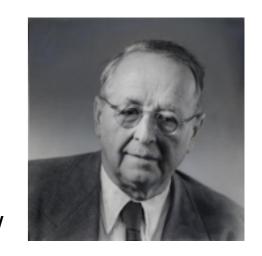
Role of Symmetries in Condensed matter physics

Subhro Bhattacharjee

ICTS, TIFR

The Legacy of Emmy Noether, ICTS, Aug. 29-30, 2016


Emmy Noether

1882-1935

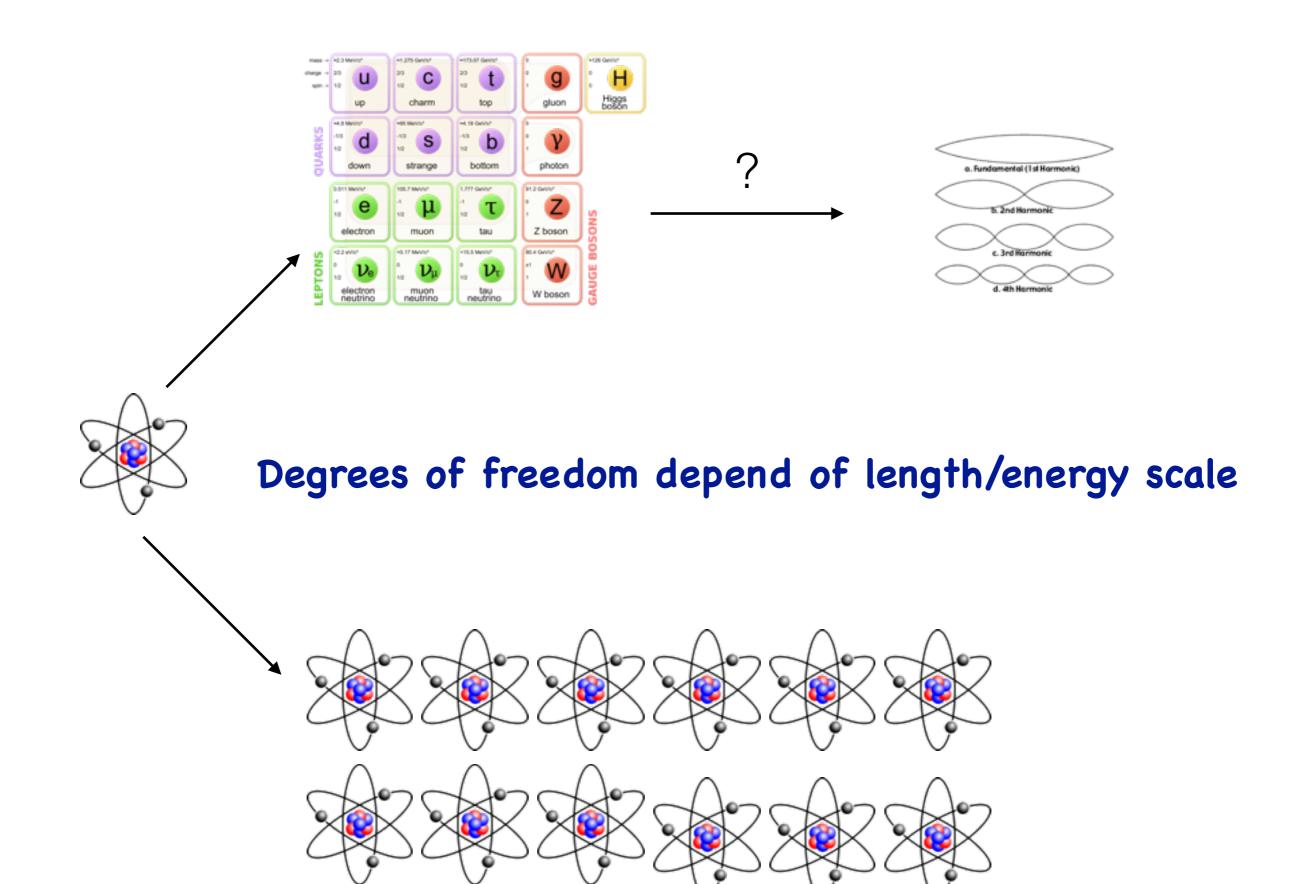
Memorial address: Emmy Noether

by Hermann Weyl
http://celebratio.org/Noether_E/article/111/

Indeed, two traits determined above all her nature: First, the native productive power of her mathematical genius. She was not clay-pressed by the artistic hands of God into a harmoni ous form, but rather a chunk of human primary rock into which He had blown His creative breath of life. Second, her heart knew no malice; she did not believe in evil — indeed it never entered her mind that it could play a rôle among men. This was never more forcefully apparent to me than in the last stormy summer, that of 1933, which we spent together in Göttingen. The memory of her work in science and of her personality among her fellows will not soon pass away. She was a great mathematician, the greatest, I firmly believe, that her sex has ever produced and a great woman.

Noether's Theorem

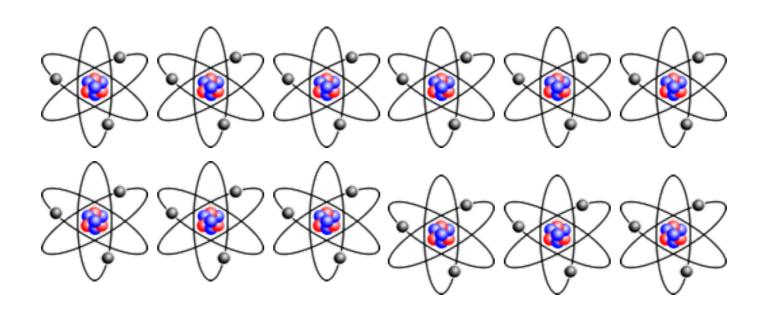
Continuous Symmetries


Conservation Laws

Invariants (of motion)


Symmetries

(in condensed matter physics)

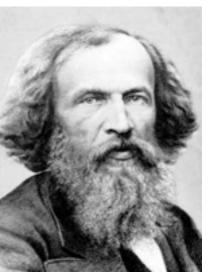


Emergent Phenomena

· Many particles give rise to qualitatively new behaviour

Materials

 $\sim 10^{23}$


Periodic Table

H 1,0079																		He
Ithium 3	beryllium.	12										1	boron 5	carbon 6	nitrogen 7	cxygen 8	fluorine 9	neon 10
Li	Be												В	C	N	0	F	Ne
6.941	9.0122											- 9	10.611	12.011	14.007	15.999	18.998	20.190
sodium 11	magnesium 12											- 1	aluminium 13	sticon 14	phosphorus 15	16	thiorine 17	argon 18
Na	Mg												Al	Si	Р	S	CI	Ar
22.990 otassium	24.305 calcium		scandium	Hanism	vanadium	chromium	manganese	ion	coball	nickel	copper	zinc	26.962 gallum	28.095 germenkum	30.974 arsenic	32.065 selenium	35.453 bromine	39.94/ krypto
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kı
39.098 ubidium	40,078 strontium		44,956 yttrium	47.867 ziroonium	niobium	51.996 molybdenum	54,938 technetum	55.845 ruftenium	58,933 rhodlum	58.693 polladium	63,546 silver	65.39 cadmium	69,723 Inclum	72.61 tin	74.922 antimony	78.96 tellurium	79,904 lodine	83.80 xenor
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	- 1	Xe
85.468 raesium	87.62 berium		88,906 lutetum	91,224 folialum	92,906 tontolum	95.94 tungsten	(98) thonium	101.07 osmium	102.91 iridium	106.42 platinum	107.87 gold	112.41 neroury	114.82 hallun	118.71 lead	121.76 bismuth	127.60 polonium	126.90 astatine	131.25 rador
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rr
132.91 ancium	137.23 radium		174.97 lawsancium	178.49 natherfordium	180.95 dubnium	183.94 seoborgium	186.21 botrium	190.23 hassium	192.22 meitherium	195,68 ununnition	196.97 unununium	200.59 ununbium	204.38	207.2 unsequadien	208.98	[209]	[210]	[222]
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq	,			
[223]	[220]		[503]	[261]	12621	1200	[264]	[209]	[268]	[271]	[272]	[277]		[289]				

*Lanthanide series

* * Actinide series

La	Ce Ce	59 Dr	Nd	Pm	62 Sm	Eu	Gd Gd	Tb	dysprosium 66 DV	Ho	erteum 68 Er	Tm	Yb
138.91	140.12	140.91	144.24	1145	150.38	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
actinium 89	fredum 90	protectinium. 91	uranium 92	neptunium 93	plutonium 94	americium 95	curium 96	berkelum 97	calfornium 98	oinsteinium 99	fermium 100	mendelevium 101	nobelium 102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Degree of freedom: carbon

Be 9.0122 magnesium 12 Mg 24.366 calcium		wie er oo										B 10.611	C t2.011	ntrogen 7 N 14.007	0 0 15.999	fluorine 9 F 18.998	10 Ne
Be 9,0122 magnesium 12 Mg 24,366											9	B 10.811	C 12.011	N 14.007	0	F	Ne
9,0122 magneskim 12 Mg 24,366												10.611	12.011	14.007	15.999		
Mg 21,305											- 1	aiuminium	- indicate				
Mg		924 e - 2									- 1	13	14	phosphorus 15	16	thiorine 17	argo 18
24.305		224 2002													0.1-0.1	1.000	15000
		2000										ΑI	Si	P	S	CI	A
		scandium	Hankm	vanadium	chromium	manganese	ion	coball	nickel	copper	zinc	gallum	28.095 permenium	30.974 arsenic	32.065 selenium	35,453 bromine	39.94 krypt
20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Ca		Sc	Ti	٧	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	K
40.078		44,966	47.867	50.942	51.996	54,938	55.845	58,933	58.693	63,546	65.39	69,723	72.61	74.922	78.96	79,904	83.9
																	xeno 54
1.53.50		2000			A 54-607 Table	2000	1. 15 5-7	1 - 2 - 5 - 5 - 7 - 1 - 1	121201-1150		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2000	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	100000000000000000000000000000000000000	******	X
87.62		88,906	91,224	92,906	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.2
	57-70																mdo 86
Ba	*	Lu	Hf	Ta	W	Re	Os	lr	Pt	Au		ŤΙ	Pb	Bi	Po	10.2000	Ri
137.23		174.97	170.49	180.95	183.84	186.21	190.23	192.22	195,68	196.97	200.59	204.38	207.2	208.98	[209]	[210]	p222
	89-102																
					7 0.357 0.7	1222121		2.200		2000	20000		2000	i.			
	Ca 40,078 strontum 38 Sr 87,82 berken 56 Ba	Ca 40,078 shortum 38 Sr 87,62 torkum 56 57,70 Ba 137,23 todkum 88 89-102 Ra **	Ca 40,078 shorthum 38 Sr 87,62 torkum 56 57-70 71 Ba 137,23 todkum 88 89-102 Ra X Lr Sc 44,966 yftrhum 39 Y 88,066 toldeflum 71 11 24,97 todkum 88 89-102 Lu 174,97 todkum 88 todkum 89-102	Ca Sc Ti 44.966 47.897 yffrum zhrornum 38 Sr Y Zr S8.966 91.224 berkum 56 57-70 71 72 Ti 72 Ti 72 Ti 72 Ti 74.07 178.49 ti 74.07 178.49 ti 74.07 178.49 Ti 74.07 Ti 74.97 Ti 74.	Sc Ti V	Ca	Ca	Ca	Ca	Ca	Ca	Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn	Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga	Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge	Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As 40,078 41,966 47,967 50,942 51,996 54,908 55,845 58,903 50,043 60,546 66,39 69,723 72,61 74,922	Sc Ti	Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br

*Lanthanide series

* * Actinide series

La	Ce	59 Pr	neodymium 60 Nd	Pm	Sm	63 Fu	64 Gd	terbium 65 Tb	dysprosium 66 Dv	67 Ho	68 Er	Tm	70 Yb
138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
actinium 89	90	protectinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	96	97	ealfornium 98	oinsteinium 99	100	mendelevium 101	nobolium 102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

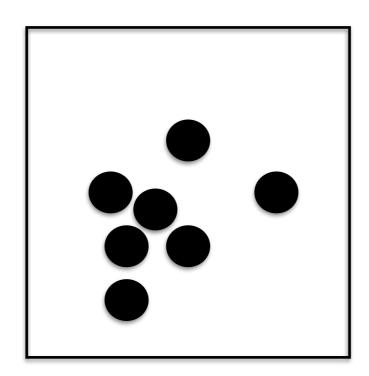
Symmetries

1 C atom

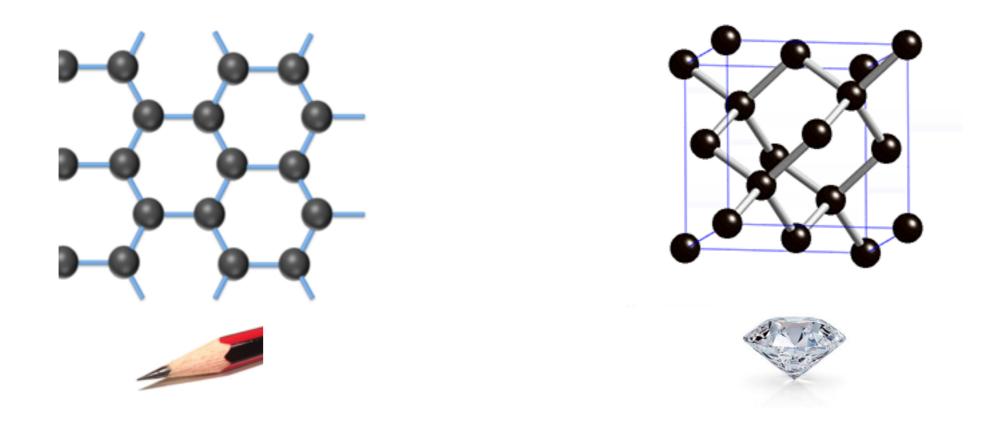
• The laws of physics governing a single atom is completely symmetric under translation and rotation

2 C atoms

- The interactions between two atoms depend on their relative position (symmetric under translation and rotation)
- This extends to many carbon atoms

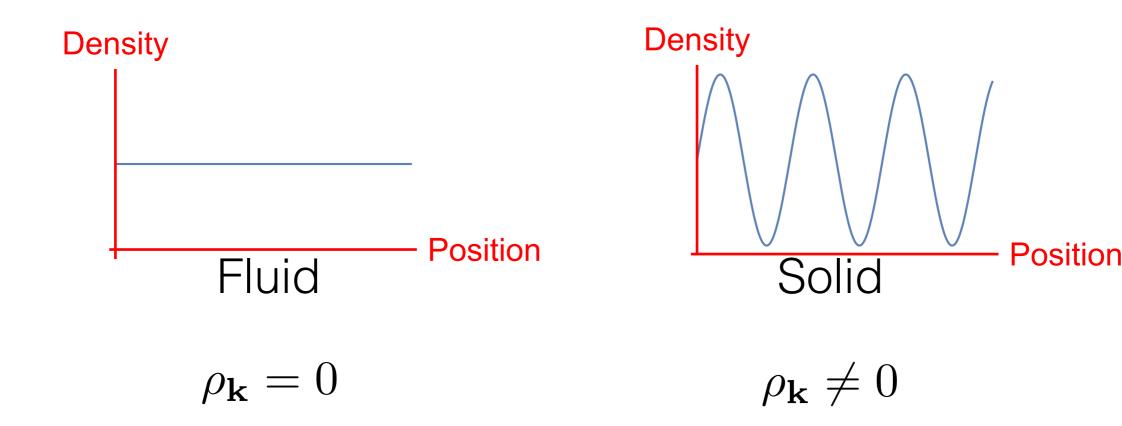

Specifying condensed matter systems

- 1. Degrees of freedom (Carbon atom)
- 2. Symmetries (Translation and Rotation)
- 3. Interaction (Hamiltonian)


$$\mathcal{H} = \sum_{i} \frac{\mathbf{P}_{i}^{2}}{2m} + \sum_{\langle ij \rangle} \mathcal{V}(|\mathbf{r_{i}} - \mathbf{r_{j}}|)$$

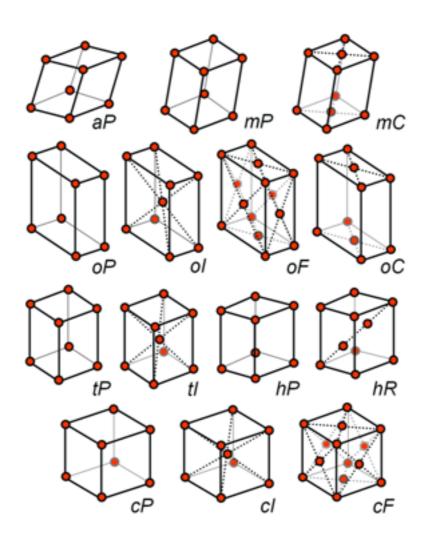
What is the state of the system of many carbon atoms?

 High temperature fluid state: Indeed the state respects translation and rotation symmetries


• Low temperatures: The system breaks the translation symmetry spontaneously to form a lattice.

- Physical properties drastically differ depending on the pattern of symmetry breaking.
- Example of emergent phenomena

Characterising spontaneous symmetry breaking

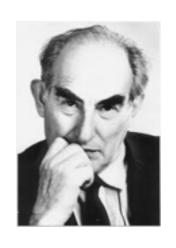

Average density profile
$$\langle \rho(x) \rangle \sim \rho_0 + \rho_k \Re \left[e^{i\mathbf{k}\cdot\mathbf{x}} \right]$$

 $\rho_{\mathbf{k}}$ is an example an "order parameter"

Particular values of **k** determines the lattice structure

3D crystals: (230 space groups)

A. Bravais, 1811-1863


Almost all of them found in nature

Order parameter: Generalisation

- Order parameter quantifies the symmetry breaking
- The structure of the order parameter manifold determines the low energy excitations in a phase
- This features are generalised to study all phases like ferromagnets, superconductors etc.
- Basis of classifying condensed matter phases over the better part of last century

Landau, 1908-1968

Ginzburg, 1916-2009

Wilson, 1936-2013

Anderson, 1923-

Kadanoff, 1937-2015

Order parameter: Generalisation

- Order parameter quantifies the symmetry breaking
- The structure of the order parameter manifold determines the low energy excitations in a phase

Noether's theorem

For invariance under $\varphi_a \rightarrow \varphi_a + \delta \varphi_a$

$$J^{\mu} = \frac{\partial \lambda}{\partial \lambda} \frac{\partial \lambda}{\partial \lambda} \frac{\partial \lambda}{\partial \lambda}$$

Noether's Charge

$$Q = \int q_{\Delta} x_{\Delta} \, \Delta_{\alpha}(x, F)$$

$$\left[Q_{\lambda} \Phi_{\alpha}^{(x)} \right] = \int d^{0}\vec{x}' \left[\mathcal{I}_{(x')}^{(x')}, \Phi_{\alpha}^{(x)} \right]$$

$$= \left(q_{0}x, \left[\begin{array}{cc} 9 \frac{4^{p}}{9 \gamma} & 2 \phi^{p}, \phi^{\sigma}(x) \end{array}\right]$$

$$= -i \delta \phi_{\alpha}(x)$$

i. Symudry Transformation generated by Q

Nambu - Goldstone Bosons

H, Q = 0Nambu, 1921-2015

Goldstone, 1933

i.e,
$$H \mid \Psi_{GS} \rangle = 0$$

If 14Gs> is invariant under Symmetry transformation, then

Nambu - Goldstone Bosons However if 1465> Spontaneously Breaks the Symetry, then Q 1465> #0 = 1465> 4 1465> = HQ 1465> = [H,Q]1465>=0 -> 1467 is also a ground state.

Nambu - Goldstone Bosons Consider the state

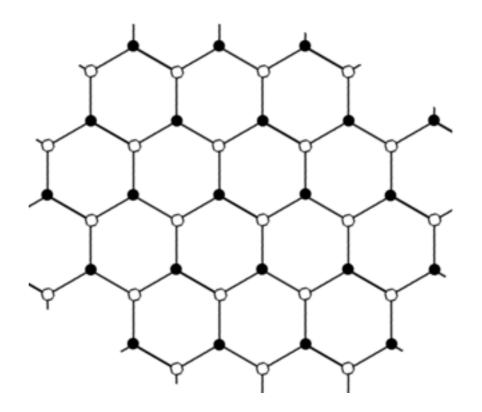
| (x) ~ \int d^2 x' e | \tau^0(x') | This is a strike with momentum \vec{k} as $\vec{k} \to 0$ $\vec{k} \to 0$

These gapless modes (Namber-Goldstone bosons) are protected by Symmetry breaking

Phonon as Nambu-Goldstone Boson

-> Solid: Spontaneous breaking of Translation Symmetry

-> Gapless exaitations: Lattice Vibrations. (Phonons)

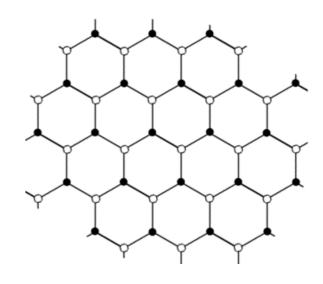

Phonons have bosonic statistics and Can be Lonsidered as a Low energy "particle" that emerges due to Spontaneous Sym. breaking

Role of symmetry beyond spontaneous breaking

- Over the last 20-30 years, it has emerged that symmetry can play a more subtle role in quantum condensed matter systems beyond spontaneous breaking.
- While we are presently trying to understand the general structure (some of it already done), let us discuss two examples

Electrons in a crystal

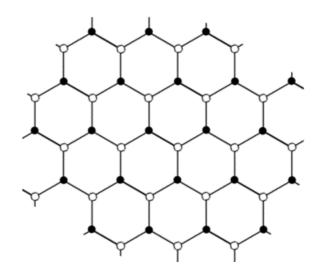
• Degrees of freedom: Electrons hopping on a honeycomb lattice


• At each site, 4 possible states

$$|0\rangle_i, |\uparrow\rangle_i, |\downarrow\rangle_i, |\uparrow\downarrow\rangle_i$$

Electrons in a crystal: Symmetries

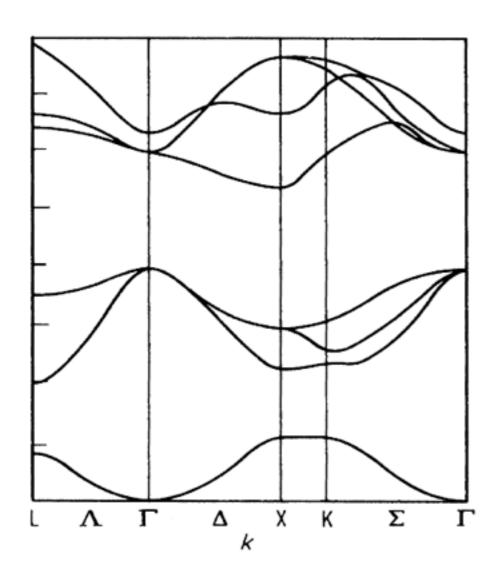
- Translation and rotations of the Honeycomb lattice
- Charge Conservation : Electron numbers should not change
- Time reversal symmetry



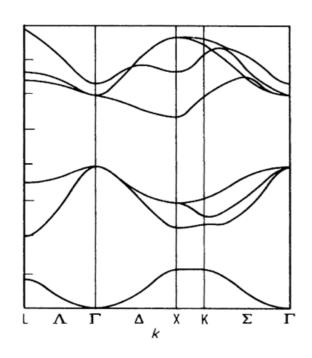
$$|\uparrow\rangle_i \Rightarrow |\downarrow\rangle_i$$

$$|\downarrow\rangle_i \Rightarrow -|\uparrow\rangle_i$$

Electrons in a crystal: Hamiltonian


$$\mathcal{H} = \sum_{ij} t_{i-j}^{\sigma\sigma'} |\sigma\rangle_i \langle \sigma'|_j + \text{h.c.}$$

 Due to Translation symmetry the Hamiltonian is diagonalised by Fourier transform


$$\mathcal{H} = \sum_{\mathbf{k}} \varepsilon_n(\mathbf{k}) |u_n(\mathbf{k})\rangle \langle u_n(\mathbf{k})|$$

Band insulators

- Energy bands and energy gaps
- When all states below a gap is filled in the ground state (lowest energy state): Band insulator
- Require finite energy to excite an electron
- Notice: The ground state does not break any of the symmetries (lattice, charge conservation, time reversal)

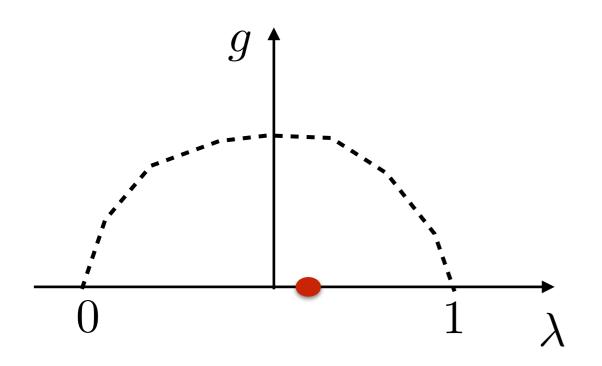
Are all such Band Insulators identical?

$$\mathcal{H}_1$$
 \mathcal{H}_2

$$\mathcal{H}_{\lambda} = (1 - \lambda)\mathcal{H}_1 + \lambda\mathcal{H}_2$$

 \mathcal{H}_1 \mathcal{H}_2 , \mathcal{H}_{λ} have lattice, charge conservation and time reversal symmetries.

Is it possible to tune λ from 0 to 1 without closing the energy gap for arbitrary \mathcal{H}_1 and \mathcal{H}_2 ?


 $|\psi_{GS}(\lambda)\rangle$ evolves continuously without without gap closing

Answer: No! Because of the symmetries!

Symmetry based characterisation beyond spontaneous symmetry breaking

Liang Fu, C. Kane, E. Mele, R. Roy, L. Balents, J. Moore (2006)

ullet Consider a case where the two ground states cannot be connected by tuning λ

$$\mathcal{H}_{g,\lambda}$$

$$\mathcal{H}_{g=0,\lambda=0}=\mathcal{H}_1$$

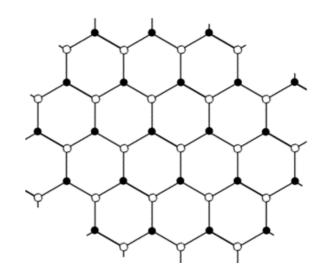
$$\mathcal{H}_{g=0,\lambda=1} = \mathcal{H}_2$$

However we now allow the Hamiltonian to break time reversal at intermediate stage

Now I can connect the two ground states without closing the gap

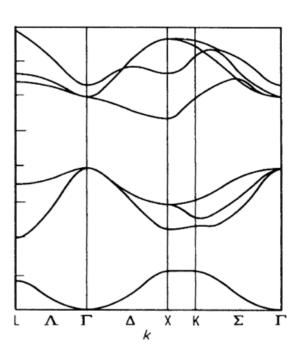
Symmetry Protected Topological Phases

X. G. Wen et. al. (2011)


Symmetry protection is apparent

Topological ?

- Robustness to perturbations as long as symmetries are preserved
- Related to the topological structure of the electronic wavefunction
- Invariants
- The Invariants have different values in the ground states cannot be deformed continuously without closing the energy gap


Topological Band Insulator

$$\mathcal{H} = \sum_{ij} t_{i-j}^{\sigma\sigma'} |\sigma\rangle_i \langle \sigma'|_j + \text{h.c.}$$

• Due to Translation symmetry the Hamiltonian is diagonalised by Fourier transform

$$\mathcal{H} = \sum_{\mathbf{k}} \varepsilon_n(\mathbf{k}) |u_n(\mathbf{k})\rangle \langle u_n(\mathbf{k})|$$

Topological (22) invariant for Topological Band Insulator

$$\mathcal{H} = \sum_{\mathbf{k}} | \varphi_{\mathbf{k},\sigma} \rangle \mathcal{H}^{\sigma\sigma'}(\mathbf{k}) \langle \varphi_{\mathbf{k},\sigma'} |$$

under Time veneral $\chi(\vec{k}) \rightarrow \sigma^2 \chi^*(\vec{k}) \sigma^2$ $\chi(-\vec{k}) \rightarrow \sigma^2 \chi^*(\vec{k}) \sigma^2$

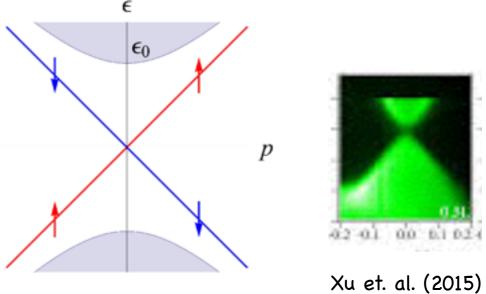
Z_ In variant

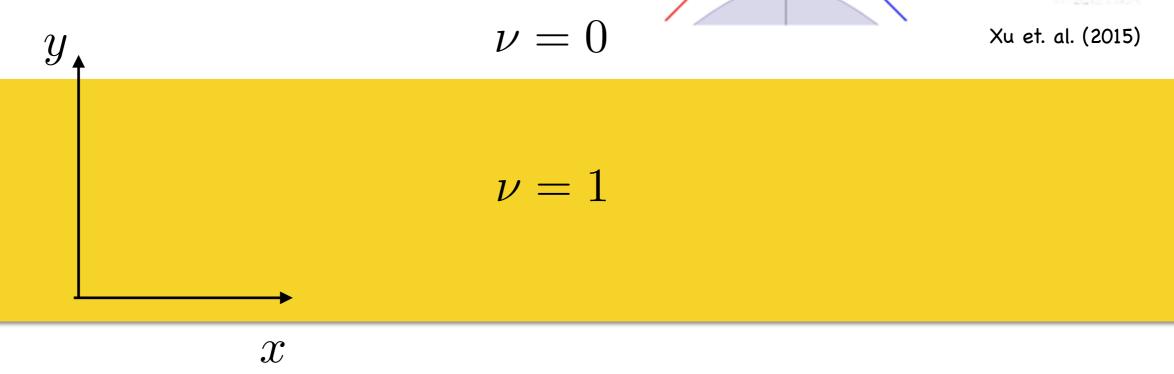
$$\mathcal{H} = \sum_{\mathbf{k}} \varepsilon_n(\mathbf{k}) |u_n(\mathbf{k})\rangle \langle u_n(\mathbf{k})|$$

T
$$|U_n(\vec{k})\rangle = i \sigma^2 |U_n(\vec{k})\rangle^*$$

Is an eigenstate of $\mathcal{H}(-k)$
With eigenvalue $E_n(\vec{k})$

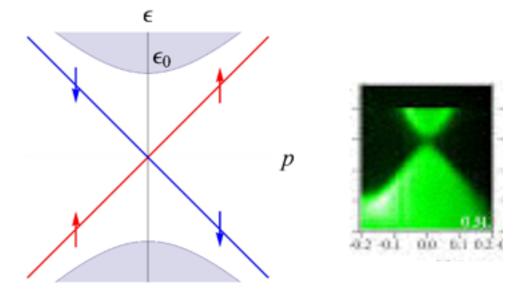
Construct the Matrix (overlap of T.R states)
$$G_{nm}(\vec{k}) = \langle u_n(\vec{k}) | T | u_m(\vec{k}) \rangle$$


Focus on the Zeros of the eigenvalues of $G_{nm}(\vec{k})$


→ Even pairs of Zeros ⇒ 29 = 0} Z Inv → Odd pairs of Zeros ⇒ 29 = 1

THE TWO CASES CANNOT BE CONTINUOUSLY

CONNECTED


Edge states

- The Integer can change only by closing the gap at the edge
- Robust Gapless edge states

Edge states

- Robust Gapless edge states : Odd number of Dirac Fermions
- Anomalous theory
- Require the second edge to cancel the anomaly. Thus can only be realised as an edge of a 2 dimensional system

SPT phases and interactions

- Topological Band insulator is an example where we have free electrons.
- By now a systematic way to classify such topological phases are known
- What about Interactions ? seems very rich, partially known

Interacting SPT: Integer quantum Hall effect of bosons

- Integer quantum Hall effect of fermions do not require interactions
- Bosons do
- Such Integer quantum Hall effect of Bosons is a SPT protected by total charge conservation of bosons, i.e. a U(1) symmetry

$$\sigma_{xy}^{\text{charge}} = \pm 2n, \quad \sigma_{xy}^{\text{Thermal}} = 0$$

No symmetries

- What if the system has no symmetries?
- Can their be still different phases in a quantum many-body system?
- · How will we characterise them?

Pattern of quantim entanglement

Summary

- Symmetries play a central role in classifying condensed matter phases
- Spontaneous symmetry breaking
- Symmetry protected topological phases : symmetry protects topological invariants
- Phases beyond symmetries