Large Deviations in Periodically Driven Systems

Optimally coarse-graining current fluctuations

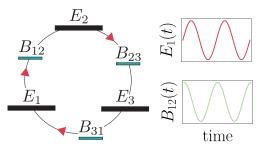
Grant M. Rotskoff

Courant Institute of Mathematical Sciences

ICTS, 7 Sep. 2017

Generating currents with periodic pumping

The "stochastic pumping" phenomenon.



Finite state Markov jump process (or a diffusion process)

Detailed balanced time-dependent rates $W_{ij}(t) = e^{B_{ij}(t) - E_j(t)}$.

Pumping energy levels and barrier heights drives the system *out of* equilibrium \implies non-zero average currents.

Stochastic pumps at the level of averages

To generate a current: vary at least one energy level and one barrier.

- No-pumping theorems: Sinitsyn [2009], Mandal and Jarzynski [2011].
- Geometric characterization of adiabatic pumping: Sinitsyn and Nemenman [2007], Rahav et al. [2008].

Less is known about fluctuations and large deviations.

Deviations away from the periodic steady state

Scaled cumulant generating function for σ , the total entropy production,

$$\psi_{\sigma}(\lambda) = \lim_{t \to \infty} t^{-1} \ln \langle e^{-\lambda \sigma} \rangle$$
$$= \lim_{t \to \infty} t^{-1} \ln \sum_{ij} \int_{0}^{t} W_{ij}(t; \lambda) \rho_{j}(t)$$

where $W_{ij}(t;\lambda)$ is the tilted generator for the entropy production at time t.

Deviations away from the periodic steady state

Settles into a time periodic steady state with period τ .

$$\psi_{\sigma}(\lambda) = \lim_{t \to \infty} t^{-1} \ln \sum_{ij} \int_{0}^{t} W_{ij}(t;\lambda) \rho_{j}(t)$$

$$= \lim_{N \to \infty} (N\tau)^{-1} \sum_{N} \ln \sum_{ij} \int_{0}^{\tau} W_{ij}(t;\lambda) \rho_{j}(t)$$

$$= \tau^{-1} \ln \int_{0}^{\tau} W_{ij}(t;\lambda) \rho_{j}^{ps}(t)$$

Open question: What assumptions are necessary to prove the existence of an LDP for a periodically driven system?

Coarse-graining to a nonequilibrium steady state

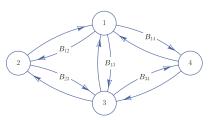
Difficult to work with analytically, but we can try to coarse-grain.

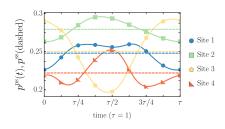
Zia and Schmittmann [2007]
$$\Longrightarrow$$
 "Dynamical equivalence principle" $W^{\mathrm{ss}} = (\mathcal{S} + \mathcal{A})\mathcal{P}^{-1}$ $\mathcal{A}_{ij} = \frac{1}{2}\hat{j}_{ij}$ $\mathcal{P}_{ii} = \hat{\rho}_i.$

The symmetric part \mathcal{S} —unconstrained.

Choose it to match the average entropy production Raz et al. [2016]

Simple example: Four state network



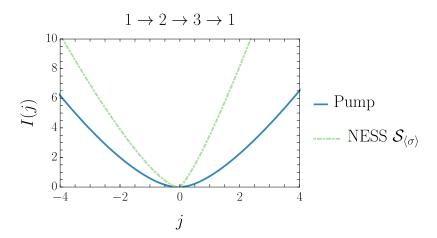


Periodic pumping protocol:

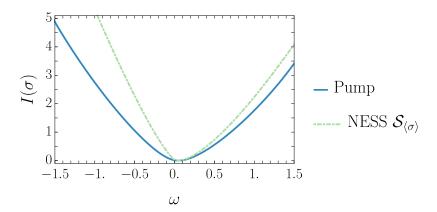
$$E_3(t) = \sin(2\pi t/\tau)$$

$$B_{13}(t) = 1 + \sin(2\pi t/\tau)$$

Fluctuations under coarse-graining?



Fluctuations under coarse-graining?



Level 2.5 Large Deviations

A different perspective on dynamical equivalence... Empirical density:

$$\rho_i(t) = t^{-1} \int_0^t \delta(x(t') - x_i) \ dt'$$

Empirical flow:

$$q_{ji}(t) = t^{-1} \int_0^t \delta(x(t^-) - x_i) \delta(x(t^+) - x_j) dt'$$

For NESS with rate matrix W, an exact expression is known:

$$I(\boldsymbol{\rho}, \boldsymbol{q}) = \sum_{ij} W_{ij} p_j - q_{ij} + q_{ij} \ln \frac{q_{ij}}{W_{ij} p_j},$$

when q is conservative; cf. Maes and Netočny [2008].

Contract to get rate functions for currents

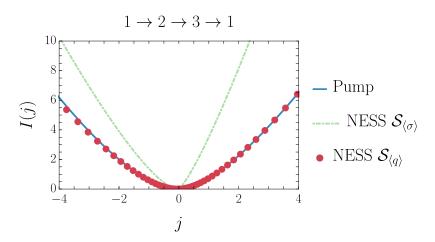
Contraction principle,

$$I(\boldsymbol{
ho}, \boldsymbol{j}) = \inf_{\boldsymbol{q}, \ q_{ij} - q_{ji} = j_{ij}} I(\boldsymbol{
ho}, \boldsymbol{q}).$$

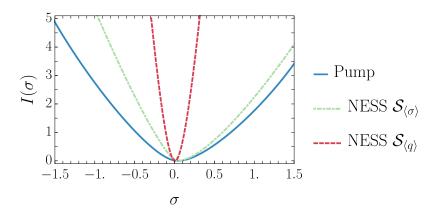
Ideas related to contraction play a role in proof of "Thermodynamic Uncertainty Relations" Gingrich et al. [2016].

- ▶ Does such a bound hold for periodic driving?
- ► What is the level 2.5 function for a periodically driven dynamics?

Fluctuations under coarse-graining?



Fluctuations under coarse-graining?



Degraded agreement for entropy production?

$$\sigma^{\text{pump}} = \tau^{-1} \int_0^{\tau} j_{ij}(t) \ln \frac{q_{ij}(t)}{q_{ji}(t)} dt$$

Split this into two, physical contributions,

$$\underline{\sigma}^{\text{ss}} + \underline{\sigma}^{\text{ex}}$$
cycle part excess dissipated work

Similar to decompositions in the literature Esposito and Van den Broeck [2010]. Both entropy productions are positive on average.

Floquet decomposition approach

Fourier decomposition of the Master equation \implies

$$\partial_t p_i^{\mathrm{ps}}(t) = \hat{W}_{ij} p_j^{\mathrm{ps}}(t) + \mathcal{O}(k)$$

This is distinct from the period-to-period propagator,

$$p(t+\tau) = \overline{\exp}\left(\int_{t}^{t+\tau} dt' W(t')\right) p(t)$$
$$\equiv \mathcal{G}(\tau)p(t)$$

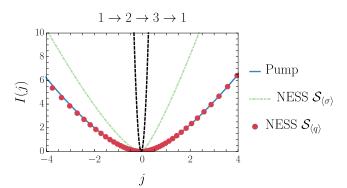
We cannot simply use the "stroboscopic" generator.

Consequence for uncertainty relations

In the weakly perturbed limit, for any current j,

$$I^{\mathrm{pump}}(\boldsymbol{j}) \leq rac{(\boldsymbol{j} - \hat{\boldsymbol{j}})^2}{4\hat{\boldsymbol{j}}/\sigma^{\mathrm{ss}}}.$$

Tighter quadratic bound than σ^{pump} .



Discrete time Markov Chains

A distinct bound exists for time-symmetric driving, cf. recent work of Proesmans and van den Broeck.

$$\frac{\hat{j}^2}{\hat{\delta j}^2} \le \frac{1}{2\tau} \left(e^{\sigma} - 1 \right)$$

Derivation relies on a large deviation function for flows based on Sanov's theorem:

$$\sum_{\Gamma} q_{\Gamma} \ln \frac{q_{\Gamma}}{p_{\Gamma}} - \sum_{k} q_{k} \ln \frac{q_{k}}{p_{k}}$$

Is this expression rigorously provable?

Acknowledgments

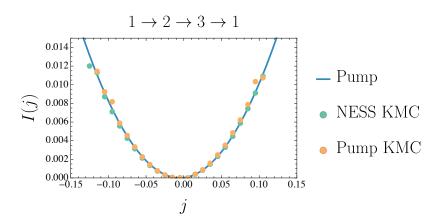
ICTS and the organizers.

Funding

NSF Graduate Fellowship James S. McDonnell Foundation Hugo Touchette Todd Gingrich Phillip Geissler Gavin Crooks

This frame intentionally left blank.

Kinetic Monte Carlo Sampling



References I

- N A Sinitsyn. The stochastic pump effect and geometric phases in dissipative and stochastic systems. J. Phys. A, 42(19):193001, 2009. doi: 10.1088/1751-8113/42/19/193001.
- Dibyendu Mandal and Christopher Jarzynski. A proof by graphical construction of the no-pumping theorem of stochastic pumps. J. Stat. Mech. Theor. Exp., 2011(10):P10006, 2011. doi: 10.1088/1742-5468/2011/10/P10006.
- N A Sinitsyn and I Nemenman. The Berry phase and the pump flux in stochastic chemical kinetics. Euro. Phys. Lett., 77(5):58001, March 2007. doi: 10.1209/0295-5075/77/58001.
- Saar Rahav, Jordan Horowitz, and Christopher Jarzynski. Directed Flow in Nonadiabatic Stochastic Pumps. Phys. Rev. Lett., 101(14):140602, October 2008. doi: 10.1103/PhysRevLett.101.140602.
- RKP Zia and B Schmittmann. Probability currents as principal characteristics in the statistical mechanics of non-equilibrium steady states. J. Stat. Mech. Theor. Exp., 2007(07):P07012, 2007. doi: 10.1088/1742-5468/2007/07/P07012.
- O Raz, Y Subaşı, and C Jarzynski. Mimicking Nonequilibrium Steady States with Time-Periodic Driving. *Phys. Rev. X*, 6(2):021022, May 2016. doi: 10.1103/PhysRevX.6.021022.
- Christian Maes and Karel Netočny. Canonical structure of dynamical fluctuations in mesoscopic nonequilibrium steady states. Euro. Phys. Lett., 82(3):30003, 2008. doi: 10.1209/0295-5075/82/30003.
- Todd R Gingrich, Jordan M Horowitz, Nikolay Perunov, and Jeremy L England. Dissipation Bounds All Steady-State Current Fluctuations. Phys. Rev. Lett., 116(12):120601, March 2016. doi: 10.1103/PhysRevLett.116.120601.
- Massimiliano Esposito and Christian Van den Broeck. Three faces of the second law. I. Master equation formulation. *Phys. Rev. E*, 82(1):011143, 2010. doi: 10.1103/PhysRevE.82.011143.