Gravitational lensing of electromagnetic and gravitational waves

Tutorial-2

- 1.) Point mass lens: Derive the position, Jacobian, and magnification of the images for a point mass lens.
- 2.) Singular Isothermal Sphere: Derive the position, Jacobian, and magnification of the images for a lens mass distribution

$$\rho(r) = \frac{\sigma_{\nu}^2}{2\pi G r^2}$$

where the constant $\sigma_n u$ is the velocity dispersion of the particles.

3.) Rotation of coordinate system: Rotate lens plane coordinates (x_1, x_2) by an angle θ and derive the transformation of the vector (γ_1, γ_2) .