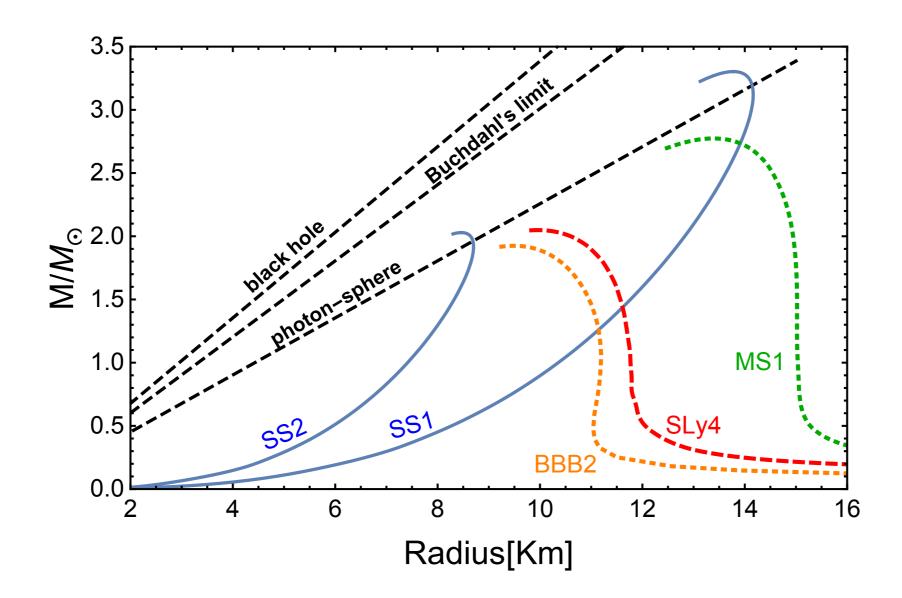


And even more options...



- 1. There are several possibilities
- 2. The transition densities are not strongly constrained

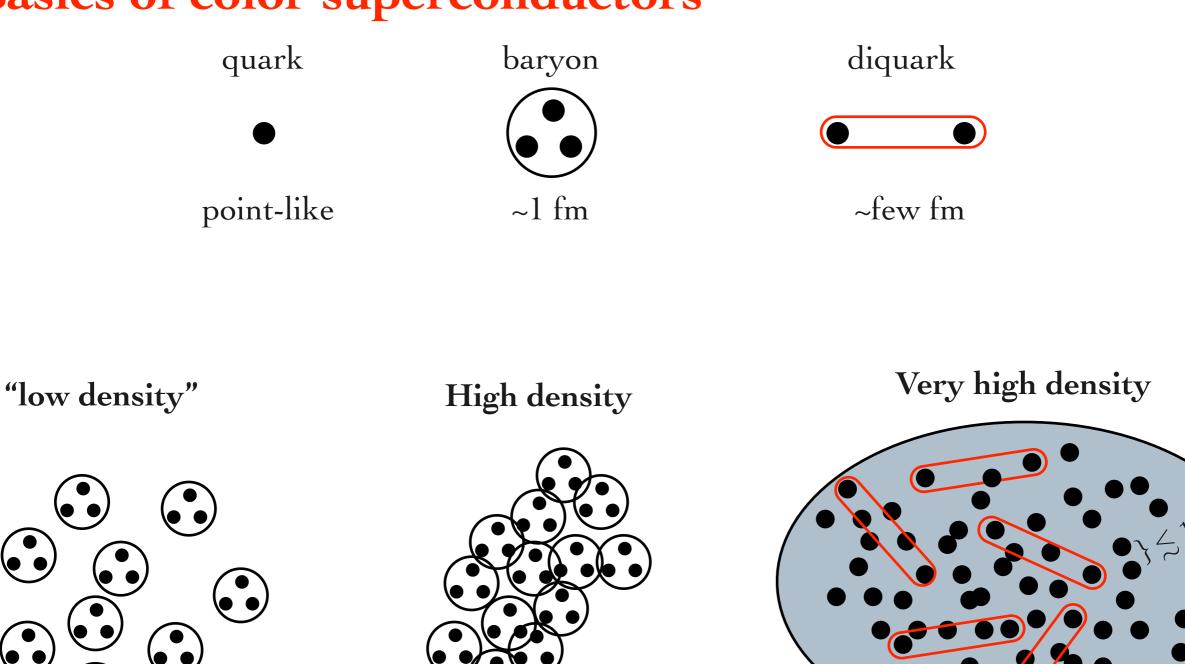
Some mass-radius comparisons



Hard to distinguish unless

- 1. Precise radius measurement, see Jim's and Cole's talks
- 2. Identification of an object with small mass and radius
- 3. Identification of an object with large compactness, see MM and Tonelli, Phys.Rev.D 97 (2018)

Basics of color superconductors



Gas of nucleons

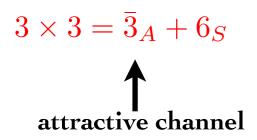
Liquid of overlapping nucleons

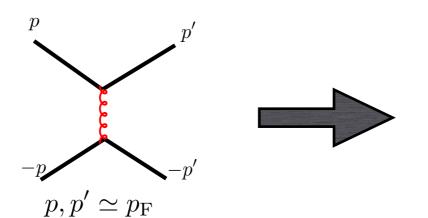
Liquid of deconfined quarks with correlated diquarks

Asymptotic density

The two main aspects of the gluon interaction

Attractive perturbative interaction

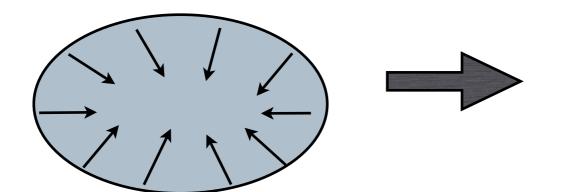




Provides a channel to form correlated pairs.
We assume it works at any density

AND

Confining bag



Provides a mechanism to make quark matter self-bound. No need of gravity to make quark matter stable.

General expression of the condensate

General color superconducting condensate:

$$\langle \psi_{\alpha i} C \gamma_5 \psi_{\beta j} \rangle \propto \sum_{I=1}^{3} \Delta_{\rm I} \varepsilon^{\alpha \beta I} \epsilon_{ijI}$$

$$\alpha, \beta = 1, 2, 3$$
 color indices

$$i, j = 1, 2, 3$$
 flavor indices

$$\Delta_{\rm I} \sim 10-100\,{\rm MeV}$$

"gap parameters" for quarks whose flavor and color is not I

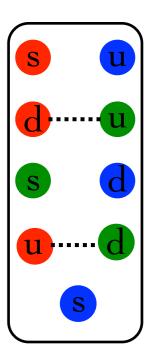
The condensate has a color charge, has a "flavor" charge and a baryonic charge The corresponding symmetries can be broken or mixed.

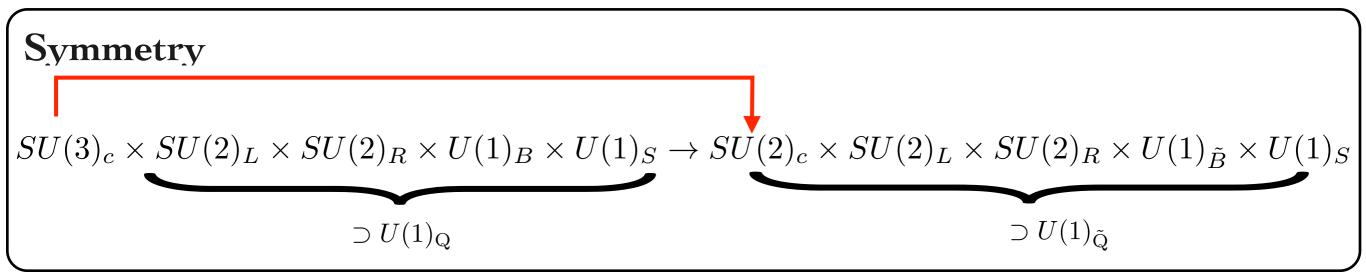
A zoo of color superconducting phases.

2 Flavor color superconductor (2SC)

Suppose the strange quark mass is "large": $m_s > \mu_{u,d}$ Strange quarks decouple

$$\Delta_3 > 0 \,,\, \Delta_2 = \Delta_1 = 0$$





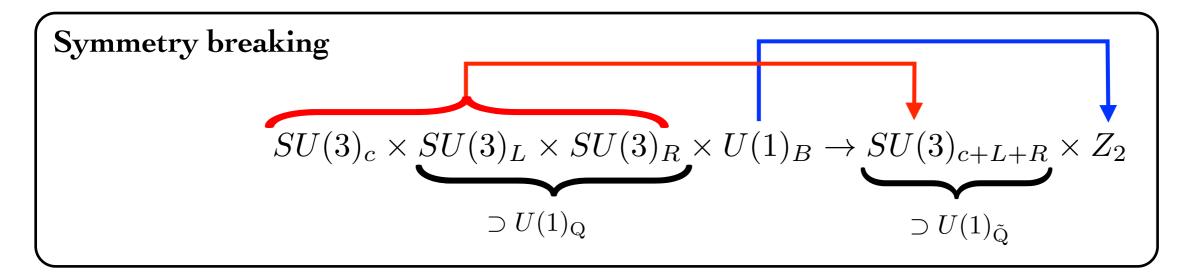
- Higgs mechanism, 5 gauge bosons acquire a mass: COLOR SUPERCONDUCTOR
- No chiral symmetry breaking
- No global symmetry is broken: NOT A SUPERFLUID
- The photon is rotated (mixed with gauge and global symmetries)

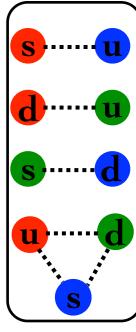
The system is an "electrical" conductor

Color Flavor Locked phase

Pairing of quarks of all flavors and colors

Alford, Rajagopal, Wilczek Nucl. Phys. B537 (1999) 443





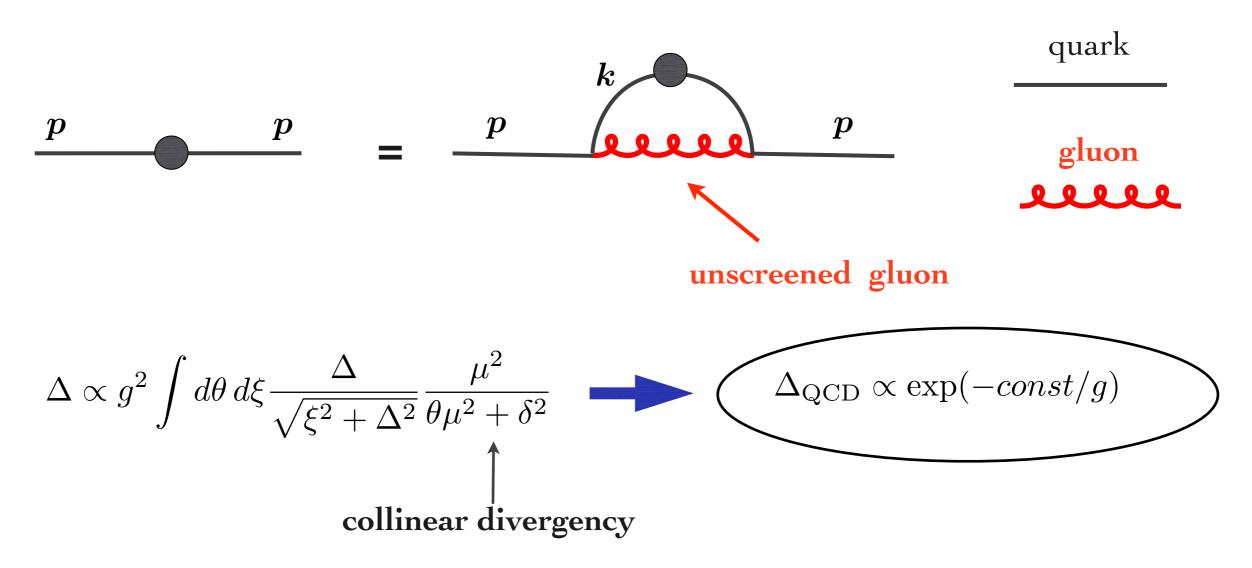
- Higgs mechanism, 8 gauge bosons acquire a mass: COLOR SUPERCONDUCTOR
- XSB: 8 (pseudo) Nambu-Goldstone bosons (NGBs)
- U(1)_B breaking, 1 NGB: SUPERFLUID
- "Rotated" electromagnetism, mixing angle $\cos\theta = \frac{g}{\sqrt{g^2 + 4e^2/3}}$ (analog of the Weinberg angle)

Quantitative analysis

Suppose we use QCD

$$\mathcal{L}_{\text{QCD}} = \bar{\psi}(i\gamma^{\mu}D_{\mu} + \mu\gamma_0 - M)\psi - \frac{1}{4}F_a^{\mu\nu}F_{\mu\nu}^a$$

We want to measure the strength of the correlation using the Gap equation

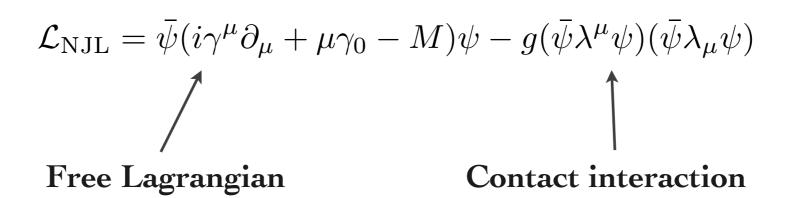


 δ is the scale of Landau damping

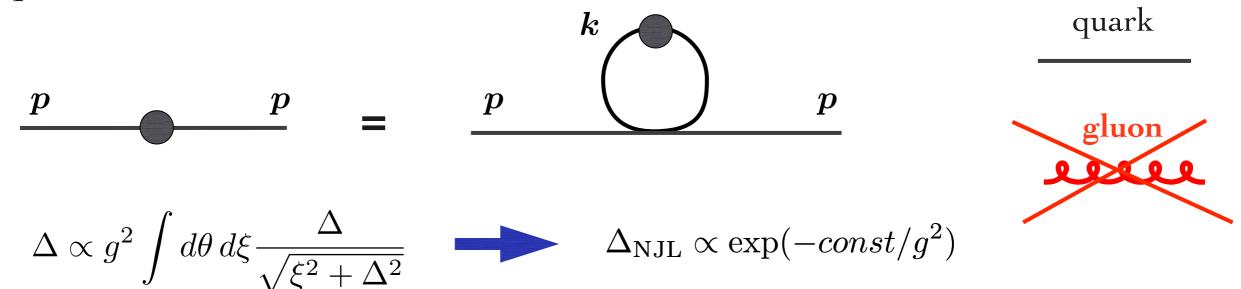
Barrois, B. C., 1979, Ph.D. thesis, Son, D. T., 1999, Phys. Rev. D59, 094019.

Gap equation in NJL-like models

Contact interaction



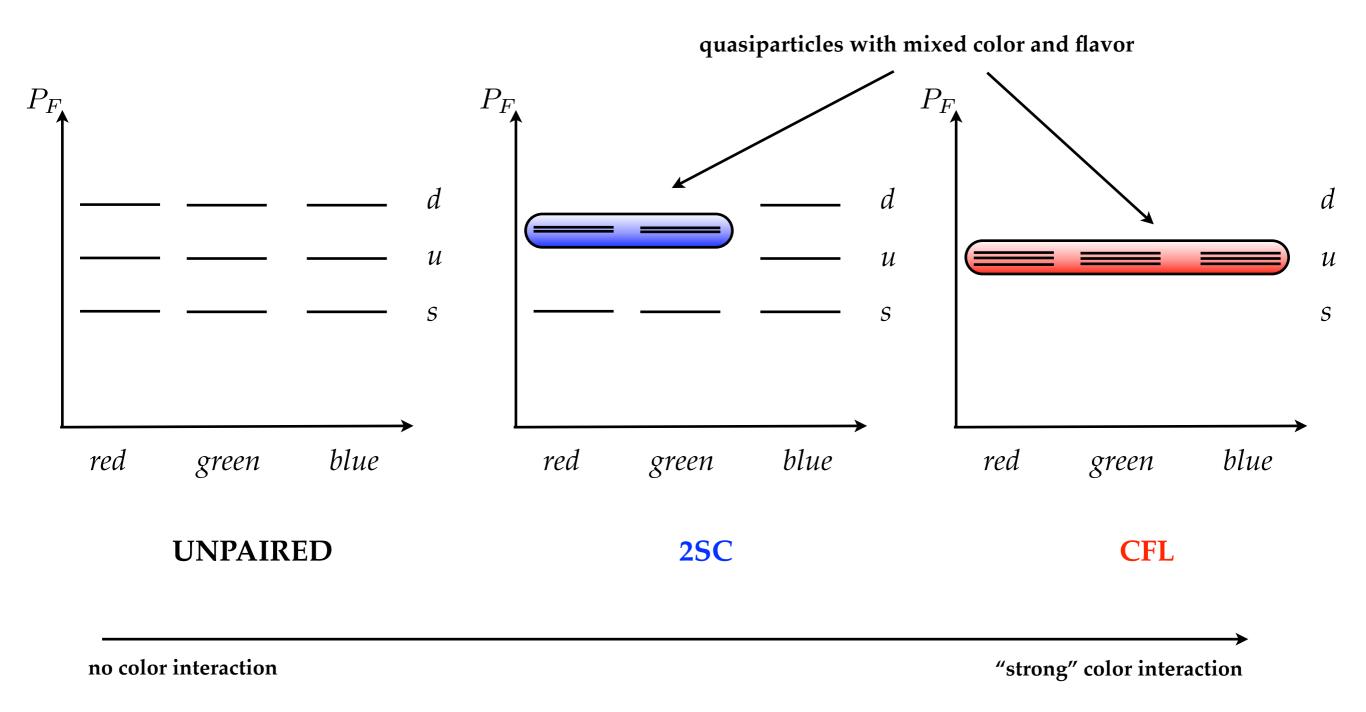
Gap equation



"Wrong" parametric dependence on the coupling

CRYSTALLINE COLOR SUPERCONDUCTORS

Fixed mismatch, increasing coupling



Whenever there is BCS pairing, the Fermi surfaces have to match.

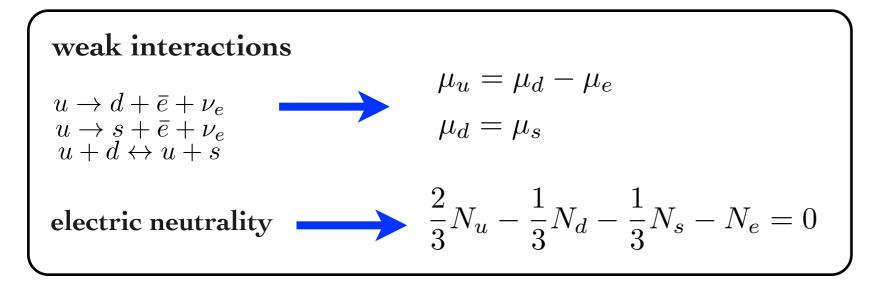
Quark matter in compact stars

sizable strange quark mass

+
weak equilibrium
+
electric neutrality

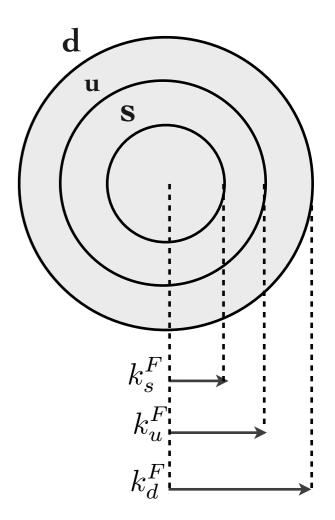
mismatch of Fermi
momenta

For simplicity, no strong interaction



$$k_u^F = \mu_u \quad k_d^F = \mu_d \quad k_s^F = \sqrt{\mu_s^2 - m_s^2}$$

Fermi spheres

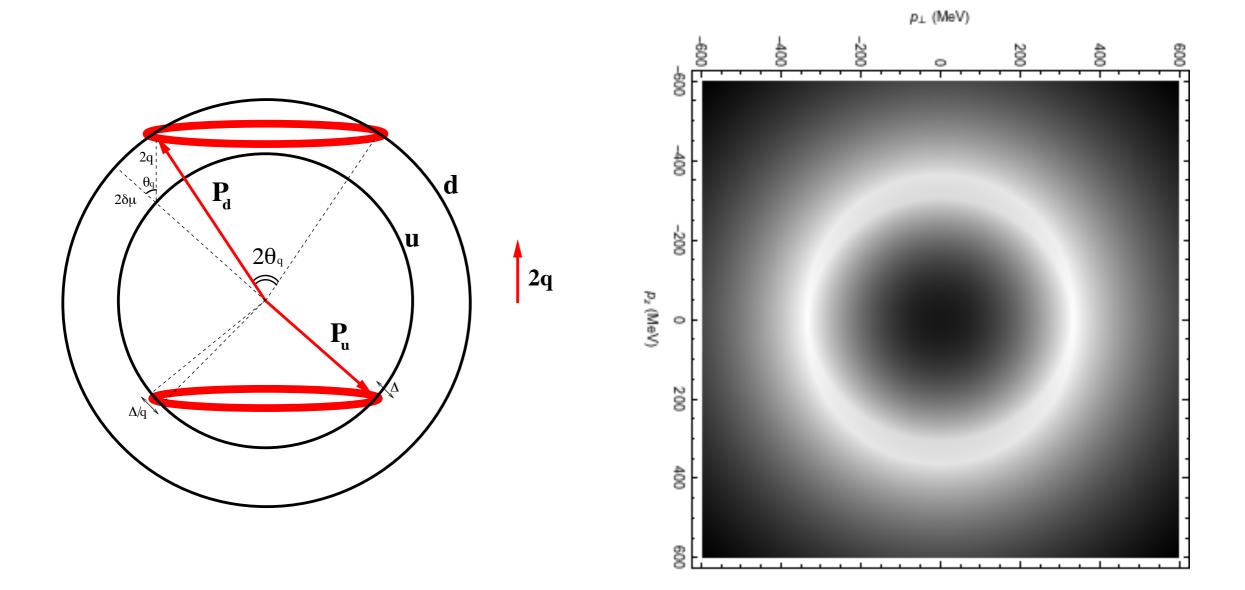


If the mismatch is too large, pairing cannot occur. The largest chemical potential mismatch which allows paring is named the **Chandrasekhar-Clogston limit**

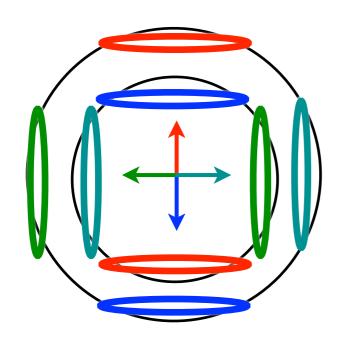
Crystalline quark matter

Beyond the Chandrasekhar-Clogston limit, the homogeneous BCS pairing is not possible

Non-isotropic LOFF phase: quark pairing only along certain directions



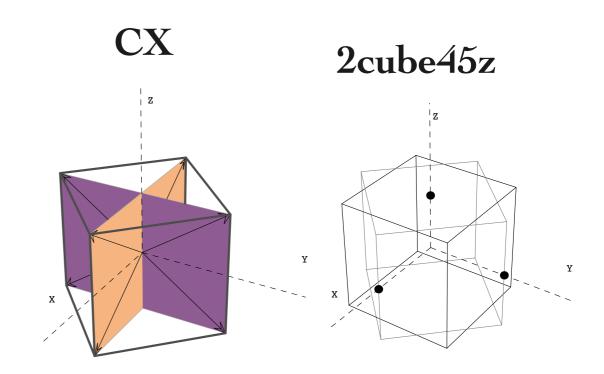
Crystalline structures: CCSC phase



- Complicated structures can be obtained combining more plane waves
- "no-overlap" condition between ribbons

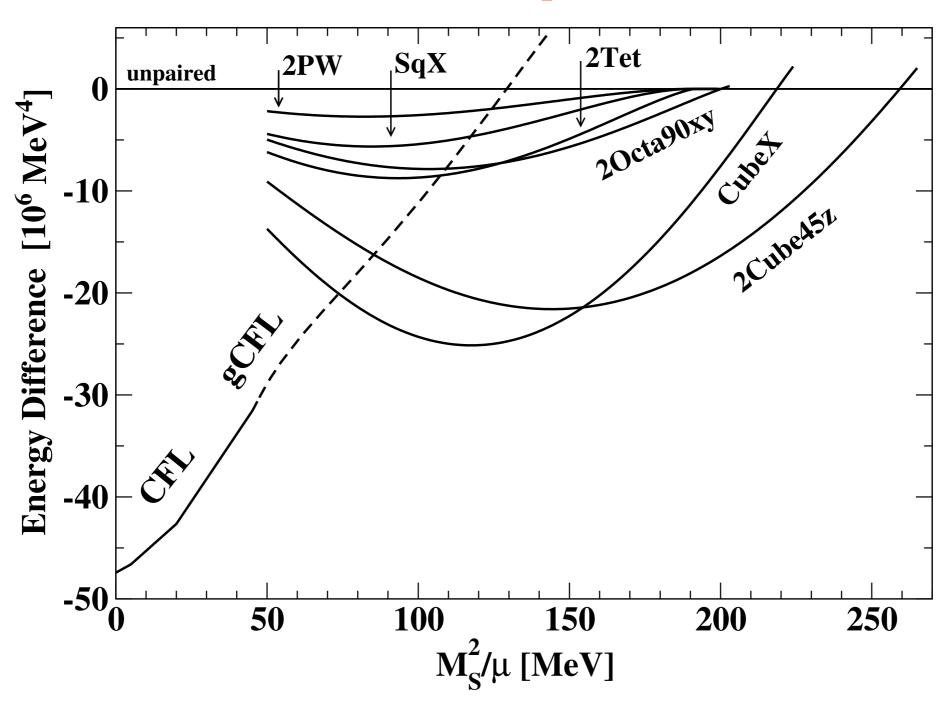
Three flavors

$$<\psi_{\alpha i}C\gamma_5\psi_{\beta j}>\sim\sum_{I=2,3}\Delta_I\sum_{\mathbf{q}_I^m\in\{\mathbf{q}_I^m\}}e^{2i\mathbf{q}_I^m\cdot\mathbf{r}}\epsilon_{I\alpha\beta}\epsilon_{Iij}$$
 simplifications
$$\mathbf{q}_I^m=q\,\mathbf{n}_I^m$$



Free energy estimate

NJL + GL expansion!!

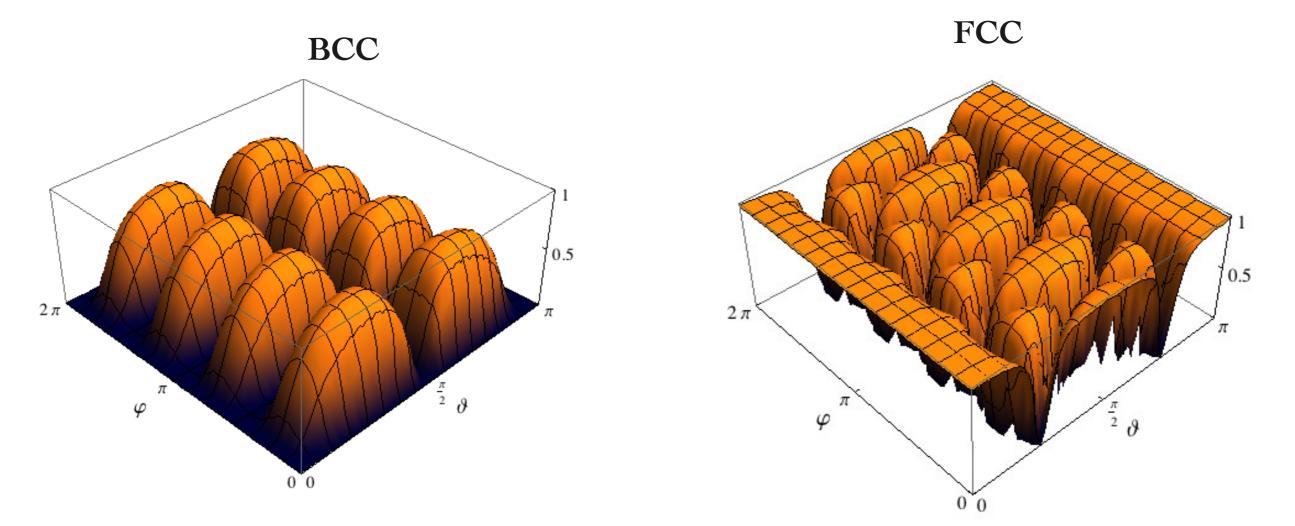


Fermionic dispersion laws

Quark quasiparticles have an anisotropic gapless dispersion law:

direction dependent velocity $E = c(\theta, \phi) \, \xi$

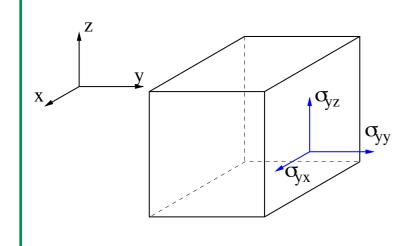
Velocity of fermions in two different structures



MM et al. Review of Modern Physics 86, 509 (2014)

Displacement of the crystal structure

Elastic deformation of a stressed crystal (Landau Lifsits, vol. 7)



displacement vector
$$u_i = x_i' - x_i$$

deformation tensor $u_{ij} = \frac{u_{i,j} + u_{j,i}}{2}$

stress tensor $\sigma_{ij} = K u_{kk} \delta_{ij} + 2\nu \left(u_{ij} - \frac{1}{3} u_{kk} \delta_{ij} \right)$

compressibility shear modulus

- Crystalline structure given by the spatial modulation of the gap parameter
- It is this pattern of modulation that is rigid (and can oscillate)

 $\nu_{\rm CCSC} \sim 2.47 \, {\rm MeV/fm}^3$

20 to 1000 times more rigid than the crust of neutron stars

ASTROPHYSICAL OBSERVABLES

Gravitational waves

Rotating and/or oscillating strange/hybrid stars with a CCSC crust/core, which are somehow deformed to nonaxisymmetric configurations, can efficiently emit gravitational waves

Lin, Phys.Rev. D76 (2007) 081502, Phys.Rev. D88 (2013)

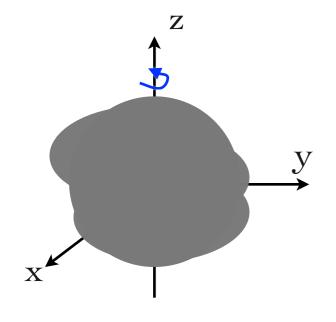
Haskell et al. Phys.Rev. Lett.99. 231101 (2007)

Knippel et al. Phys.Rev. D79 (2009) 083007

Rupak and Jaikumar Phys.Rev. C88 (2013) 065801

•••••

Gravitational waves from "mountains"



If the star has a non-axial symmetric deformation (mountain) it can emit gravitational waves

ellipticity

GW amplitude

$$\epsilon = \frac{I_{xx} - I_{yy}}{I_{zz}}$$

$$\epsilon = \frac{I_{xx} - I_{yy}}{I_{zz}} \qquad h = \frac{16\pi^2 G}{c^4} \frac{\epsilon I_{zz} \nu^2}{r}$$

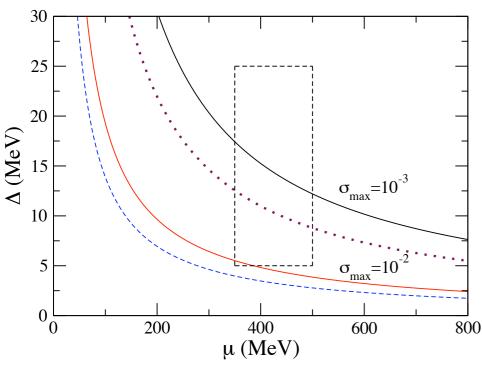
- The deformation can arise in the crust or in the core
- Deformation depends on the breaking strain and the shear stress

To have a "large" GW amplitude

- Large shear modulus
- Large breaking strain

Gravitational waves from mountains

Exclusion plots from no GW signal from the Crab



Lap-Ming Lin, Phys.Rev. D76 (2007) 081502



MM et al. Review of Modern Physics 86, 509 (2014)



Andersson et al. Phys.Rev. Lett.99. 231101 (2007)

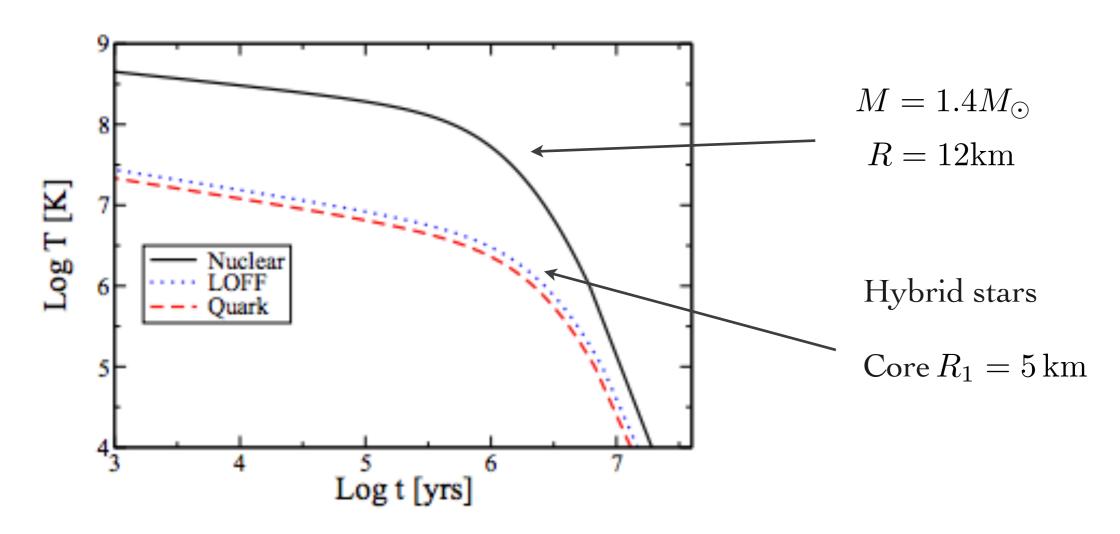
Unfortunately the results depend on

- 1. The breaking strain, which is not known
- 2. Whether the magnetic field (or any other agent) can maximally deform the star

Cooling

Since the crystalline phase has gapless modes it can quickly cool by direct Urca processes

Toy model calculations using uncompressible star models



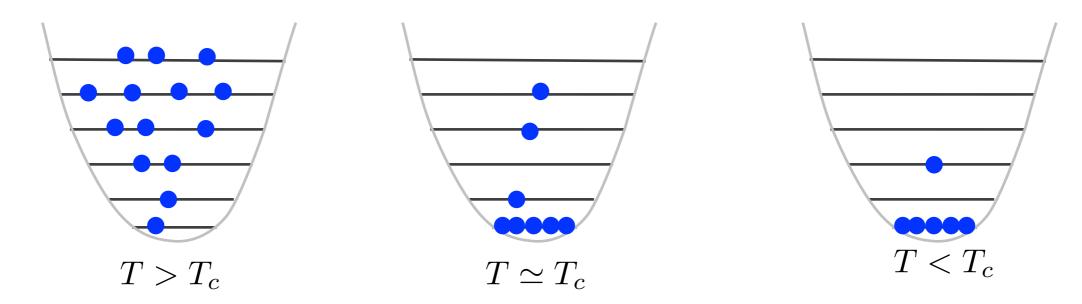
Anglani, MM, Nardulli, Ruggieri Phys.Rev.D 74 (2006) 074005

Meson condensation and compact stars

Bose-Einstein condensation

The Bose-Einstein condensate (BEC) is a **coherent state of matter.**A "thermodynamically" large number of particles occupy the same quantum state

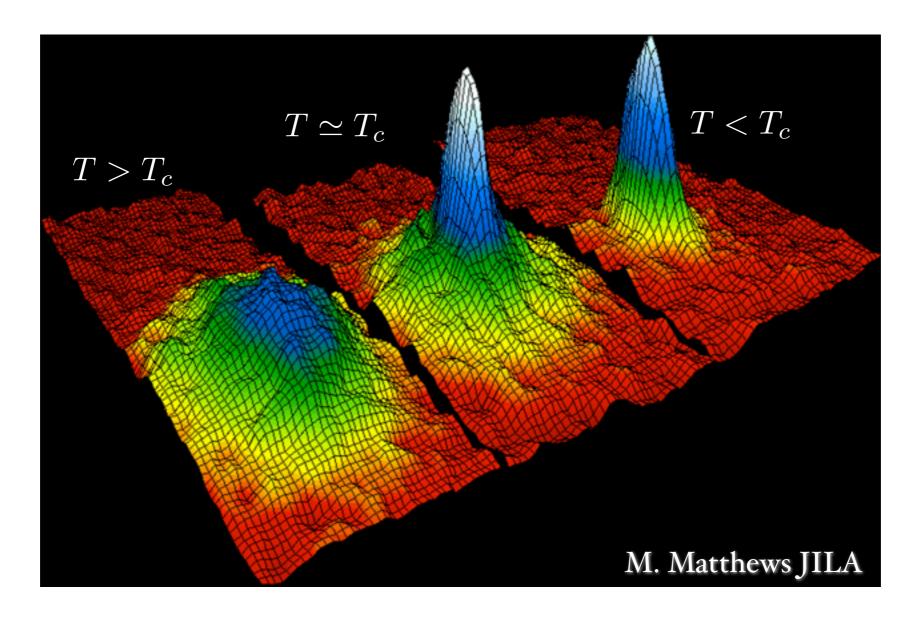
BOSONS@ low temperature in an harmonic potential



Requirements:

- 1. Particles must be **bosons** or boson-like, e.g. Cooper pairs in BCS
- 2. Cold system: A fight between thermal disorder and quantum coherence
- 3. Particles must be **stable**

Ultracold atoms in an optical trap



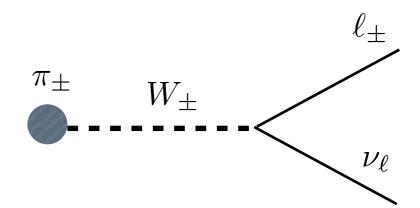
Velocity distribution of ⁸⁷Rb atoms

 $T_c \simeq 200 \text{ nK}$

- 1. ⁸⁷Rb is **bosonic**
- 2. can be **cooled**
- 3. has a lifetime of about 10^{10} years (the experiment lasts $\sim 10^3$ s)

Pion decay

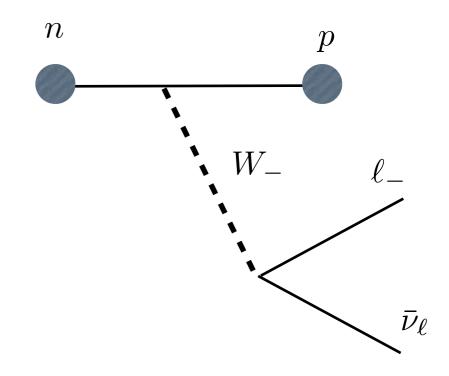
- 1. Pions are bosons
- 2. Can be produced at **low temperature** in compact stars
- 3. π^{\pm} has a lifetime of about 10^{-8} s



It seems hard to have degenerate pions...

Similar problem arises with neutrons in vacuum lifetime of about 800 s

In medium neutrons can be "statistically" stabilized by Pauli blocking + charge neutrality



Increasing asymmetry in cold matter

Favored isotopes in the NS crust

Neutron rich matterinside a NS	Isotope	Z/A	$\rho_t(\mathrm{g/cm^3})$	μ_{e} (MeV)	
	56 Fe	0.464	7.96×10^{6}	0.95	
	$^{62}\mathrm{Ni}$	0.452	2.71×10^{8}	2.61	
	$^{64}\mathrm{Ni}$	0.437	1.3×10^{9}	4.31	
	⁶⁶ Ni	0.424	1.48×10^{9}	4.45	
	$^{86}\mathrm{Kr}$	0.419	3.12×10^{9}	5.66	
	⁸⁴ Se	0.405	1.10×10^{10}	8.49	
	$^{82}\mathrm{Ge}$	0.390	2.80×10^{10}	11.4	
	80Zn	0.375	5.44×10^{10}	14.1	
	$\overline{^{78}\mathrm{Ni}}$	0.359	9.64×10^{10}	16.8	many electrons
	¹²⁶ Ru →	0.350	1.29×10^{11}	18.3	
	124Mo	0.339	1.88×10^{11}	20.6	
	$^{122}\mathrm{Zr}$	0.328	2.67×10^{11}	22.9	
	$^{120}\mathrm{Sr}$	0.317	3.79×10^{11}	25.4	_
	¹¹⁸ Kr	$\sqrt{0.305}$	4.31×10^{11}	26.2	— neutron drip
			•		

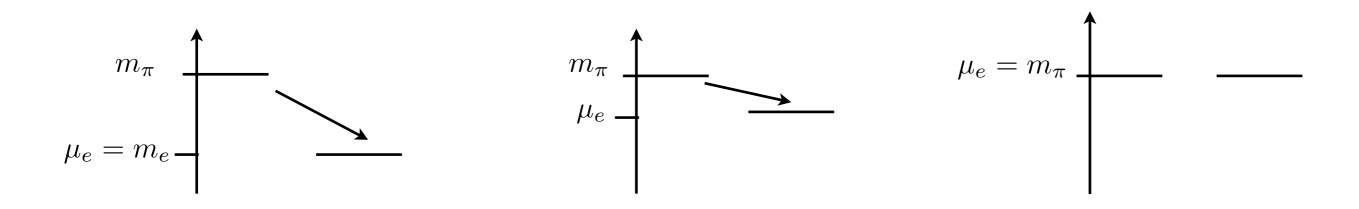
Haensel and Pichon Astron. Astrophys. 283 (1994) 313

When there are many unbound neutrons $Z/A \sim 0.1$

In medium pions

The decay is Pauli blocked if $\mu_e > m_\pi$ and the pion becomes stable

Increasing electron density



A similar effect can stabilize kaons if the kaon effective mass is below the kinematic threshold for decay.

Caveats

- Need to take into account electromagnetic interactions
- Larger effective pion mass from strong interaction with baryons
- Fight between hyperons and pions

Some general considerations on meson condensation

Effect of the isospin

Mesons

Energy spectrum splitting Stark-like effect

$$E_{\pi^0} = \sqrt{m_{\pi}^2 + p^2}$$

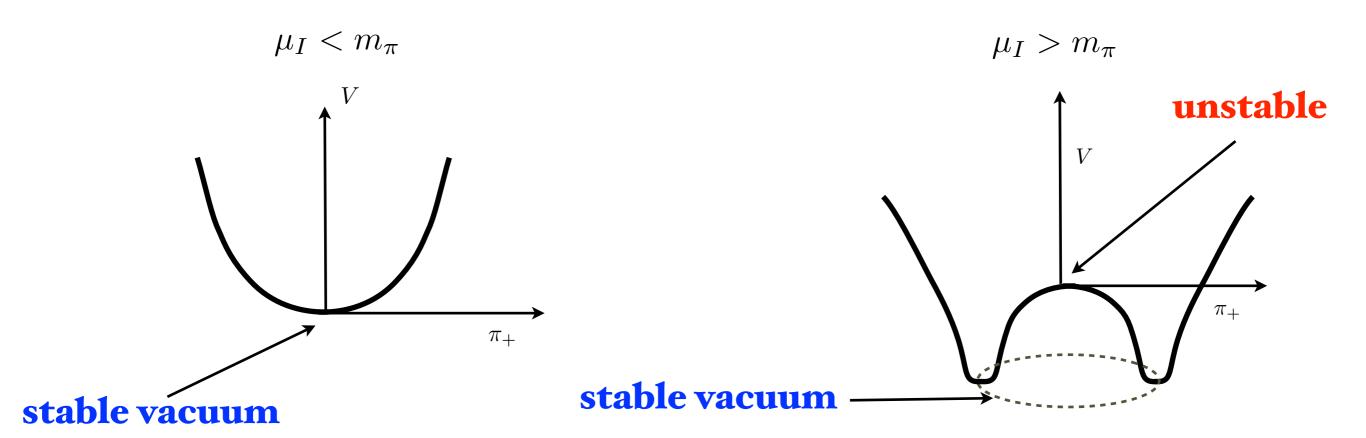
$$E_{\pi^-} = +\mu_I + \sqrt{m_{\pi}^2 + p^2}$$

$$E_{\pi^+} = -\mu_I + \sqrt{m_{\pi}^2 + p^2}$$

$$m_{\pi^+}^{\text{eff}} = m_{\pi} - \mu_I$$

What happens for $\mu_I > m_{\pi}$?

A vanishing "effective mass" may imply the onset of an instability because $(m_\pi^{\rm eff})^2 \sim \frac{\partial^2 V}{\partial \pi^2}$



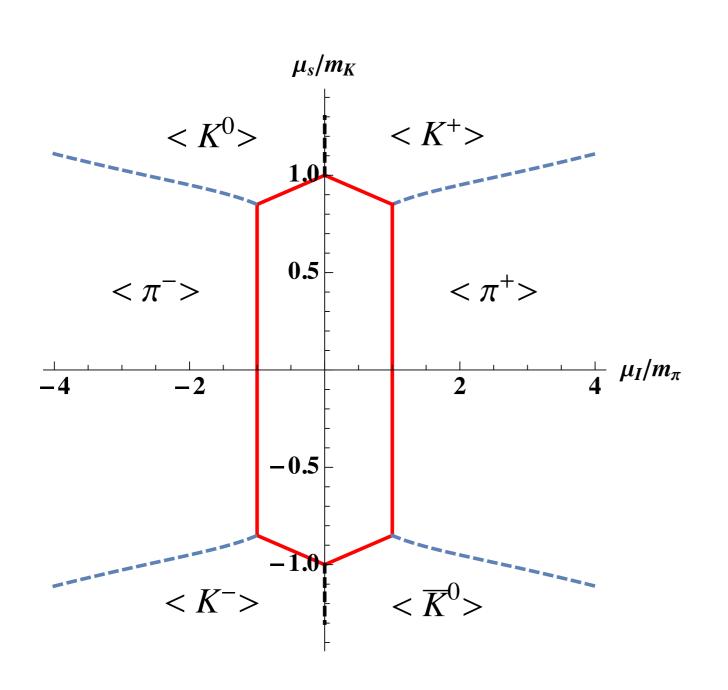
Effect of the isospin and strangeness

Both strangeness and isospin effectively split the energy spectrum

A vanishing "effective mass" implies the onset of an instability

Phase diagram

Plotting the lines of vanishing mass and considering the mode that becomes massless, we find...



solid lines: second order

dotted lines: first order (competition between different condensates)

Chiral perturbation theory (χ PT)

"Low momentum" EFT

QCD is a confining and strongly interacting theory. χ PT is a realisation of hadronic matter at soft energy scales

$$p \ll \Lambda_{\chi} \sim 1 \, \mathrm{GeV}$$

Qualitative recipe

Variationally derive the **nonperturbative vacuum** and **expand** around that vacuum for small momenta.

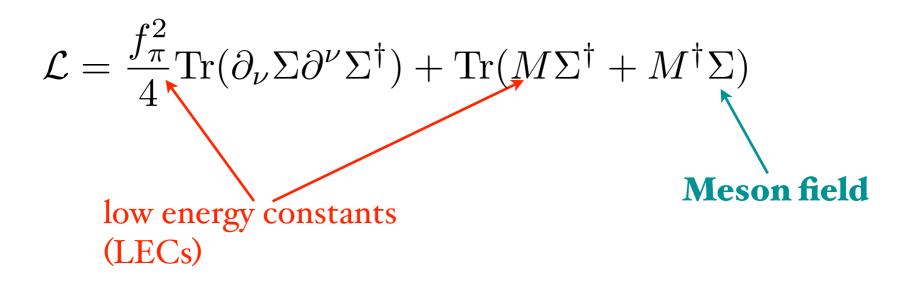
Since you are expanding, you have control parameters

We do not include baryons and vector mesons

$$|\mu_B| \lesssim 940 \text{ MeV} \qquad |\mu_I| \lesssim 770 \text{ MeV}$$

Leading order pion Lagrangian

The $\mathcal{O}(p^2)$ Lorentz invariant Lagrangian density for pseudoscalar mesons



For SU(2) $\Sigma = \cos \rho + i \hat{\varphi} \cdot \boldsymbol{\sigma} \sin \rho$ "Angular" field Pauli matrices

A general SU(2) static and homogeneous vev

$$\bar{\Sigma} = e^{i\boldsymbol{\alpha}\cdot\boldsymbol{\sigma}} = \cos\alpha + i\boldsymbol{n}\cdot\boldsymbol{\sigma}\sin\alpha$$

$$\uparrow \qquad \uparrow$$
variational parameters

Static Lagrangian

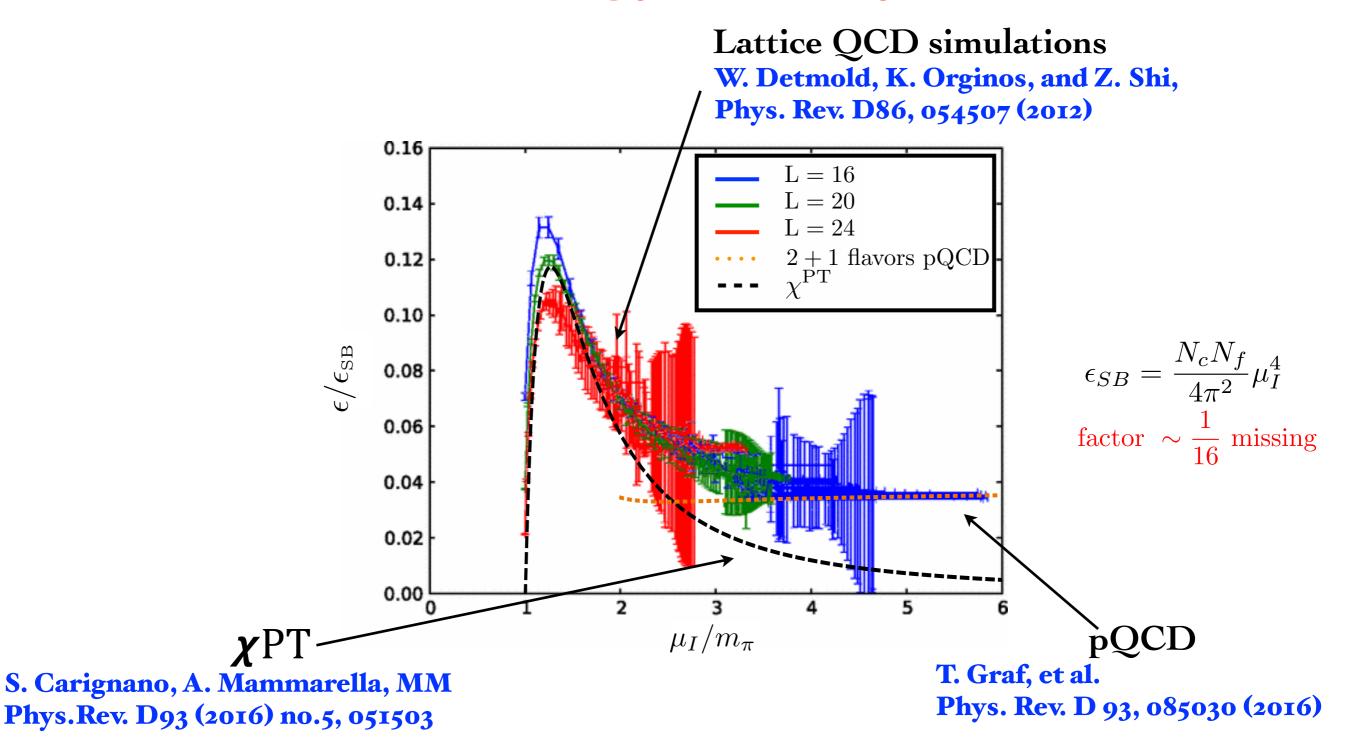
$$\mathcal{L}_0(\alpha, \mu_I, n_3) = F_0^2 m_\pi^2 \cos \alpha + \frac{F_0^2}{2} \mu_I^2 \sin^2 \alpha (1 - n_3^2)$$

Maximising the Lagrangian

for
$$\mu_I < m_{\pi}$$
 $\cos \alpha = 1$ \mathcal{L}_0 independent of \boldsymbol{n} for $\mu_I > m_{\pi}$ $\cos \alpha_{\pi} = m_{\pi}^2/\mu_I^2$ $n_3 = 0$ residual $O(2)$ symmetry

The vacuum has been tilt in some direction in isospin space

Results for the energy density



χPT gives an ANALYTIC expression for the peak

$$\mu_{I,LQCD}^{\text{peak}} = \{1.20, 1.25, 1.275\} m_{\pi}$$

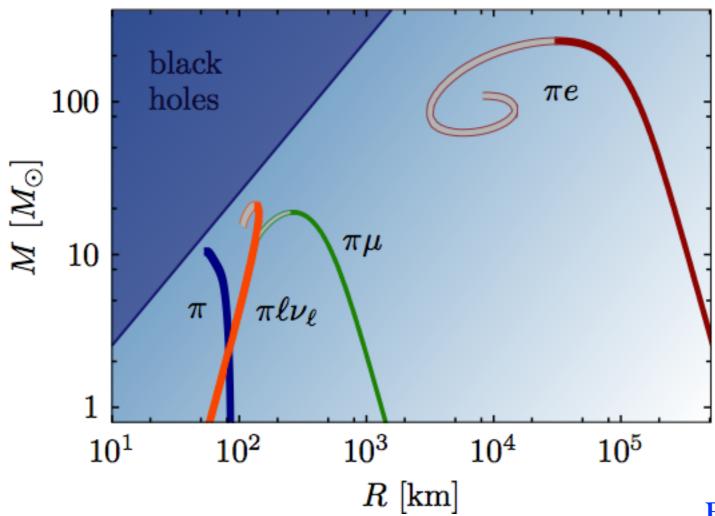
$$\mu_{I,\chi PT}^{\rm peak} = (\sqrt{13} - 2)^{1/2} m_{\pi} \simeq 1.276 \, m_{\pi}$$

Pion stars

Pion stars

Since the pion condensed phase is stable, it is possible to form a star entirely made of pions

MM et al. Eur.Phys.J.A 53 (2017) 2, 35



B. Brandt et al. Phys.Rev.D 98 (2018) 9, 094510

Summary and outlook

Compact stars are excellent matter squeezers

• Exotic phases are intriguing, if quark matter is deconfined some nontrivial phase could appear

We have to be patient, not easy to rule in/out models

Try to make predictions and compare with observations