Aspects of Jets from First Principles

Jesse Thaler

l'Ilii

Jets @ LHC, ICTS-TIFR, Bangalore — January 25, 2017

Jesse Thaler — Aspects of Jets from First Principles

Jesse Thaler — Aspects of Jets from First Principles

QCD Renaissance Theory c. 2008–present

Loop/Leg/Log Explosion

Jet Substructure

[BDRS: Butterworth, Davison, Rubin, Salam, 2008; see also Seymour, 1991, 1994]

[Anti-k_T: Cacciari, Salam, Soyez, 2008; see also Delsart, 2006] [N³LO: Anastasiou, Duhr, Dulat, Herzog, Mistlberger, 2015]

2

What is a Jet?

A physical phenomena:

Emergent feature of confining gauge theories

An analysis technique:

Method to interpret hadronic final states

Freedom to use different analysis strategies for different physical questions

Jets from the Standard Model

++ = plus gluonic radiation

The Rise of Jet Substructure

Grooming: e.g. ISR/UE/pileup \rightarrow

[Mass Drop/Filtering, Trimming, Pruning, Soft Drop, Jet Reclustering...; for pileup: Area Subtraction, Jet Cleansing, SoftKiller, PUPPI, Constituent Subtraction...] W/Z-Tagging @ CMS [JME-14-002, CMS-PAS-EXO-15-002] 19.7 fb⁻¹ (8 TeV)

[using Larkoski, Marzani, Soyez, JDT, 1402.2657]

[using JDT, Van Tilburg, 1011.2268, 1108.2701]

Discrimination:

e.g. I-prong vs. N-prong

[p_T Balance, Y-splitter, Angularities, Planar Flow, N-subjettiness, Angular Structure Functions, Jet Charge, Jet Pull, Energy Correlation Functions, Dipolarity, p_T^D, Zernike Coefficients, LHA, Fox-Wolfram Moments, JHU/CMSTopTagger, HEPTopTagger, Template Method, Shower Deconstruction, Subjet Counting, Wavelets, Q-Jets, Telescoping Jets...]

W/Z Tagging in 2016

Soft Drop

[Larkoski, Marzani, Soyez, JDT, 2014; see also Dasgupta, Fregoso, Marzani, Salam, 2013] Trimming

[Krohn, JDT, Wang, 2009]

N-subjettiness

before grooming, after decorrelation

[JDT, Van Tilburg, 2010, 2011; Dolen, Harris, Marzani, Rappoccio, Tran, 2016] D_2

after grooming

[Larkoski, Moult, Neill, 2014; based on Larkoski, Salam, JDT, 2013]

W/Z Tagging in 2016

Can we understand these choices from first principles QCD?

Can we construct improved algorithms for 2017? Soft Drop

[Larkoski, Marzani, Soyez, JDT, 2014; see also Dasgupta, Fregoso, Marzani, Salam, 2013] Trimming

[Krohn, JDT, Wang, 2009]

N-subjettiness

before grooming, after decorrelation

[JDT, Van Tilburg, 2010, 2011; Dolen, Harris, Marzani, Rappoccio, Tran, 2016] **D**₂

after grooming

[Larkoski, Moult, Neill, 2014; based on Larkoski, Salam, JDT, 2013]

W/Z Tagging in 2016

Can we understand these choices from first principles QCD?

Can we construct improved algorithms for 2017? Yes! Key realization: Discrimination different before/after grooming

Yes! Use power counting to design robust discriminants

Punchline: W/Z Tagging in 2017?

Stable & Performant

Grooming from First Principles

Layers of Jet Understanding

theoretical calculations (energy flow)

reconstruction \approx I-to-I @ LHC (e.g. particle flow) nonperturbative confinement (hadronization) perturbative gluonic radiation (parton shower) short-distance collision (hard scattering)

First-Principles Calculations

Non-pert:

2-prong:

3-prong:

Jouttenus, Stewart, Tackmann, Waalewijn, 1302.0846 Jet shapes: Ellis, Vermilion, Walsh, Hornig, Lee, 1001.0014; Banfi, Dasgupta, Khelifa-Kerfa, Marzani, 1004.3483; Li, Li, Yuan, 1107.4535; Larkoski, Neill, JDT, 1401.2158; Hornig, Makris, Mehen, 1601.01319 Angular scaling: Jankowiak, Larkoski, 1201.2688; Larkoski, 1207.1437 Quarks vs. gluons: Larkoski, Salam, JDT, 1305.0007; Larkoski, JDT, Waalewijn, 1408.3122; Bhattacherjee, Mukhopadhyay, Nojiri, Sakaki, Webber, 1501.04794 QCD grooming: Dasgupta, Fregoso, Marzani, Salam, 1307.0007; Dasgupta, Fregoso, Marzani, Powling, 1307.0013; Larkoski, Marzani, Soyez, JDT, 1402.2657; Frye, Larkoski, Schwartz, Yan, 1603.06375, 1603.09338 Double differential: Larkoski, IDT, 1307.1699; Larkoski, Moult, Neill, 1401.4458; Procura, Waalewijn, Zeune, 1410.6483 In heavy ions: Chien, Vitev, 1405.4293; Chien, 1411.0741 pT balance: Larkoski, Marzani, JDT, 1502.01719; Chien, Vitev, 1608.07283 Small R jets: Dasgupta, Dreyer, Salam, Soyez, 1411.5182, 1602.01110 First NNLL + $O(\alpha_s^2)$ calculation Jet charge: Krohn, Schwartz, Lin, Waalewijn, 1209.2421; for substructure in pp Waalewijn, 1209.3019 Track-only shapes: Chang, Procura, JDT, Waalewijn, 1303.6637, 1306.6630 0.4 Soft Drop Groomed Mass Soft Drop, $z_{cut} = 0.1$, $\beta = 0$ Signal grooming: Rubin, 1002.4557; Dasgupta, Powling, Siodmok, 1503.01088 13 TeV, pp \rightarrow Z+j, p_{TJ} > 500 GeV, R = 0.8 0.3 2-prong jet shapes: Feige, Schwartz, Stewart, JDT, 1204.3898; Relative Probability Isaacson, Li, Li, Yuan, 1505.06368 Separation power: Larkoski, Moult, Neill, 1409.6298, 1507.03018; Dasgupta, Schunk, Soyez, 1512.00516; Dasgupta, Powling, Schunk, Soyez, 1609.07149 0.1 ---- Herwig++ (no had+ue) ----- Herwig++ (had+ue) Planar flow: Field, Gur-Ari, Kosower, Mannelli, Perez, 1212.2106 - NNLL matched Fractional jets: Bertolini, JDT, Walsh, 1501.01965 0.100 0.001 0.010 10^{-5} 10^{-4} Power counting: Larkoski, Moult, Neill, 1411.0665

Jet mass: Dasgupta, Khelifa-Kerfa, Marzani, Spannowsky, 1207.1640; Chien, Kelley, Schwartz, Zhu, 1208.0010;

Combination of fixed-order, direct resummation, SCET, RG evolution, and new techniques (e.g. Sudakov safety, multi-differential projections)

Jesse Thaler — Aspects of Jets from First Principles

 $e_{2}^{(2)}$

Trimming from First Principles?

R_{sub}: subjet radius z_{cut}: fractional energy threshold

Trimming from First Principles?

[Krohn, JDT, Wang, 0912.1342; diagram from ATLAS, 1306.4945]

R_{sub}: subjet radius z_{cut}: fractional energy threshold

CMS

[Larkoski, Marzani, Soyez, JDT, 2014; see also Butterworth, Davison, Rubin, Salam, 2008; Dasgupta, Fregoso, Marzani, Salam/Powling, 2013]

[Larkoski, Marzani, Soyez, JDT, 2014; see also Butterworth, Davison, Rubin, Salam, 2008; Dasgupta, Fregoso, Marzani, Salam/Powling, 2013]

Jesse Thaler — Aspects of Jets from First Principles

[[]Larkoski, Marzani, Soyez, JDT, 2014]

Jesse Thaler — Aspects of Jets from First Principles

[[]Larkoski, Marzani, Soyez, JDT, 2014]

Both grooming strategies give good signal isolation

[Dasgupta, Fregoso, Marzani, Salam, 1307.0007]

Jesse Thaler — Aspects of Jets from First Principles

Soft Drop √

Soft drop with $\beta = 0$ = mMDT with $\mu = 1$ Trimming
*

Both have primary kink at $m\simeq p_T R \sqrt{z_{\rm cut}}$

* Trimming has secondary kink at $m\simeq p_T R_{\rm sub} \sqrt{z_{\rm cut}}$

(Pruning also has similar behavior)

Discrimination from First Principles

(aka Axes or Axes-Free?)

Jesse Thaler — Aspects of Jets from First Principles

Requires a definition of subjet axes (i.e. minimizing over all axes possibilities)

 au_2

 au_1

k

n_{T}

Discrimination with Axes

Dimensionless kinematics:

N-subjettiness

$$z_i \equiv \frac{p_{Ti}}{\sum_j p_{Tj}} \quad \theta_{ij} \equiv \Delta R_{ij}$$

 $\sum z_k \min\{\theta_{k1}, \theta_{k2}\}^{\beta}$

 $\sum z_k \theta_{k1}^{\ \beta}$

k

Χ.

[JDT,Van Tilburg, 1011.2268,1108.2701; see also Kim, 1011.1493] [related work in Stewart,Tackmann,Waalewijn, 1004.2489]

Dimensionless $z_i \equiv \frac{p_{Ti}}{2}$ θ_i

kinematics:

Energy Correlation Functions

Axes-free probe for substructure; not immediately obvious how it works

[Larkoski, Salam, JDT, 1305.0007; Larkoski, Moult, Neill, 1409.6298, 1507.03018; see also Banfi, Salam, Zanderighi, hep-ph/0407286; Jankowiak, Larkoski, 1104.1646]

Jesse Thaler — Aspects of Jets from First Principles

25

Discrimination without Axes

Can we understand this behavior from first principles?

Parametric separation between 1 and 2 prong jets

CMS

N-subjettiness Behavior with Grooming

Parametric separation between 1 and 2 prong jets even after removing soft peripheral radiation

Scorecard

Not just good discrimination, but stability to choice of cuts

The Power of Power Counting

Textbook QCD

See end of talk for quark/gluon tagging

Power Counting Modes

I-prong background (quark or gluon)

Power Counting D₂: Background

Scorecard

ATLAS "R2D2" Tagger

Theoretically sound W/Z tagging strategies for the LHC

A New Angle on Jet Substructure

Punchline: W/Z Tagging in 2017?

Stable & Performant

A New Angle on Energy Correlators

Systematic jet dissection n = 2, 3, 4, ... v = 1, 2, 3, ..., n choose 2

collinear dominated soft dominated **3-point Correlators**

$$1e_{3}^{(\beta)} = \sum_{i < j < k} z_{i} z_{j} z_{k} \min\{\theta_{ij}, \theta_{jk}, \theta_{ki}\}^{\beta}$$
3-point:
$$2e_{3}^{(\beta)} = \sum_{i < j < k} z_{i} z_{j} z_{k} \min\{\theta_{ij}\theta_{jk}, \theta_{jk}\theta_{ki}, \theta_{ki}\theta_{ij}\}^{\beta}$$

$$3e_{3}^{(\beta)} = \sum_{i < j < k} z_{i} z_{j} z_{k} (\theta_{ij}\theta_{jk}\theta_{ki})^{\beta} \qquad \text{used for } D_{2}$$

Probe of hierarchical jet substructure

New Boosted W/Z Discriminants

Rule of thumb: boost invariance along jet axis

$$z_i \to z_i \quad \theta_{ij} \to \gamma^{-1} \theta_{ij}$$

(i.e. same angular scaling in numerator and denominator)

See also N₃ in the case of boosted top quarks

Power Counting N₂: Background

Power Counting N₂: Background

Derived using EFT power counting for both...

[[]Moult, Necib, JDT, 1609.07483]

N₂: After Grooming

Derived using EFT power counting for both...

[Moult, Necib, JDT, 1609.07483]

Performance Follows Power Counting

background rejection by itself)

More Grooming/Discrimination Interplay

Analytic calculations to identify optimal use of substructure information

Jesse Thaler — Aspects of Jets from First Principles

Back to the Future: Quarks vs. Gluons

Quark vs. Gluon?

Cartoon:

usually signals

VS.

 $\frac{\text{gluon}}{\text{mistag}} \simeq \left(\begin{array}{c} \text{quark} \\ \text{efficiency} \end{array} \right)^{C_A/C_F}$

barely improves S/\sqrt{B}

An Old Idea...

Neural Network Classification

[see also Nilles, Streng, 1981; Fodor, 1990; ...]

(d) GLUON N₉₀ = 21.41 $E_{2,min} = 0.0222$

Binned hadron flavor/kinematics

...with Renewed LHC Interest

Three Observable Discriminant $(n_{had}, p_T^D, \sigma_2)$

Convolutional ("Deep") Network (PT^{charged}, PT^{neutral}, n_{charged})

[see also Gallicchio, Schwartz, 1106.3076, 1211.7038; Krohn, Schwartz, Lin, Waalewijn, 1209.2421; Larkoski, Salam, JDT, 1305.0007; Larkoski, JDT, Waalewijn, 1408.3122; Bhattacherjee, Mukhopadhyay, Nojiri, Sakaki, Webber, 1501.04794]

Jesse Thaler — Aspects of Jets from First Principles

...with Renewed LHC Interest

[see also Gallicchio, Schwartz, 1106.3076, 1211.7038; Krohn, Schwartz, Lin, Waalewijn, 1209.2421; Larkoski, Salam, JDT, 1305.0007; Larkoski, JDT, Waalewijn, 1408.3122; Bhattacherjee, Mukhopadhyay, Nojiri, Sakaki, Webber, 1501.04794]

Jesse Thaler — Aspects of Jets from First Principles

Challenge: Theoretical Uncertainties

"Pythia/Herwig Sandwich" **Classifier Separation** N dn_{track} Hadron-level ATLAS 0.4 Pythia 8.205 $\sqrt{s} = 8 \text{ TeV}, \text{ L}_{int} = 20.3 \text{ fb}^{-1}$ Herwig 2.7.1 0.35 Sherpa 2.1.1 🔶 2012 Data Vincia 1.201 - Pythia 8.175 CT10 AU2 Deductor 1.0.2 0.3 Ariadne 5.0.ß - - Herwig++ 2.63 CTEQ6L1 EE3 Analytic NLL Separation: Δ 0.25 ▼ 50 GeV < p₋ < 100 GeV 0.1 • 100 GeV < p₁ < 200 GeV 0.2 Q=200 GeV ▲ 1 TeV < p_{_} < 1.2 TeV R=0.6 0.15 Ntrack 0.1 Better 0.05 10 30 ſ 20 (0,0)(2,0) (1,0.5) (1,1)(1,2) n_{track} Angularity: (κ, β)

Small uncertainties in distributions yield large uncertainties in discrimination power

[ATLAS, 1602.00988] [Soyez, JDT, Freytsis, Gras, Kar, Lönnblad, Plätzer, Siodmok, Skands, Soper, 1605.04692]

Challenge: Theoretical Uncertainties

[ATLAS, 1602.00988] [Soyez, JDT, Freytsis, Gras, Kar, Lönnblad, Plätzer, Siodmok, Skands, Soper, 1605.04692]

Key Task for Jet Substructure

Well-constrained by LEP measurements

VS. $e^+e^- \rightarrow gluons (C_A = 3)$

Needs more input from experiment (and theory)

[Soyez, JDT, Freytsis, Gras, Kar, Lönnblad, Plätzer, Siodmok, Skands, Soper, 1605.04692]

The Next Frontier: Information Beyond C_A/C_F

"Deep Learning" inspires "Deep Thinking"

[Moult, Necib, JDT, 1609.07483]

The Next Frontier: Information Beyond C_A/C_F

"Deep Learning" inspires "Deep Thinking"

Jet Substructure in 2017

Goal: Systematic Jet Classification from First Principles

