Portfolio Credit Risk: Simple Closed Form Approximate Maximum Likelihood Estimator, and related issues

Sandeep Juneja

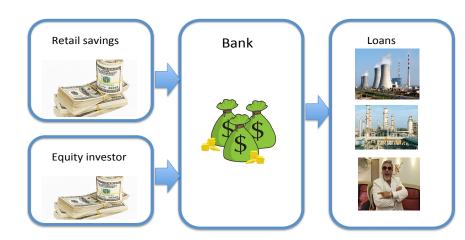
Tata Institute of Fundamental Research, India

joint work with Anand Deo (TIFR)

Work initially conducted at CAFRAL, Reserve Bank of India

ICTS, September 4 2017

Role of a Bank



Indian GDP about \$ 2.3 trillion

• Indian banking sector size about \$ 1.1 trillion

- Estimated stressed/ non performing assets about \$ 200 billion
- About \$ 100 billion with 10 borrowers

Indian GDP about \$ 2.3 trillion

• Indian banking sector size about \$ 1.1 trillion

- Estimated stressed/ non performing assets about \$ 200 billion
- About \$ 100 billion with 10 borrowers

Indian GDP about \$ 2.3 trillion

- Indian banking sector size about \$ 1.1 trillion
- Estimated stressed/ non performing assets about \$ 200 billion
- About \$ 100 billion with 10 borrowers

Indian GDP about \$ 2.3 trillion

- Indian banking sector size about \$ 1.1 trillion
- Estimated stressed/ non performing assets about \$ 200 billion
- About \$ 100 billion with 10 borrowers

- Credit Risk: Risk of default on debt due to the borrower failing to repay debt
- Some challenges in modelling portfolio credit risk
 - Size: portfolio may have hundreds or thousands of loans
 - Massive and accurate data needed to calibrate the model
 - Accurate modelling of dependence and dynamics
 - Computation time can be huge

4 / 60

- Credit Risk: Risk of default on debt due to the borrower failing to repay debt
- Some challenges in modelling portfolio credit risk
 - Size: portfolio may have hundreds or thousands of loans
 - Massive and accurate data needed to calibrate the model
 - Accurate modelling of dependence and dynamics
 - Computation time can be huge

- Credit Risk: Risk of default on debt due to the borrower failing to repay debt
- Some challenges in modelling portfolio credit risk
 - Size: portfolio may have hundreds or thousands of loans
 - Massive and accurate data needed to calibrate the model
 - Accurate modelling of dependence and dynamics
 - Computation time can be huge

- Credit Risk: Risk of default on debt due to the borrower failing to repay debt
- Some challenges in modelling portfolio credit risk
 - Size: portfolio may have hundreds or thousands of loans
 - Massive and accurate data needed to calibrate the model
 - Accurate modelling of dependence and dynamics
 - Computation time can be huge

- Credit Risk: Risk of default on debt due to the borrower failing to repay debt
- Some challenges in modelling portfolio credit risk
 - Size: portfolio may have hundreds or thousands of loans
 - Massive and accurate data needed to calibrate the model
 - Accurate modelling of dependence and dynamics
 - Computation time can be huge

- Credit Risk: Risk of default on debt due to the borrower failing to repay debt
- Some challenges in modelling portfolio credit risk
 - Size: portfolio may have hundreds or thousands of loans
 - Massive and accurate data needed to calibrate the model
 - Accurate modelling of dependence and dynamics
 - Computation time can be huge

In this talk

- Review popular methods for estimating corporate default probabilities
- For dynamic discrete time models, propose and analyze simple approximate maximum likelihood estimator

 Large deviations and fast simulation of large losses in a portfolio of corporate debt issued by a bank

In this talk

- Review popular methods for estimating corporate default probabilities
- For dynamic discrete time models, propose and analyze simple approximate maximum likelihood estimator

 Large deviations and fast simulation of large losses in a portfolio of corporate debt issued by a bank

In this talk

- Review popular methods for estimating corporate default probabilities
- For dynamic discrete time models, propose and analyze simple approximate maximum likelihood estimator

 Large deviations and fast simulation of large losses in a portfolio of corporate debt issued by a bank

Popular methods for estimating corporate default probabilities

Historical credit migration data to compute default probabilities

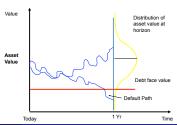
	AAA	AA	Α	BBB	ВВ	В	CCC	D
AAA	93.7%	5.8%	0.4%	0.1%	0.0%	0.0%	0.0%	0.0%
AA	0.7%	91.7%	6.9%	0.5%	0.1%	0.1%	0.0%	0.0%
Α	0.1%	2.3%	91.7%	5.2%	0.5%	0.2%	0.0%	0.0%
BBB	0.0%	0.3%	4.8%	89.2%	4.4%	0.8%	0.2%	0.2%
BB	0.0%	0.1%	0.4%	6.7%	83.2%	7.5%	1.0%	1.1%
В	0.0%	0.1%	0.3%	0.5%	5.7%	83.6%	3.8%	5.9%
CCC	0.1%	0.0%	0.3%	0.9%	1.9%	10.3%	61.2%	25.3%
D	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	100.0%

This data may be adjusted for prevalent conditions.

It may be used to compute losses due to change in credit quality

Structural Model (Merton 1974) for predicting default probability

- The value of a firm is assumed to follow a geometric Brownian motion.
- Equity is assumed to be a call option on the firm, with promised debt denoting the strike price.
- Distance to default Roughly, ratio of firm value to debt normalized for variance - is a sufficient statistic (used by KMV)



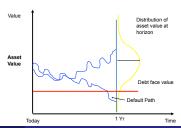
8 / 60

Structural Model (Merton 1974) for predicting default probability

- The value of a firm is assumed to follow a geometric Brownian motion.
- Equity is assumed to be a call option on the firm, with promised debt denoting the strike price.
- Distance to default Roughly, ratio of firm value to debt normalized for variance - is a sufficient statistic (used by KMV)

Structural Model (Merton 1974) for predicting default probability

- The value of a firm is assumed to follow a geometric Brownian motion.
- Equity is assumed to be a call option on the firm, with promised debt denoting the strike price.
- Distance to default Roughly, ratio of firm value to debt normalized for variance - is a sufficient statistic (used by KMV)



8 / 60

Popular reduced form intensity based models

• For each firm *i*, default explaining covariates such as prevailing interest rates, GDP, distance to default, cash over total assets, modelled as a continuous Markov process, example,

$$dX_{i,t} = A_i(\theta_i - X_{i,t})dt + \sum_i dW_{i,t}$$

for 0 < t < T.

• Firm *i* has a doubly stochastic default intensity process

$$\lambda_i(t) = \Lambda_i(\beta, X_{i,t})$$

where β is the set of parameters to be estimated.

 Conditioned on the covariates, default is an arrival from a non-homogeneous Poisson process.

• For each firm *i*, default explaining covariates such as prevailing interest rates, GDP, distance to default, cash over total assets, modelled as a continuous Markov process, example,

$$dX_{i,t} = A_i(\theta_i - X_{i,t})dt + \sum_i dW_{i,t}$$

for 0 < t < T.

• Firm *i* has a doubly stochastic default intensity process

$$\lambda_i(t) = \Lambda_i(\beta, X_{i,t})$$

where β is the set of parameters to be estimated.

 Conditioned on the covariates, default is an arrival from a non-homogeneous Poisson process.

• For each firm *i*, default explaining covariates such as prevailing interest rates, GDP, distance to default, cash over total assets, modelled as a continuous Markov process, example,

$$dX_{i,t} = A_i(\theta_i - X_{i,t})dt + \sum_i dW_{i,t}$$

for 0 < t < T.

• Firm *i* has a doubly stochastic default intensity process

$$\lambda_i(t) = \Lambda_i(\beta, X_{i,t})$$

where β is the set of parameters to be estimated.

 Conditioned on the covariates, default is an arrival from a non-homogeneous Poisson process.

Conditional probability under discretization

$$P(\text{ no default by } t+1|\text{ no default by time } t) = E[e^{-\int_t^{t+1} \lambda_i(s)ds}|X_t]$$

• If we assume that over time period $s \in [t, t+1)$

$$\lambda_i(s) = \exp(\beta^{\mathsf{T}} X_{i,t} - \alpha)$$

then

$$P(\text{ default by } t+1|\text{ no default by time } t) = 1-\exp(-\exp(\beta^{\intercal}X_{i,t}-\alpha))$$

Conditional probability under discretization

$$P(\text{ no default by } t+1|\text{ no default by time } t) = E[e^{-\int_t^{t+1} \lambda_i(s)ds}|X_t]$$

ullet If we assume that over time period $s\in [t,t+1)$

$$\lambda_i(s) = \exp(\beta^{\mathsf{T}} X_{i,t} - \alpha)$$

then

$$P(\text{ default by }t+1|\text{ no default by time }t)=1-\exp(-\exp(\beta^\intercal X_{i,t}-\alpha))$$

Juneja Portfolio Risk 11 / 60¹

Dynamic discrete time models

- We want to estimate the conditional default probability of any firm as a function of given global and company specific information.
- This over short time periods a month or a quarter, as well as longer time horizons.
- Analogous to predicting a person's health (mortality) as a function of his blood pressure, sugar, cholesterol, pollution, income, taxes (un)paid, etc.
- We model in discrete time and assume conditional probabilities have a popular default intensity type or logit type form

- We want to estimate the conditional default probability of any firm as a function of given global and company specific information.
- This over short time periods a month or a quarter, as well as longer time horizons.
- Analogous to predicting a person's health (mortality) as a function of his blood pressure, sugar, cholesterol, pollution, income, taxes (un)paid, etc.
- We model in discrete time and assume conditional probabilities have a popular default intensity type or logit type form

- We want to estimate the conditional default probability of any firm as a function of given global and company specific information.
- This over short time periods a month or a quarter, as well as longer time horizons.
- Analogous to predicting a person's health (mortality) as a function of his blood pressure, sugar, cholesterol, pollution, income, taxes (un)paid, etc.
- We model in discrete time and assume conditional probabilities have a popular default intensity type or logit type form

- We want to estimate the conditional default probability of any firm as a function of given global and company specific information.
- This over short time periods a month or a quarter, as well as longer time horizons.
- Analogous to predicting a person's health (mortality) as a function of his blood pressure, sugar, cholesterol, pollution, income, taxes (un)paid, etc.
- We model in discrete time and assume conditional probabilities have a popular default intensity type or logit type form

Big picture - contributions

- The literature posits a parametric form for conditional default probabilities. Solves for parameters by maximising the likelihood function.
- Computationally intensive, solution has a black box flavour drivers of the parameters not clear.
- We observe, in some popular settings, that since these probabilities are small, and co-variates can be transformed to be Gaussian, the MLE has a simple closed form approximation

Big picture - contributions

- The literature posits a parametric form for conditional default probabilities. Solves for parameters by maximising the likelihood function.
- Computationally intensive, solution has a black box flavour drivers of the parameters not clear.
- We observe, in some popular settings, that since these probabilities are small, and co-variates can be transformed to be Gaussian, the MLE has a simple closed form approximation

Big picture - contributions

- The literature posits a parametric form for conditional default probabilities. Solves for parameters by maximising the likelihood function.
- Computationally intensive, solution has a black box flavour drivers of the parameters not clear.
- We observe, in some popular settings, that since these probabilities are small, and co-variates can be transformed to be Gaussian, the MLE has a simple closed form approximation

- These are almost as good as MLE when the model is correctly specified - Performance slightly worsens for large number of firms (5,000 plus), large default probabilities (5%)
- Equally good or equally bad for mis-specified models, including on empirical data.
- We characterize the performance of the proposed approximate MLE as well as MLE in an asymptotic regime - probabilities decrease to zero, number of firms and number of time periods increase to infinity
- Some numerical/empirical support

- These are almost as good as MLE when the model is correctly specified - Performance slightly worsens for large number of firms (5,000 plus), large default probabilities (5%)
- Equally good or equally bad for mis-specified models, including on empirical data.
- We characterize the performance of the proposed approximate MLE as well as MLE in an asymptotic regime - probabilities decrease to zero, number of firms and number of time periods increase to infinity
- Some numerical/empirical support

- These are almost as good as MLE when the model is correctly specified - Performance slightly worsens for large number of firms (5,000 plus), large default probabilities (5%)
- Equally good or equally bad for mis-specified models, including on empirical data.
- We characterize the performance of the proposed approximate MLE as well as MLE in an asymptotic regime - probabilities decrease to zero, number of firms and number of time periods increase to infinity
- Some numerical/empirical support

- These are almost as good as MLE when the model is correctly specified - Performance slightly worsens for large number of firms (5,000 plus), large default probabilities (5%)
- Equally good or equally bad for mis-specified models, including on empirical data.
- We characterize the performance of the proposed approximate MLE as well as MLE in an asymptotic regime - probabilities decrease to zero, number of firms and number of time periods increase to infinity
- Some numerical/empirical support

Discrete Logit models

• Covariates affecting Firm i follow a stationary process $\{X_{i,t}\}$

ullet Conditional default probability at period t to default in [t,t+1)

$$p_t(X_{i,t}) = \frac{\exp(\beta^T X_{i,t} - \alpha)}{1 + \exp(\beta^T X_{i,t} - \alpha)}$$

Discrete Logit models

• Covariates affecting Firm i follow a stationary process $\{X_{i,t}\}$

ullet Conditional default probability at period t to default in [t,t+1)

$$p_t(X_{i,t}) = \frac{\exp(\beta^T X_{i,t} - \alpha)}{1 + \exp(\beta^T X_{i,t} - \alpha)}$$

Juneja Portfolio Risk $16 \ / \ 60^{\circ}$

Model and Maximum likelihood estimation

Covariates - Stationary Gaussian process, e.g., vector autoregressive

$$X_{t+1} = \mathbf{A}X_t + \mathbf{\tilde{E}}_{t+1}$$

• Conditional default probability at period t to default within [t, t+1)

$$p(X_{i,t}) = 1 - \exp\left(-\exp(\beta^T X_{i,t} - \alpha)\right)$$

Or

$$p(X_{i,t}) = \frac{\exp(\beta^T X_{i,t} - \alpha)}{1 + \exp(\beta^T X_{i,t} - \alpha)}$$

• Parameters β , α need to be estimated from data. Duffie et al 2006, Duan et al 2007, Chava and Jarrow 2004, Duan, Sun Wang 2012, Shumway 2002.

Covariates - Stationary Gaussian process, e.g., vector autoregressive

$$X_{t+1} = \mathbf{A}X_t + \tilde{\mathbf{E}}_{t+1}$$

ullet Conditional default probability at period t to default within [t,t+1)

$$p(X_{i,t}) = 1 - \exp\left(-\exp(\beta^T X_{i,t} - \alpha)\right)$$

or

$$p(X_{i,t}) = \frac{\exp(\beta^T X_{i,t} - \alpha)}{1 + \exp(\beta^T X_{i,t} - \alpha)},$$

• Parameters β , α need to be estimated from data. Duffie et al 2006, Duan et al 2007, Chava and Jarrow 2004, Duan, Sun Wang 2012, Shumwa 2002.

Covariates - Stationary Gaussian process, e.g., vector autoregressive

$$X_{t+1} = \mathbf{A}X_t + \mathbf{\tilde{E}}_{t+1}$$

ullet Conditional default probability at period t to default within [t,t+1)

$$p(X_{i,t}) = 1 - \exp\left(-\exp(\beta^T X_{i,t} - \alpha)\right)$$

or

$$p(X_{i,t}) = \frac{\exp(\beta^T X_{i,t} - \alpha)}{1 + \exp(\beta^T X_{i,t} - \alpha)},$$

• Parameters β , α need to be estimated from data. Duffie et al 2006, Duan et al 2007, Chava and Jarrow 2004, Duan, Sun Wang 2012, Shumwa 2002.

Covariates - Stationary Gaussian process, e.g., vector autoregressive

$$X_{t+1} = \mathbf{A}X_t + \tilde{\mathbf{E}}_{t+1}$$

ullet Conditional default probability at period t to default within [t,t+1)

$$p(X_{i,t}) = 1 - \exp\left(-\exp(\beta^T X_{i,t} - \alpha)\right)$$

or

$$p(X_{i,t}) = \frac{\exp(\beta^T X_{i,t} - \alpha)}{1 + \exp(\beta^T X_{i,t} - \alpha)},$$

• Parameters β , α need to be estimated from data. Duffie et al 2006, Duan et al 2007, Chava and Jarrow 2004, Duan, Sun Wang 2012, Shumway 2002.

Maximum likelihood method to estimate parameters

Default data

$$(x_{i,t}, d_{i,t})$$
 for $t = 1, 2, ..., T, i = 1, ..., m$,

where $d_{i,t} = 1$ if company i defaults in [t, t+1) and zero otherwise.

• Likelihood $\mathcal L$ of seeing the data

$$\mathcal{L} = \prod_{i,t} p(x_{i,t})^{d_{i,t}} (1 - p(x_{i,t}))^{1 - d_{i,t}}$$

- This is optimized numerically to find β and α .
- Computationally intensive; black box.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (*)

Maximum likelihood method to estimate parameters

Default data

$$(x_{i,t}, d_{i,t})$$
 for $t = 1, 2, ..., T, i = 1, ..., m$,

where $d_{i,t} = 1$ if company i defaults in [t, t+1) and zero otherwise.

ullet Likelihood ${\cal L}$ of seeing the data

$$\mathcal{L} = \prod_{i,t} p(x_{i,t})^{d_{i,t}} (1 - p(x_{i,t}))^{1 - d_{i,t}}$$

- This is optimized numerically to find β and α .
- Computationally intensive; black box.

(ロ) (部) (注) (注) 注 り(0)

Maximum likelihood method to estimate parameters

Default data

$$(x_{i,t}, d_{i,t})$$
 for $t = 1, 2, ..., T, i = 1, ..., m$

where $d_{i,t} = 1$ if company i defaults in [t, t+1) and zero otherwise.

ullet Likelihood ${\cal L}$ of seeing the data

$$\mathcal{L} = \prod_{i,t} p(x_{i,t})^{d_{i,t}} (1 - p(x_{i,t}))^{1 - d_{i,t}}$$

- This is optimized numerically to find β and α .
- Computationally intensive; black box.

MLE: Default intensity model

•

$$p(x_{i,t}) = 1 - \exp(-e^{\beta^{\mathsf{T}}x_{i,t}-\alpha}).$$

• Setting the partial derivatives w.r.t. (β, α) to zero,

$$\sum_{i,t} \frac{x_{i,t} e^{\beta^{\mathsf{T}} x_{i,t} - \alpha}}{1 - \exp(-e^{\beta^{\mathsf{T}} x_{i,t} - \alpha})} d_{i,t} = \sum_{i,t} x_{i,t} e^{\beta^{\mathsf{T}} x_{i,t} - \alpha}$$

and

$$\sum_{i,t} \frac{e^{\beta^{\mathsf{T}} \mathsf{x}_{i,t} - \alpha}}{1 - \exp(-e^{\beta^{\mathsf{T}} \mathsf{x}_{i,t} - \alpha})} d_{i,t} = \sum_{i,t} e^{\beta^{\mathsf{T}} \mathsf{x}_{i,t} - \alpha}.$$

MLE: Logit model

$$p(x_{i,t}) = \frac{\exp(\beta^{\mathsf{T}} x_{i,t} - \alpha)}{1 + \exp(\beta^{\mathsf{T}} x_{i,t} - \alpha)}.$$

Setting the partial derivatives to zero:

$$\sum_{i,t} x_{i,t} d_{i,t} = \sum_{i,t} x_{i,t} \frac{\exp(\beta^{\mathsf{T}} x_{i,t} - \alpha)}{1 + \exp(\beta^{\mathsf{T}} x_{i,t} - \alpha)}.$$

and

•

$$\sum_{i,t} d_{i,t} = \sum_{i,t} \frac{\exp(\beta^{\intercal} x_{i,t} - \alpha)}{1 + \exp(\beta^{\intercal} x_{i,t} - \alpha)}.$$

Key insight

Re-express

$$\frac{1}{\# i,t} \sum_{i,t} d_{i,t} = E\left(\exp(\beta^{\mathsf{T}} X_{i,t} - \alpha)\right)$$

$$+ \left(\frac{1}{\# i, t} \sum_{i, t} \frac{\exp(\beta^{\mathsf{T}} x_{i, t} - \alpha)}{1 + \exp(\beta^{\mathsf{T}} x_{i, t} - \alpha)} - E\left(\exp(\beta^{\mathsf{T}} X_{i, t} - \alpha)\right) \right).$$

and

$$\frac{1}{\# i, t} \sum_{i, t} x_{i, t} d_{i, t} = EX_{i, t} \left(\exp(\beta^{\mathsf{T}} X_{i, t} - \alpha) \right)$$

$$+ \left(\frac{1}{\# i, t} \sum_{i, t} x_{i, t} \frac{\exp(\beta^{\mathsf{T}} x_{i, t} - \alpha)}{1 + \exp(\beta^{\mathsf{T}} x_{i, t} - \alpha)} - \mathsf{E} \mathsf{X}_{i, t} \left(\exp(\beta^{\mathsf{T}} \mathsf{X}_{i, t} - \alpha) \right) \right)$$

◆□ → ◆□ → ◆ □ → ◆ □ → ○ へ○

Key insight

Re-express

$$\frac{1}{\# i, t} \sum_{i, t} d_{i, t} = E\left(\exp(\beta^{\mathsf{T}} X_{i, t} - \alpha)\right)$$

$$+ \left(\frac{1}{\# i, t} \sum_{i, t} \frac{\exp(\beta^{\mathsf{T}} x_{i, t} - \alpha)}{1 + \exp(\beta^{\mathsf{T}} x_{i, t} - \alpha)} - E\left(\exp(\beta^{\mathsf{T}} X_{i, t} - \alpha)\right) \right).$$

and

Juneja

$$\frac{1}{\# i,t} \sum_{i,t} x_{i,t} d_{i,t} = EX_{i,t} \left(\exp(\beta^{\mathsf{T}} X_{i,t} - \alpha) \right)$$

$$+ \left(\frac{1}{\# i, t} \sum_{i, t} \mathsf{x}_{i, t} \frac{\mathsf{exp}(\beta^\mathsf{T} \mathsf{x}_{i, t} - \alpha)}{1 + \mathsf{exp}(\beta^\mathsf{T} \mathsf{x}_{i, t} - \alpha)} - \mathsf{EX}_{i, t} \left(\mathsf{exp}(\beta^\mathsf{T} \mathsf{X}_{i, t} - \alpha) \right) \right).$$

22 / 60

• When X is Gaussian:

$$E\left[\exp(\beta^{\mathsf{T}}X)\right] = \exp(\frac{1}{2}\beta^{\mathsf{T}}\Sigma\beta) \text{ and } E\left[X\exp(\beta^{\mathsf{T}}X)\right] = \Sigma\beta\exp(\frac{1}{2}\beta^{\mathsf{T}}\Sigma\beta).$$

This suggests that we set the estimator to dominant term

$$\hat{\beta} = \Sigma^{-1} \left(\frac{\sum_{i,t} x_{i,t} d_{i,t}}{\sum_{i,t} d_{i,t}} \right)$$

 $\hat{\alpha}$ is chosen to match the observed default probability.

• When X is Gaussian:

$$E\left[\exp(\beta^{\mathsf{T}}X)\right] = \exp(\frac{1}{2}\beta^{\mathsf{T}}\Sigma\beta) \text{ and } E\left[X\exp(\beta^{\mathsf{T}}X)\right] = \Sigma\beta\exp(\frac{1}{2}\beta^{\mathsf{T}}\Sigma\beta).$$

• This suggests that we set the estimator to dominant term

$$\hat{\beta} = \Sigma^{-1} \left(\frac{\sum_{i,t} x_{i,t} d_{i,t}}{\sum_{i,t} d_{i,t}} \right).$$

 $\hat{\alpha}$ is chosen to match the observed default probability.

How good is the estimator

We model conditional default probabilities as

$$p_{\gamma}(X_{i,t}) = \exp(\beta^T X_{i,t} - \alpha(\gamma))(1 + o_{\gamma}(1))$$

where $\alpha(\gamma)$ is of order $\log(1/\gamma)$, $\{X_t\}$ is a vector autoregressive process.

- ullet Conditional probabilities of order γ ($pprox 10^{-3}$)
- Number of companies is of order $\frac{1}{\gamma^{\delta}}$ for $\delta>0$
- Number of time periods of provided data is $\frac{1}{\gamma^{\zeta}}$ for $\zeta \in (0,1)$.

We model conditional default probabilities as

$$p_{\gamma}(X_{i,t}) = \exp(\beta^T X_{i,t} - \alpha(\gamma))(1 + o_{\gamma}(1))$$

where $\alpha(\gamma)$ is of order $\log(1/\gamma)$, $\{X_t\}$ is a vector autoregressive process.

- Conditional probabilities of order γ ($\approx 10^{-3}$)
- Number of companies is of order $\frac{1}{\gamma^{\delta}}$ for $\delta>0$
- Number of time periods of provided data is $\frac{1}{\gamma^{\zeta}}$ for $\zeta \in (0,1)$.

We model conditional default probabilities as

$$p_{\gamma}(X_{i,t}) = \exp(\beta^T X_{i,t} - \alpha(\gamma))(1 + o_{\gamma}(1))$$

where $\alpha(\gamma)$ is of order $\log(1/\gamma)$, $\{X_t\}$ is a vector autoregressive process.

- Conditional probabilities of order γ ($\approx 10^{-3}$)
- Number of companies is of order $\frac{1}{\gamma^{\delta}}$ for $\delta>0$
- Number of time periods of provided data is $\frac{1}{\gamma^{\zeta}}$ for $\zeta \in (0,1)$.

We model conditional default probabilities as

$$p_{\gamma}(X_{i,t}) = \exp(\beta^T X_{i,t} - \alpha(\gamma))(1 + o_{\gamma}(1))$$

where $\alpha(\gamma)$ is of order $\log(1/\gamma)$, $\{X_t\}$ is a vector autoregressive process.

- Conditional probabilities of order γ ($\approx 10^{-3}$)
- Number of companies is of order $\frac{1}{\gamma^\delta}$ for $\delta>0$
- Number of time periods of provided data is $\frac{1}{\gamma^{\zeta}}$ for $\zeta \in (0,1)$.

Our estimator in this regime

$$\hat{\beta} = \Sigma_{X,X}^{-1} \left(\frac{\sum_{i,t} X_{i,t} D_{i,t}}{\sum_{i,t} D_{i,t}} \right)$$

٠

• Recall that $\{X_t\}$ captures the underlying covariates. $D_{i,t}$ are default indicators.

• This converges to β as $\gamma \to 0$.

Juneja

• Our estimator in this regime

$$\hat{\beta} = \Sigma_{X,X}^{-1} \left(\frac{\sum_{i,t} X_{i,t} D_{i,t}}{\sum_{i,t} D_{i,t}} \right)$$

.

• Recall that $\{X_t\}$ captures the underlying covariates. $D_{i,t}$ are default indicators.

• This converges to β as $\gamma \to 0$.

• Our estimator in this regime

$$\hat{\beta} = \Sigma_{X,X}^{-1} \left(\frac{\sum_{i,t} X_{i,t} D_{i,t}}{\sum_{i,t} D_{i,t}} \right)$$

.

• Recall that $\{X_t\}$ captures the underlying covariates. $D_{i,t}$ are default indicators.

• This converges to β as $\gamma \to 0$.

Juneja

Theorem: The mean square error

$$||\hat{\beta} - \beta||^2 = \Theta(\gamma^{\delta + \zeta - 1}) + \Theta(\gamma^{\zeta}).$$

- $\delta + \zeta < 1$: No defaults asymptotically
- $\delta < 1$: Increasing δ helps the estimator. More firms in dataset improve the estimator
- $\delta > 1$: increasing δ no longer matters. Insensitive to increase in the number of firms

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

• Theorem: The mean square error

$$||\hat{\beta} - \beta||^2 = \Theta(\gamma^{\delta + \zeta - 1}) + \Theta(\gamma^{\zeta}).$$

- $\delta + \zeta < 1$: No defaults asymptotically
- $\delta < 1$: Increasing δ helps the estimator. More firms in dataset improve the estimator
- $\delta > 1$: increasing δ no longer matters. Insensitive to increase in the number of firms

Theorem: The mean square error

$$||\hat{\beta} - \beta||^2 = \Theta(\gamma^{\delta + \zeta - 1}) + \Theta(\gamma^{\zeta}).$$

- $\delta + \zeta < 1$: No defaults asymptotically
- δ < 1: Increasing δ helps the estimator. More firms in dataset improve the estimator
- $\delta > 1$: increasing δ no longer matters. Insensitive to increase in the number of firms

Theorem: The mean square error

$$||\hat{\beta} - \beta||^2 = \Theta(\gamma^{\delta + \zeta - 1}) + \Theta(\gamma^{\zeta}).$$

- $\delta + \zeta < 1$: No defaults asymptotically
- δ < 1: Increasing δ helps the estimator. More firms in dataset improve the estimator
- $\delta > 1$: increasing δ no longer matters. Insensitive to increase in the number of firms

Mean square error analysis for MLE

• Theorem: The mean square error equals

$$\Theta(\gamma^{\delta+\zeta-1})$$

 Both the estimators can be shown to satisfy a central limit theorem. Maybe useful for constructing confidence intervals

Mean square error analysis for MLE

• Theorem: The mean square error equals

$$\Theta(\gamma^{\delta+\zeta-1})$$

 Both the estimators can be shown to satisfy a central limit theorem. Maybe useful for constructing confidence intervals

Model misspecification: An illustration

Model generating defaults has two Gaussian factors common to all firms:

$$\frac{\exp(\beta_1 Y_{1,t} + \beta_2 Y_{2,t} - \alpha(\gamma))}{1 + \exp(\beta_1 Y_{1,t} + \beta_2 Y_{2,t} - \alpha(\gamma))},$$

 $Y_{1,t}$ and $Y_{2,t}$ are assumed to have zero mean, variance 1 and correlation ρ

- Only the first factor with time series $(Y_{1,t}: 1 \le t \le T(\gamma))$ is assumed to be relevant by modeller.
- Both estimators asymptotically converge to

$$\hat{\beta}_1 = \beta_1 + \rho \beta_2$$

and

$$\hat{lpha}=lpha(\gamma)-rac{eta_2^2(1-
ho^2)}{2}$$

Model misspecification: An illustration

Model generating defaults has two Gaussian factors common to all firms:

$$\frac{\exp(\beta_1 Y_{1,t} + \beta_2 Y_{2,t} - \alpha(\gamma))}{1 + \exp(\beta_1 Y_{1,t} + \beta_2 Y_{2,t} - \alpha(\gamma))},$$

 $Y_{1,t}$ and $Y_{2,t}$ are assumed to have zero mean, variance 1 and correlation ρ

- Only the first factor with time series $(Y_{1,t}: 1 \le t \le T(\gamma))$ is assumed to be relevant by modeller.
- Both estimators asymptotically converge to

$$\hat{\beta}_1 = \beta_1 + \rho \beta_2$$

and

$$\hat{lpha}=lpha(\gamma)-rac{eta_2^2(1-
ho^2)}{2}$$

Model misspecification: An illustration

Model generating defaults has two Gaussian factors common to all firms:

$$\frac{\exp(\beta_1 Y_{1,t} + \beta_2 Y_{2,t} - \alpha(\gamma))}{1 + \exp(\beta_1 Y_{1,t} + \beta_2 Y_{2,t} - \alpha(\gamma))},$$

 $Y_{1,t}$ and $Y_{2,t}$ are assumed to have zero mean, variance 1 and correlation ρ

- Only the first factor with time series $(Y_{1,t}: 1 \le t \le T(\gamma))$ is assumed to be relevant by modeller.
- Both estimators asymptotically converge to

$$\hat{\beta}_1 = \beta_1 + \rho \beta_2$$

and

$$\hat{\alpha} = \alpha(\gamma) - \frac{\beta_2^2(1 - \rho^2)}{2}.$$

29 / 60

Simulation Experiments

Comparison of RMSE for default probability 1% per annum, model correctly specified

Time in months	No. of firms	$RMSE(\beta_{\mathit{prop}})$	$RMSE(\beta_{\mathit{ML}})$
200	1000	0.1280	0.1248
200	3000	0.0787	0.0707
200	5000	0.0685	0.0574
200	7000	0.0574	0.0435
200	10000	0.0547	0.0374
100	2000	0.1232	0.1157
300	2000	0.0774	0.0714
500	2000	0.0608	0.0547
700	2000	0.0565	0.0509

True Parameters: ($\alpha = 7.5$, $\beta_1 = -0.2$, $\beta_2 = 0.5$, $\beta_3 = 0.5$). RMSE of the proposed estimator is only slightly larger than that of MLE except when the no. of companies is large.

Comparison of RMSE for default probability 1% per annum, missing covariate with small and large coefficient

β_3	No. of firms	$RMSE(\beta_{\mathit{prop}})$	$RMSE(\beta_{ML})$
0.5	1000	0.1403	0.1392
0.5	3000	0.0871	0.0842
0.5	5000	0.0741	0.0721
0.5	7000	0.0754	0.0707
2	1000	0.3109	0.3231
2	3000	0.2958	0.3041
2	5000	0.3046	0.3135
2	7000	0.3014	0.3072

True Parameters: $(\alpha = 7.5, \beta_1 = -0.2, \beta_2 = 0.5)$, β_3 . Time period 200. Both the proposed estimator and MLE estimate $(\alpha, \beta_1, \beta_2)$ only. The RMSE of the two methods is nearly identical. It worsens as value of β_3 increases.

Empirical Analysis

Sample Data Characteristics (From Risk Management Institute, NUS)

• Number of Companies: 2,000

Time Periods:251

Operation Defaults: 168

Default Probability per year: 1.12%

Number of Variables Available: 8

Description of Variables

Macroeconomic Variables

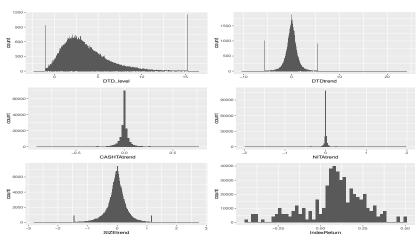
- IndexReturn: trailing 1-year return on the S&P500 index
- Treasury rate: 3-month US Treasury bill rate

Firm-Specific Variables

- DTD: firms distance-to-default
- CASH/TA: ratio of the sum of cash and short-term investments to the total assets
- NI/TA: ratio of net income to the total assets
- SIZE: log of the ratio of firms market equity value to the average market equity value of the S&P500 firm
- M/B: market-to-book asset ratio
- SIGMA: 1-year idiosyncratic volatility

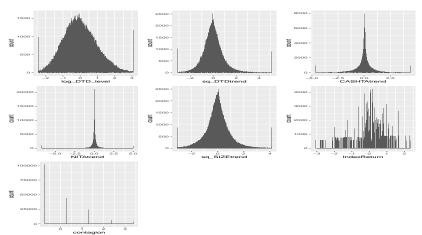
Assumption of Normality/Boundedness

Figure: Frequency Plots of Variables without Transformation



Assumption of Normality/Boundedness

Figure: Frequency Plots of Variables after Transformation



37 / 60

Calibration Betas

Table: Combined Beta Table

Decile	Our Calibration	Duffie's MLE	Logit
Constant	-9.251	-6.739	-9.344
log_DTD_level	-1.330	-0.425	-1.837
$sq_DTDtrend$	-0.199	0.320	-1.267
CASHTAtrend	-0.035	0.006	-0.045
NITAtrend	-0.417	-0.108	-0.060
$sq_SIZEtrend$	-1.477	-0.615	-0.565
IndexReturn	-0.342	-0.089	-0.218

Calibration Results

Table: Combined Accuracy Table

Decile	Our Calibration	Duffie's MLE	Logit
1	0.895	0.842	0.763
2	0.974	0.947	0.921
3	0.974	0.974	0.947
4	1	0.974	0.947
5	1	0.974	0.947
6	1	0.974	0.974
7	1	0.974	1
8	1	1	1
9	1	1	1

Calibration Betas with Contagion

Table: Combined Beta Table with Contagion

Variable	Our Calibration	Duffie's MLE	Logit
Constant	-9.806	-6.811	-9.145
log_DTD_level	-1.281	-0.322	-1.587
$sq_DTDtrend$	-0.174	0.072	-1.235
CASHTAtrend	-0.033	0.181	-0.042
NITAtrend	-0.410	0.223	-0.061
$sq_SIZEtrend$	-1.462	-0.755	-0.582
IndexReturn	0.021	0.007	-0.198
Contagion	1.117	0.194	0.046

Calibration Results with Contagion

Table: Combined Accuracy Table with Contagion

Decile	Our Calibration	Duffie's MLE	Logit
1	0.921	0.868	0.763
2	0.921	0.808	0.703
3	0.974	0.947	0.921
4	0.974	0.974	0.947
5	1	1	0.974
6	1	1	0.974
7	1	1	1
8	1	1	1
9	1	1	1

Table: Computer Generated Data Coefficient Results

	Underlying Logit Betas	Our Betas	Duffie Betas
Constant	-7.600	-7.490	-7.566
CVar1	0.225	0.198	0.224
CVar2	0.549	0.536	0.561
CVar3	-1.417	-1.376	-1.408
MVar1	0.500	0.455	0.517
MVar2	0.700	0.687	0.664

Portfolio Credit Risk: Tail Analysis

43 / 60

Our portfolio framework

- Consider a portfolio with *n* borrowers.
- For each obligor i, the conditional default probability in period [t,t+1) has the form

$$p_{i,t} = F(-\alpha_i + \beta^T X_{i,t})$$

where F is a strictly increasing distribution function.

The covariates follow a vector autoregressive process

$$X_{t+1} = \mathbf{A}X_t + \tilde{\mathbf{E}}_{i,t+1}$$

Our portfolio framework

- Consider a portfolio with *n* borrowers.
- For each obligor i, the conditional default probability in period [t, t+1) has the form

$$p_{i,t} = F(-\alpha_i + \beta^T X_{i,t})$$

where F is a strictly increasing distribution function.

The covariates follow a vector autoregressive process

$$X_{t+1} = \mathbf{A}X_t + \tilde{\mathbf{E}}_{i,t+1}$$

Our portfolio framework

- Consider a portfolio with *n* borrowers.
- For each obligor i, the conditional default probability in period [t, t+1) has the form

$$p_{i,t} = F(-\alpha_i + \beta^T X_{i,t})$$

where F is a strictly increasing distribution function.

The covariates follow a vector autoregressive process

$$X_{t+1} = \mathbf{A}X_t + \mathbf{\tilde{E}}_{i,t+1}$$

- Let $D_{i,t}$ denote the event that obligor i defaults at time t. Then, loss suffered equals e_i . This may be random.
- One illustrative performance measure of interest may be

$$P(\sum_{i=1}^n e_i I(D_{i,t_1}) \geq na_{t_1}, \sum_{i=1}^n e_i I(D_{i,t_2}) \geq na_{t_2})$$

That is, large losses observed jointly in two time periods t_1 and t_2 .

- Let $D_{i,t}$ denote the event that obligor i defaults at time t. Then, loss suffered equals e_i . This may be random.
- One illustrative performance measure of interest may be

$$P(\sum_{i=1}^{n} e_{i}I(D_{i,t_{1}}) \geq na_{t_{1}}, \sum_{i=1}^{n} e_{i}I(D_{i,t_{2}}) \geq na_{t_{2}})$$

That is, large losses observed jointly in two time periods t_1 and t_2 .

Juneja Portfolio Risk 45 / 60,

- Start with the value $X_{i,0}$ as well as $p_{i,0}$ for each obligor. Check how many default in period [0,1).
- ullet Increment the factors generating samples of $ilde{f E}_1$,

$$X_1 = \mathbf{A}X_0 + \tilde{\mathbf{E}}_1$$

Compute the conditional probabilities

$$p_{i,1} = F(-\alpha_i + \beta^T X_{i,1})$$

- Generate defaults at time 1. Compute the loss amount at this time.
- Carry on till time t_2 .

- Start with the value $X_{i,0}$ as well as $p_{i,0}$ for each obligor. Check how many default in period [0,1).
- \bullet Increment the factors generating samples of $\tilde{\textbf{E}}_1,$

$$X_1 = \mathbf{A}X_0 + \mathbf{\tilde{E}}_1$$

Compute the conditional probabilities

$$p_{i,1} = F(-\alpha_i + \beta^T X_{i,1})$$

- Generate defaults at time 1. Compute the loss amount at this time.
- Carry on till time t_2 .

- Start with the value $X_{i,0}$ as well as $p_{i,0}$ for each obligor. Check how many default in period [0,1).
- \bullet Increment the factors generating samples of $\tilde{\textbf{E}}_1,$

$$\mathit{X}_{1} = \mathbf{A}\mathit{X}_{0} + \mathbf{\tilde{E}}_{1}$$

Compute the conditional probabilities

$$p_{i,1} = F(-\alpha_i + \beta^T X_{i,1})$$

- Generate defaults at time 1. Compute the loss amount at this time.
- Carry on till time t_2 .

- Start with the value $X_{i,0}$ as well as $p_{i,0}$ for each obligor. Check how many default in period [0,1).
- ullet Increment the factors generating samples of $ilde{f E}_1$,

$$X_1 = \mathbf{A}X_0 + \mathbf{\tilde{E}}_1$$

Compute the conditional probabilities

$$p_{i,1} = F(-\alpha_i + \beta^T X_{i,1})$$

- Generate defaults at time 1. Compute the loss amount at this time.
- Carry on till time t_2 .

◆ロト ◆個ト ◆差ト ◆差ト を めらぐ

- Start with the value $X_{i,0}$ as well as $p_{i,0}$ for each obligor. Check how many default in period [0,1).
- ullet Increment the factors generating samples of $ilde{f E}_1$,

$$\mathit{X}_{1} = \mathbf{A}\mathit{X}_{0} + \mathbf{\tilde{E}}_{1}$$

• Compute the conditional probabilities

$$p_{i,1} = F(-\alpha_i + \beta^T X_{i,1})$$

- Generate defaults at time 1. Compute the loss amount at this time.
- Carry on till time t2.

Monte Carlo methodology ...

• Compute losses at time t_1 and at time t_2 . Get a sample of

$$I(\sum_{i=1}^{n} e_{i}I(D_{i,t_{1}}) \geq na_{t_{1}}, \sum_{i=1}^{n} e_{i}I(D_{i,t_{2}}) \geq na_{t_{2}})$$

- Average of iid samples gives an unbiased probability estimator.
- Problem is intractable to analysis and due to rare events it is computationally prohibitive.

Monte Carlo methodology ...

• Compute losses at time t_1 and at time t_2 . Get a sample of

$$I(\sum_{i=1}^n e_i I(D_{i,t_1}) \geq na_{t_1}, \sum_{i=1}^n e_i I(D_{i,t_2}) \geq na_{t_2})$$

- Average of iid samples gives an unbiased probability estimator.
- Problem is intractable to analysis and due to rare events it is computationally prohibitive.

Monte Carlo methodology ...

• Compute losses at time t_1 and at time t_2 . Get a sample of

$$I(\sum_{i=1}^n e_i I(D_{i,t_1}) \ge na_{t_1}, \sum_{i=1}^n e_i I(D_{i,t_2}) \ge na_{t_2})$$

- Average of iid samples gives an unbiased probability estimator.
- Problem is intractable to analysis and due to rare events it is computationally prohibitive.

Some related literature

- Dembo, Deuschel, Duffie (2004) single period, single factor large deviations.
- Glasserman and Li (2005), Glasserman, Kang, Shahabuddin (07, 08). Single period, Gaussian Copula, large deviations, fast simulation.
- Bassamboo, Juneja, Zeevi (2008) T-Copula single period large deviations, fast simulation.
- Giesecke, Spiliopoulos, R. Sowers, and J. Sirignano (2015).
 Continuous time model, analysis relatively complex.
- Duan, Sun, Wang (2012). Discrete time multi period model. No large deviations analysis.

Tail Analysis of Large Losses

Embedding the portfolio credit risk problem in asymptotic regime

- Consider a portfolio with *n* obligors. We analyze this portfolio as $n \to \infty$.
- For each obligor i, the conditional default probability in period [t, t+1) has the form

$$p_{i,t}^{(n)} = F(-m_n \alpha + \beta^T X_{i,t})$$

• The common factors again follow a vector autoregressive process independent of n,

Juneja

$$X_{t+1} = \mathbf{A}X_t + \tilde{\mathbf{E}}_{t+1}$$

Portfolio Risk

< □ > ◆ 圖 > ◆ 필 > ◆ 필 > ◆ 필 > ● 필 · ♡ Q (?)

50 / 60

Embedding the portfolio credit risk problem in asymptotic regime

- Consider a portfolio with *n* obligors. We analyze this portfolio as $n \to \infty$.
- For each obligor i, the conditional default probability in period [t, t+1) has the form

$$p_{i,t}^{(n)} = F(-m_n \alpha + \beta^T X_{i,t})$$

 The common factors again follow a vector autoregressive process independent of n,

$$X_{t+1} = \mathbf{A}X_t + \tilde{\mathbf{E}}_{t+1}$$

Juneja Portfolio Risk 50 / 60,

Embedding the portfolio credit risk problem in asymptotic regime

- Consider a portfolio with *n* obligors. We analyze this portfolio as $n \to \infty$.
- For each obligor i, the conditional default probability in period [t, t+1) has the form

$$p_{i,t}^{(n)} = F(-m_n \alpha + \beta^T X_{i,t})$$

 The common factors again follow a vector autoregressive process independent of n,

$$X_{t+1} = \mathbf{A}X_t + \mathbf{\tilde{E}}_{t+1}$$

Juneja Portfolio Risk 50 / 60,

Illustrative large deviations result

Theorem

When, $m_n \to \infty$, under mild conditions,

$$\lim_{n\to\infty}\frac{1}{n}\log P(\sum_{i=1}^n e_iI(D_{i,t})\geq na)=-q(t),$$

where q(t) equals

$$\frac{\alpha_1^2}{\sum_{k=1}^t \sum_{p=1}^d h_{t-k,p}^2}.$$

Note that it strictly reduces with t.

Fast Simulation of Large Losses

Illustrative rare event simulation problem

- Consider the problem of estimating probability of eighty or more heads in hundred tosses of a fair coin. (5.58×10^{-10}) .
- Estimator from average of *n* independent samples

$$\frac{1}{n}\sum_{i=1}^{n}I_{i}(X_{1}+X_{2}+\cdots+X_{100}\geq80).$$

- \bullet On average 1.8×10^9 samples needed to observe a successful sample
- 2.75×10^{12} trials needed to get 95% confidence interval of width 5% of the true value.

Illustrative rare event simulation problem

- Consider the problem of estimating probability of eighty or more heads in hundred tosses of a fair coin. (5.58×10^{-10}) .
- Estimator from average of *n* independent samples

$$\frac{1}{n}\sum_{i=1}^n I_i(X_1+X_2+\cdots+X_{100}\geq 80).$$

- \bullet On average 1.8×10^9 samples needed to observe a successful sample
- 2.75×10^{12} trials needed to get 95% confidence interval of width 5% of the true value.

4□ > 4□ > 4□ > 4 = > 4 = > = 900

Illustrative rare event simulation problem

- Consider the problem of estimating probability of eighty or more heads in hundred tosses of a fair coin. (5.58×10^{-10}) .
- Estimator from average of *n* independent samples

$$\frac{1}{n}\sum_{i=1}^n I_i(X_1+X_2+\cdots+X_{100}\geq 80).$$

- \bullet On average 1.8×10^9 samples needed to observe a successful sample
- 2.75×10^{12} trials needed to get 95% confidence interval of width 5% of the true value.

Illustrative rare event simulation problem

- Consider the problem of estimating probability of eighty or more heads in hundred tosses of a fair coin. (5.58×10^{-10}) .
- Estimator from average of *n* independent samples

$$\frac{1}{n}\sum_{i=1}^n I_i(X_1+X_2+\cdots+X_{100}\geq 80).$$

- \bullet On average 1.8×10^9 samples needed to observe a successful sample
- 2.75×10^{12} trials needed to get 95% confidence interval of width 5% of the true value.

Juneja Portfolio Risk 53 / 60

- Generate these samples under a new distribution such that X_i 's independently equal 1 with probability p.
- Unbias the result using the 'likelihood ratio'

$$\frac{1}{n}\sum_{i=1}^{n}I_{i}(X_{1}+\cdots+X_{100}\geq80)\frac{(1/2)^{\sum_{i=1}^{100}X_{i}}(1/2)^{100-\sum_{i=1}^{100}X_{i}}}{p^{\sum_{i=1}^{100}X_{i}}(1-p)^{100-\sum_{i=1}^{100}X_{i}}}.$$

- When p = 0.8, 7,932 samples needed for 5% relative accuracy
- When p = 0.99, 3.69×10^{22} samples needed for 5% relative accuracy.

Juneja Portfolio Risk 54 / 60

- Generate these samples under a new distribution such that X_i's independently equal 1 with probability p.
- Unbias the result using the 'likelihood ratio'

$$\frac{1}{n}\sum_{i=1}^{n}I_{i}(X_{1}+\cdots+X_{100}\geq80)\frac{(1/2)^{\sum_{i=1}^{100}X_{i}}(1/2)^{100-\sum_{i=1}^{100}X_{i}}}{p^{\sum_{i=1}^{100}X_{i}}(1-p)^{100-\sum_{i=1}^{100}X_{i}}}.$$

- When p = 0.8, 7,932 samples needed for 5% relative accuracy
- When p = 0.99, 3.69×10^{22} samples needed for 5% relative accuracy.

Juneja Portfolio Risk 54 / 60

- Generate these samples under a new distribution such that X_i's independently equal 1 with probability p.
- Unbias the result using the 'likelihood ratio'

$$\frac{1}{n}\sum_{i=1}^{n}I_{i}(X_{1}+\cdots+X_{100}\geq80)\frac{(1/2)^{\sum_{i=1}^{100}X_{i}}(1/2)^{100-\sum_{i=1}^{100}X_{i}}}{p^{\sum_{i=1}^{100}X_{i}}(1-p)^{100-\sum_{i=1}^{100}X_{i}}}.$$

- When p = 0.8, 7,932 samples needed for 5% relative accuracy
- When p = 0.99, 3.69×10^{22} samples needed for 5% relative accuracy.

Juneja Portfolio Risk 54 / 60

- Generate these samples under a new distribution such that X_i's independently equal 1 with probability p.
- Unbias the result using the 'likelihood ratio'

$$\frac{1}{n}\sum_{i=1}^{n}I_{i}(X_{1}+\cdots+X_{100}\geq80)\frac{(1/2)^{\sum_{i=1}^{100}X_{i}}(1/2)^{100-\sum_{i=1}^{100}X_{i}}}{p^{\sum_{i=1}^{100}X_{i}}(1-p)^{100-\sum_{i=1}^{100}X_{i}}}.$$

- When p = 0.8, 7,932 samples needed for 5% relative accuracy
- When p=0.99, 3.69×10^{22} samples needed for 5% relative accuracy.

(4日) (個) (注) (注) (注) (200)

Importance sampling

• Consider estimating the rare event probability P(A).

$$P(A) = EI(A) = \int_{x \in A} f(x) dx = \int_{x \in A} \frac{f(x)}{f^*(x)} f^*(x) dx = E^*[LI(A)]$$

where $L(x) = \frac{f(x)}{f^*(x)}$ is called the likelihood ratio.

• Estimation strategy: Generate independent samples of L * I(A) using f^* . Their average is an unbiased and consistent estimator of P(A).

Juneja Portfolio Risk 55 /

Importance sampling

• Consider estimating the rare event probability P(A).

$$P(A) = EI(A) = \int_{x \in A} f(x) dx = \int_{x \in A} \frac{f(x)}{f^*(x)} f^*(x) dx = E^*[LI(A)]$$

where $L(x) = \frac{f(x)}{f^*(x)}$ is called the likelihood ratio.

• Estimation strategy: Generate independent samples of L * I(A) using f^* . Their average is an unbiased and consistent estimator of P(A).

Juneja Portfolio Risk 55 / 6

• Challenge is to find f^* that minimizes the variance or the second moment of the estimator L * I(A).

$$E^*L^2I(A) = \int_{x \in A} \left(\frac{f(x)}{f^*(x)}\right)^2 f^*(x) dx = \int_{x \in A} \left(\frac{f(x)^2}{f^*(x)}\right) dx$$

- Therefore, whenever f(x) is large, $f^*(x)$ should be large Should emphasize most likely paths.
- $f^*(x)$ should never be much smaller than f(x) along A.

56 / 60

Juneja Portfolio Risk

• Challenge is to find f^* that minimizes the variance or the second moment of the estimator L * I(A).

$$E^*L^2I(A) = \int_{x \in A} \left(\frac{f(x)}{f^*(x)}\right)^2 f^*(x) dx = \int_{x \in A} \left(\frac{f(x)^2}{f^*(x)}\right) dx$$

- Therefore, whenever f(x) is large, $f^*(x)$ should be large Should emphasize most likely paths.
- $f^*(x)$ should never be much smaller than f(x) along A.

Juneja Portfolio Risk 56 / 60

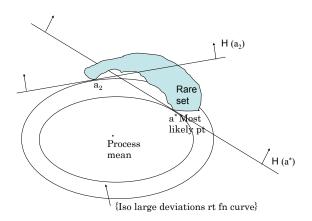
• Challenge is to find f^* that minimizes the variance or the second moment of the estimator L * I(A).

$$E^*L^2I(A) = \int_{x \in A} \left(\frac{f(x)}{f^*(x)}\right)^2 f^*(x) dx = \int_{x \in A} \left(\frac{f(x)^2}{f^*(x)}\right) dx$$

- Therefore, whenever f(x) is large, $f^*(x)$ should be large Should emphasize most likely paths.
- $f^*(x)$ should never be much smaller than f(x) along A.

Juneja Portfolio Risk 56 / 60

Issues with importance Sampling



• First illustrated by Sadowsky and Bucklew (1991).

In our problem

 For loss probabilities of order 1 in a 1000, one can expect 100-150 times speed up using an implementable asymptotically optimal importance sampling distribution.

Juneja Portfolio Risk 58 / 60

In our problem

 For loss probabilities of order 1 in a 1000, one can expect 100-150 times speed up using an implementable asymptotically optimal importance sampling distribution.

Juneja Portfolio Risk 59 / 60

- Using Taylor expansion, same approximations for non-Gaussian light tailed variables, if the corresponding β are small.
- Developed closed form expressions for approximations to MLE.
- Conducted asymptotic analysis to prove effectiveness of proposed estimators and empirically verified strong performance relative to existing methods.
- If the underlying model is wrong (the only truth in this talk so far), the exact method and the approximate one are equally bad!
- Developed an asymptotic framework and conducted large deviations methodology for joint distribution of large losses for portfolio credit risk.
- Proposed provably efficient fast simulation techniques for the portfolio model.

- Using Taylor expansion, same approximations for non-Gaussian light tailed variables, if the corresponding β are small.
- Developed closed form expressions for approximations to MLE.
- Conducted asymptotic analysis to prove effectiveness of proposed estimators and empirically verified strong performance relative to existing methods.
- If the underlying model is wrong (the only truth in this talk so far), the exact method and the approximate one are equally bad!
- Developed an asymptotic framework and conducted large deviations methodology for joint distribution of large losses for portfolio credit risk.
- Proposed provably efficient fast simulation techniques for the portfolio model.

- Using Taylor expansion, same approximations for non-Gaussian light tailed variables, if the corresponding β are small.
- Developed closed form expressions for approximations to MLE.
- Conducted asymptotic analysis to prove effectiveness of proposed estimators and empirically verified strong performance relative to existing methods.
- If the underlying model is wrong (the only truth in this talk so far), the exact method and the approximate one are equally bad!
- Developed an asymptotic framework and conducted large deviations methodology for joint distribution of large losses for portfolio credit risk.
- Proposed provably efficient fast simulation techniques for the portfolio model.

- Using Taylor expansion, same approximations for non-Gaussian light tailed variables, if the corresponding β are small.
- Developed closed form expressions for approximations to MLE.
- Conducted asymptotic analysis to prove effectiveness of proposed estimators and empirically verified strong performance relative to existing methods.
- If the underlying model is wrong (the only truth in this talk so far), the exact method and the approximate one are equally bad!
- Developed an asymptotic framework and conducted large deviations methodology for joint distribution of large losses for portfolio credit risk.
- Proposed provably efficient fast simulation techniques for the portfolio model.

- Using Taylor expansion, same approximations for non-Gaussian light tailed variables, if the corresponding β are small.
- Developed closed form expressions for approximations to MLE.
- Conducted asymptotic analysis to prove effectiveness of proposed estimators and empirically verified strong performance relative to existing methods.
- If the underlying model is wrong (the only truth in this talk so far), the exact method and the approximate one are equally bad!
- Developed an asymptotic framework and conducted large deviations methodology for joint distribution of large losses for portfolio credit risk.
- Proposed provably efficient fast simulation techniques for the portfolio model.

- Using Taylor expansion, same approximations for non-Gaussian light tailed variables, if the corresponding β are small.
- Developed closed form expressions for approximations to MLE.
- Conducted asymptotic analysis to prove effectiveness of proposed estimators and empirically verified strong performance relative to existing methods.
- If the underlying model is wrong (the only truth in this talk so far), the exact method and the approximate one are equally bad!
- Developed an asymptotic framework and conducted large deviations methodology for joint distribution of large losses for portfolio credit risk.
- Proposed provably efficient fast simulation techniques for the portfolio model.