

Carnot Efficiency in an Irreversible Process

Hyunggyu Park (KIAS)

[Sci. Rep. (2017)]

with Jae Sung Lee (KIAS)

Issues

- ¶ Carnot efficiency versus Reversibility
 - reversible engines \Rightarrow Carnot (maxium) efficiency [Carnot(1824), General physics textbooks]
 - irreversible engines \Rightarrow Carnot efficiency
- ¶ Efficiency versus Irreversibility
 - Irreversibility reduces the engine efficiency.

 (only for near reversible engines)
 - Irreversibility can enhance the efficiency for highly irreversible engines?

Heat engine

$$T_1$$
 $(T_1 > T_2)$

Hot reservoir Q_1

Engine

 W

- energetics : $W = Q_1 Q_2$ $(k_B = 1)$
- * thermodyn.: $\Delta S = -\frac{Q_1}{T_1} + \frac{Q_2}{T_2} \ge 0$
- efficiency: $\eta = \frac{W}{Q_1} \le \eta_C = 1 \frac{T_2}{T_1}$

$$\eta = \eta_C - \frac{T_2 \Delta S}{Q_1} = \eta_C - \eta \frac{T_2 \Delta S}{W}$$
(nonzero power)

 $\diamond \Delta S = 0$ (reversible, quasi-static) How to reach η_C ?

 $Q_2 o \infty \quad \left(\frac{T_2}{T_1} Q_1 \le Q_2 \le Q_1 \right)$ $\diamond \Delta S > 0 \text{ (irreversible, } Q_1 \to \infty)$

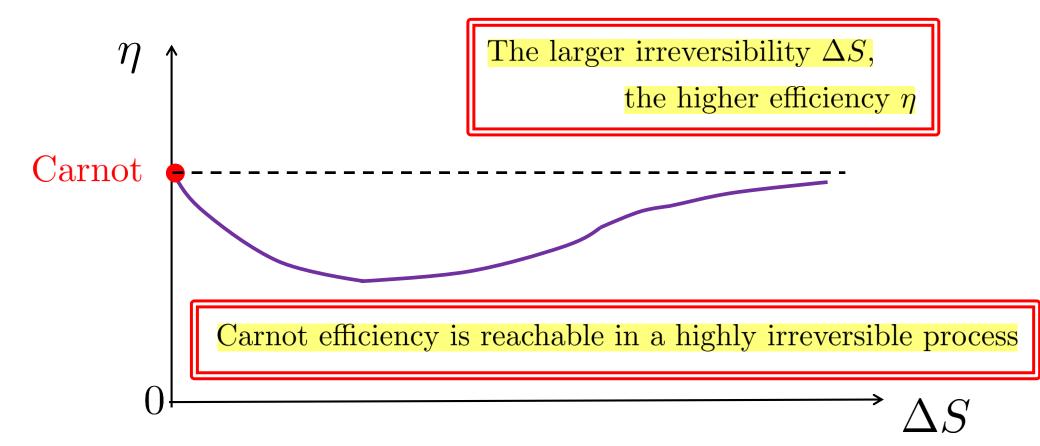
 $Q_{2} = \alpha Q_{1} \Rightarrow \frac{T_{2}\Delta S}{Q_{1}} = \alpha - \frac{T_{2}}{T_{1}} = 0 \text{ at } \alpha = \frac{T_{2}}{T_{1}} \Rightarrow \Delta S = 0 \quad (\gamma < 0)$ $(\frac{T_{2}}{T_{1}} \le \alpha \le 1)$ $(\text{otherwise}, \eta < \eta_{C})$ (reversible) $Q_{2} \simeq \frac{T_{2}}{T_{1}}Q_{1} + \mathcal{O}(Q_{1}^{\gamma}) \quad (\gamma < 1) \Rightarrow \Delta S \sim Q_{1}^{\gamma} \xrightarrow[Q_{1} \to \infty]{\eta \to \eta_{C}} \quad (0 \le \gamma < 1)$

(highly irreversible with Carnot eff.)

• For large
$$Q_1$$
, $Q_2 \simeq \frac{T_2}{T_1}Q_1 + aQ_1^{\gamma} \Rightarrow \Delta S \simeq \frac{a}{T_2}Q_1^{\gamma}$ $(0 \le \gamma < 1, a > 0)$

$$\eta = \eta_C - \frac{T_2 \Delta S}{Q_1} = \eta_C - a \left(\frac{a}{T_2 \Delta S}\right)^{1/\gamma - 1}$$

$$\overline{\Delta S \to \infty} \eta_C$$



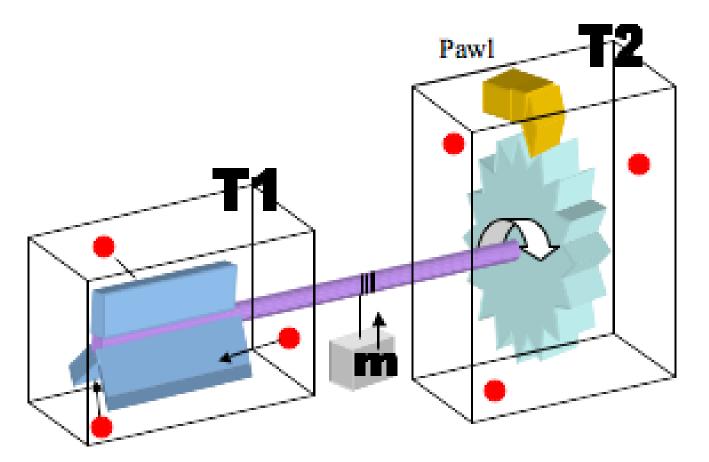
Any realistic system

showing the Carnot efficiency

in a highly irreversible process?

Feynman-Smoluchowski Ratchet (FSR)

[Feynman Lecture I (1983)]

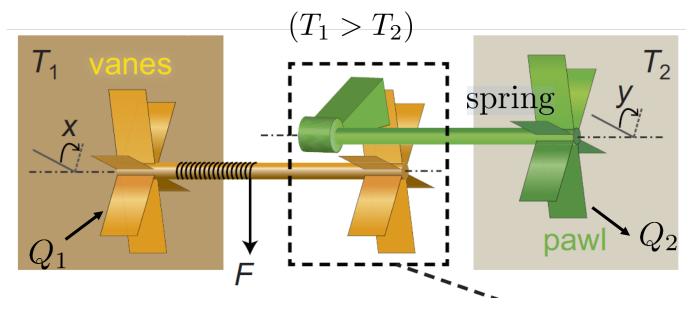


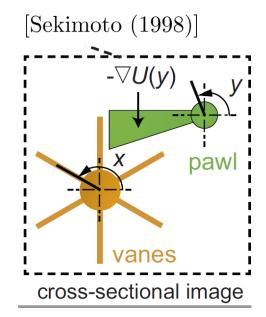
[Smoluchowski (1912)]

[Feynman (1962)]

When $T_1 > T_2$, "ratcheting". Can extract some work (pull the load up).

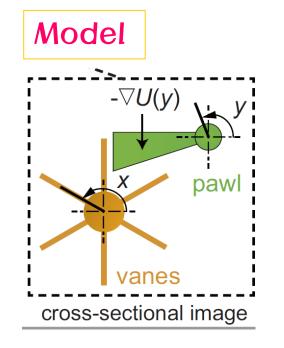
FSR can attain η_C at an appropriate value of m (detail balance: reversible). cannot attain η_C due to inherent irreversible current. [Parrondo/Español (1996)]



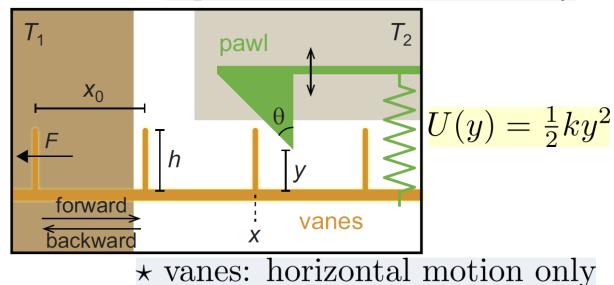


- Q_1 (thermal energy input)
- $Q_2 = Q_{2v} \neq Q_{2v}$ | nQ_{1} | $Q_{2v} \Rightarrow \eta < \eta_C$ | [Parrondo/Español (1996)]

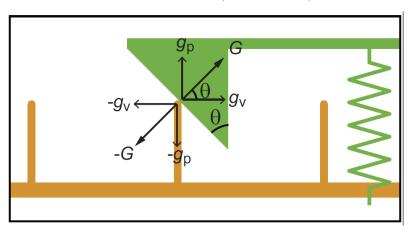
- * collisions without a hop $\Rightarrow W = 0$, $Q_2 = Q_{\text{col}}$: dissipation \Rightarrow efficiency lowered $(\eta < \eta_C)$
- \star successful hops $\Rightarrow W = \pm Fx_0, Q_2 = Q_{\text{hop}} \simeq U_{\text{threshold}}$
- How to get rid of Q_{col} ? any controllable limit? Yes! later!
- high energy barrier (heat) limit \Rightarrow vanes, pawl: almost EQ



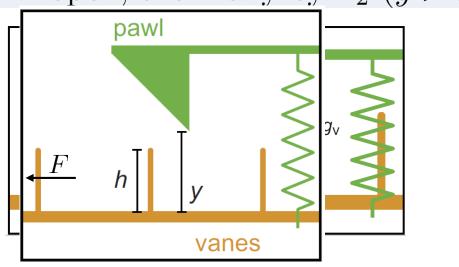
★ pawl: vertical motion only



• pawl closed (y < h)

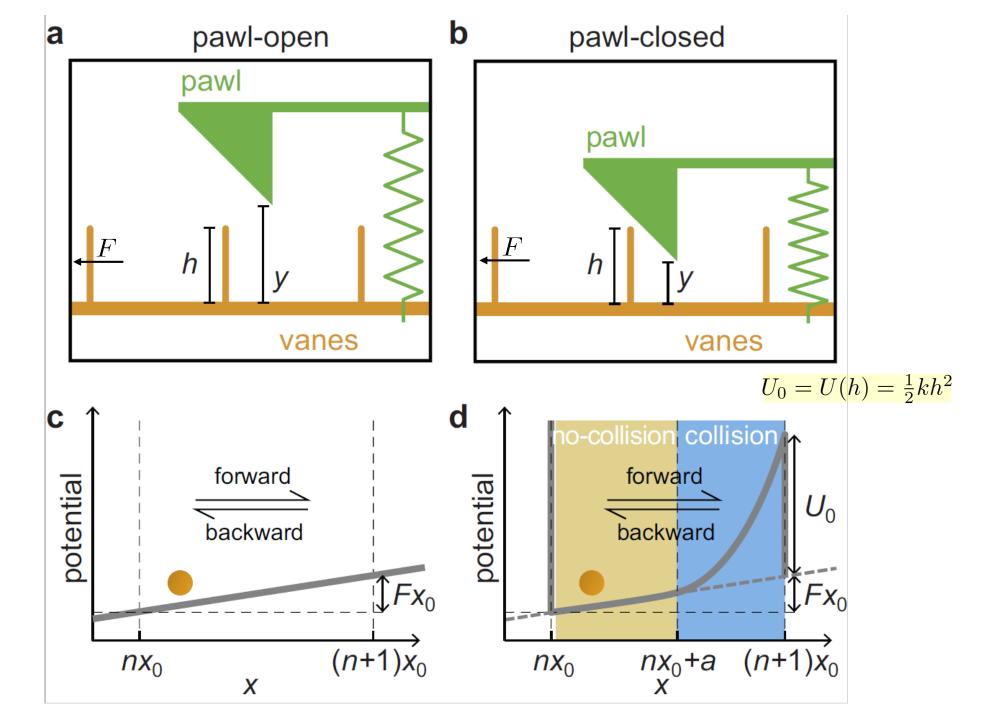


• pawl open, thermally by T_2 (y > h)



 \star elastic collision of m and $m_{\rm p}$

† forward hop possible $(W = Fx_0)$ † *backfoat de looking of by (Wward Fag)



high energy barrier limit

 $T_2 < T_1 \ll U_0, Fx_0 \Rightarrow \text{almost always pawl closed for } U_0/T_2 \gg 1.$

* pawl-open probability:
$$p_o \approx \int_h^\infty dy \, \sqrt{\frac{2k}{\pi T_2}} e^{-\frac{ky^2}{2T_2}} \approx \sqrt{\frac{T_2}{\pi U_0}} e^{-\frac{U_0}{T_2}}$$
 (equil.)

 $Q_2 = (r_{\rm f} - r_{\rm b})U_0$

* pawl-closed probability:
$$p_c = 1 - p_0 \approx 1$$
 (Arrhenius)

- forward hopping rate: $r_f \approx p_c N_c e$
- backward hopping rate: $r_b \approx p_o N_o$

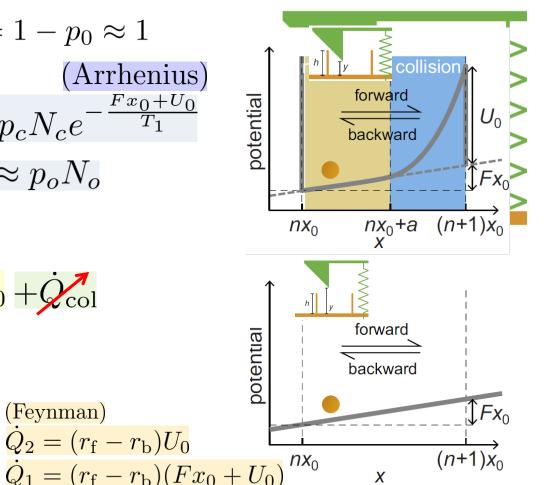
$$\dot{Q}_{2} = r_{\rm f}U_{0} + \dot{Q}_{\rm col}$$

$$\dot{Q}_{1} = r_{\rm f}(Fx_{0} + U_{0}) - r_{\rm b}Fx_{0} + \dot{Q}_{\rm col}$$

$$\dot{W} = (r_{\rm f} - r_{\rm b})Fx_{0}$$

$$\eta = \frac{(r_{\rm f} - r_{\rm b})Fx_{0}}{(r_{\rm f} - r_{\rm b})Fx_{0} + r_{\rm f}U_{0}} = \eta(F) \text{ (Feynman)}$$

 $\dot{S} = -\frac{\dot{Q}_1}{T_1} + \frac{\dot{Q}_2}{T_2} = \dot{S}(F)$



$$\tilde{\eta} = \eta/\eta_C$$

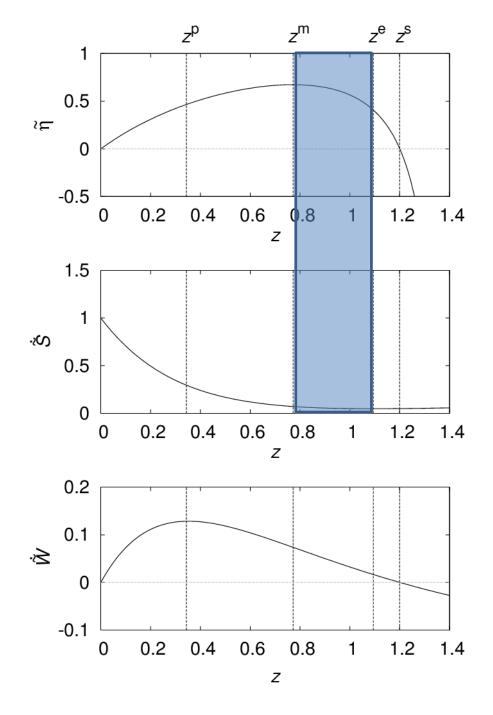
$$z = Fx_0/[(\eta_C U_0/T_2)T_1]$$

$$U_0 = 5, T_1 = 2, T_2 = 1, x_0 = 2$$

$$N_c = 0.045, N_o/N_c = 2.4$$

$$0 < Fx_0 < 7$$

* efficiency maximum at
$$z^{\mathrm{m}}$$
 $(U_0/T_2 \gg 1)$ * stalling point $(r_{\mathrm{f}} = r_{\mathrm{b}})$ $z^{\mathrm{m}} \approx 1 - \frac{T_2}{2\eta_C U_0} \ln\left(\frac{\eta_C U_0}{T_2}\right) \Rightarrow 1$ $z^{\mathrm{s}} \approx 1 + \frac{T_2}{2\eta_C U_0} \ln\left(\frac{U_0}{T_2}\right) \Rightarrow 1$ $\eta^{\mathrm{m}} \approx \eta_C - \frac{(1 - \eta_C)T_2}{2U_0} \ln\left(\frac{\eta_C U_0}{T_2}\right) \Rightarrow \eta_C$ (Carnot eff.) $\dot{W}(z^{\mathrm{m}}) \approx r_{\mathrm{f}}(z^{\mathrm{m}}) T_1 \frac{\eta_C U_0}{T_2} \Rightarrow 0$ $(r_{\mathrm{f}}(z^{\mathrm{m}}) \sim N_c e^{-U_0/T_2})$ (vanishing power) $\dot{S}(z^{\mathrm{m}}) \approx r_{\mathrm{f}}(z^{\mathrm{m}}) \frac{1}{2} \ln\left(\frac{\eta_C U_0}{T_2}\right) \Rightarrow 0$ [Shiraishi/Saito/Tasaki (2016)] $\Delta S = \frac{1}{2} \ln\left(\frac{\eta_C U_0}{T_2}\right) \Rightarrow \infty$ (highly irreversible)



$$\tilde{\eta} = \eta/\eta_C$$

$$\dot{S} = \dot{S}/[N_c e^{-U_0/T_1} (\eta_C U_0/T_2)]$$

$$\dot{W} = \dot{W}/[N_c e^{-U_0/T_1} (\eta_C U_0/T_2)T_1]$$

$$z = Fx_0/[(\eta_C U_0/T_2)T_1]$$

$$U_0 = 5, T_1 = 2, T_2 = 1, x_0 = 2$$

$$N_c = 0.045, N_o/N_c = 2.4 \quad 0 \le Fx_0 \le 7$$

⋆ efficiency maximum

$$z^{\mathrm{m}} pprox 1 - \frac{T_2}{2\eta_C U_0} \ln \left(\frac{\eta_C U_0}{T_2} \right)$$

* EP rate minimum $z^{e} \approx 1 + \frac{T_2}{n_G U_0}$

The larger irreversibility, the higher efficiency.

★ Power maximum

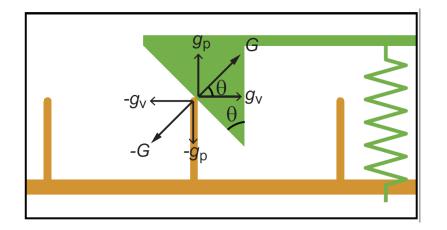
$$z^{\mathrm{p}} pprox rac{T_2}{\eta_C U_0} \quad \eta^{\mathrm{p}} pprox rac{T_2}{(1-\eta_C)U_0}$$

¶ small mass-ratio limit

$$\frac{m_{\rm p}}{m} \ll 1$$

m: mass of vanes

 $m_{\rm p}$: mass of pawl



- each elastic collision transfers kinetic energy $\sim \frac{m_p}{m}(T_1 T_2)$ (thermal averaged)
- collision frequency should be very high per each hop and diverges as $\frac{m_p}{m} \to 0$ limit.

Guess
$$\dot{Q}_{\rm col} \sim N_c p_c \left(\frac{m_{\rm p}}{m}\right)^{\omega} (T_1 - T_2)$$
 with $0 < \omega < 1$.

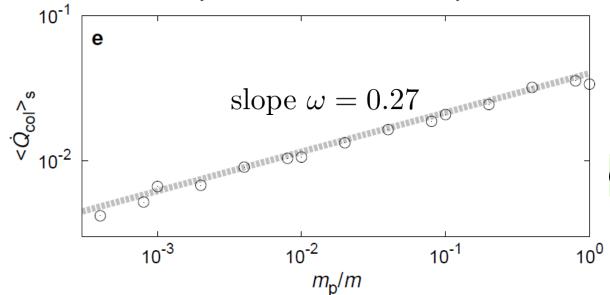
Numerical simulations

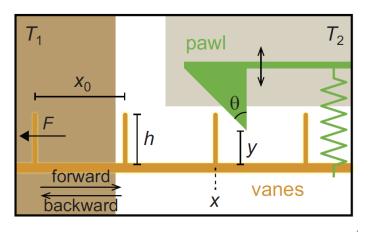
¶ Langevin equations with elastic collisions

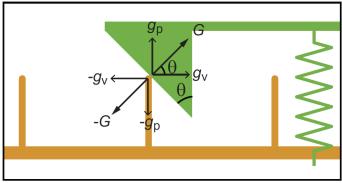
vane:
$$m\ddot{x} = -F - \gamma_1 \dot{x} + \xi_1 - g_v(x, y)$$

pawl:
$$m\ddot{y} = -ky - \gamma_2 \dot{y} + \xi_2 + g_p(x, y)$$

- numerical integrations
- \star measure W, Q_1, Q_2 (Stratonovich)







$$U_0 = 50, T_1 = 2, T_2 = 1, x_0 = 2, F = 1$$

$$\dot{Q}_{\rm col} \sim N_c p_c \left(\frac{m_{\rm p}}{m}\right)^{\omega} (T_1 - T_2)$$

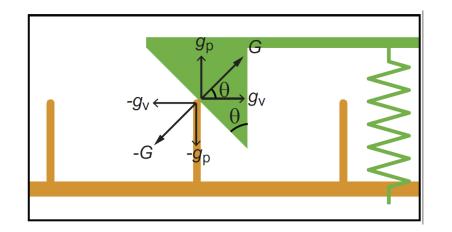
$$\Rightarrow 0 \text{ as } \frac{m_{\rm p}}{m} \to 0$$

¶ small mass-ratio limit

$$\frac{m_{\rm p}}{m} \ll 1$$

m: mass of vanes

 $m_{\rm p}$: mass of pawl



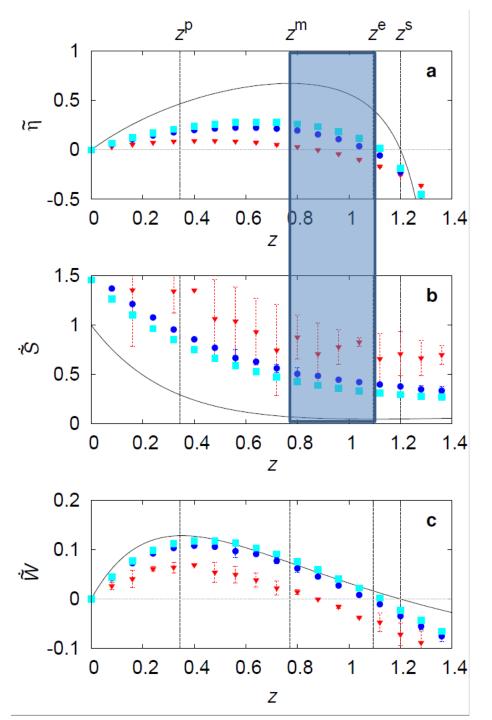
- each elastic collision transfers kinetic energy $\sim \frac{m_p}{m}(T_1 T_2)$ (thermal averaged)
- collision frequency should be very high per each hop and diverges as $\frac{m_p}{m} \to 0$ limit.

Guess
$$\dot{Q}_{\rm col} \sim N_c p_c \left(\frac{m_{\rm p}}{m}\right)^{\omega} \left(T_1 - T_2\right)$$

with $0 < \omega < 1$.

[simulation: $\omega = 0.27(3)$]

$$\star \dot{Q}_{\rm col} \ll \dot{Q}_{\rm hop} \quad \Rightarrow \quad \frac{m_{\rm p}}{m} \ll \left[e^{-(U_0 + Fx_0)/T_1} U_0 / (\eta_C T_1) \right]^{1/\omega}$$



$$U_0 = 5, T_1 = 2, T_2 = 1, x_0 = 2, F = 1$$

$$\frac{m_p}{m} = 10^{-1}, 10^{-2}, 10^{-3}$$

$$rac{m_{
m p}}{m} \ll \left[e^{-(U_0 + Fx_0)/T_1} U_0/(\eta_C T_1)\right]^{1/\omega}$$

$$\sim 3.5 \times 10^{-6}$$
non-negligible $\dot{Q}_{
m col}$

The larger irreversibility, the higher efficiency.

⋆ molecular motor (kinesin)

$$U_0/T_2 \approx 8$$
, $Fx_0/T_2 \approx 12$
 $r_f \approx 100s^{-1}$

Summary and discussion

Carnot efficiency is reachable in an irreversible process (FSR).

$$\eta = \eta_C - \frac{T_2 \Delta S}{Q_1}$$
 $Q_1 \simeq U_0 + Fx_0$
(highly irreversible)
$$\Delta S \simeq \frac{1}{2} \ln \left(\frac{\eta_C U_0}{T_2} \right)$$
(vanishing power)

We confirm that it is possible to have

"The larger the irreversibility S, the higher the efficiency η ". (in realistic situations like kinesin)

- ⇒ opens a new way of designing a highly efficient engine
- ¶ Resolving the long-standing debate on FSR

Careful (Sekimoto) setup with kinetic collisions high energy barrier and small mass-ratio limits

 \Rightarrow Carnot efficiency is possible in the FSR.