Tau Identification at CMS

Arun Nayak Institute of Physics Bhubaneswar, India

Jets @ LHC Meeting ICTS - Bengaluru

Hadronic Decay of Tau Lepton

$\boldsymbol{\tau}$ is the only lepton that decays to hadrons

- ~65% of tau decays
- 1 or 3 π⁺
- 0, 1, or 2 π⁰
- Via ρ or a_1 decay

Challenges

- Reject huge jet $\rightarrow \tau_h$ background
- Reject $e \rightarrow \tau_h$ fakes
- Reject µ →τ_h fakes(relatively easier)
 - τ_h candidates are collimated:
 - $\circ \quad \mbox{A few overlapping } \pi^{\pm} \mbox{ and } \gamma \mbox{s} \\ \mbox{from } \pi^0 \mbox{ decays} \\$
- PFlow is used to resolve objects

Decay Mode	Resonance	BR [%]]
$\tau^- \to e^- \overline{\nu}_e \nu_{\tau}$		17.8	Reconstructed using
$\tau^- \to \mu^- \overline{\nu}_\mu \nu_\tau$		17.4	standard e/µ
$\tau^- \to \pi^- \nu_{\tau}$	π (140)	11.6	reconstruction
$\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$	ho(770)	26.0	Reconstruction of
$\tau^- \rightarrow \pi^- \pi^0 \pi^0 \nu_{\tau}$	a ₁ (1260)	10.8	π^{\pm} 0^{\pm} 2^{\pm}
$\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_{\tau}$	a ₁ (1260)	9.8	signatures
$\tau^- \to \pi^- \pi^+ \pi^- \pi^0 \nu_\tau$		4.8	Signatures
Other hadronic modes		1.7	g
All hadronic modes		64.8]6

Identification of Hadronic τ decay

Hadron Plus Strips Algorithm (run-1)

- Start from an AntiK_T (R=0.4) PF jet
- Reconstruct decay modes with one or three charged hadrons, and one or two neutral pions
- Pions reconstructed using an elongated $\eta \times \phi$ strips collecting energy spread from photon conversions due to magnetic field
- Charged hadrons and photons reconstructed from tracks and calorimeter energy using a particle-flow technique

 $a_1 \rightarrow \pi^+ \pi^- \pi^+$

π±

 Π^0

0.20

ŋ

γ

0.05

φ

Identification of Hadronic τ decay

 $Min(\Delta \phi) = 0.05$

τ-identification Performance

A Nayak

0

 \mathbf{h}^{\pm}

 $h^{\pm}\pi^0s$

 $h^{\pm}h^{\mp}h^{\pm}$

 τ decay mode

5

Isolation

Handle to discriminate against hadron jets

Tau isolation computed by summing momenta of particles within cone of size dR = 0.5 (or 0.3) around tau direction:

τ-Isolation Performance

CMS-PAS-TAU-16-002

Dynamic strip algorithm with cut-based isolation Improved performance compared to run-1

Multivariate τ_h Isolation

Use variables sensitive to tau lifetime, in addition to the isolations > BDT for MVA training (τs as signal & jets as background)

Kinematic Variables:

- P_T(**τ**)
- η(**τ**)
- Reconstructed tau decay mode

Cut-based Isolation:

- P_T (charged hadrons)
- P_T (photons)
- Pileup correction ($\delta \beta$)
- p_T of photons in strips outside signal cone

Tau lifetime variables:

- Signed 2d and 3d impact parameter of the leading track & its significance
- Presence of secondary vertex
- au flight length
- au flight significance
- Additional particle-flow photon variables within signal and isolation cones

Signal and background events re-weighted to have similar p_{T} and η distributions

MVA ID Variables

A Nayak

9

τ MVA Isolation Performance

CMS-PAS-TAU-16-002

Dynamic strip algorithm with MVA isolation Factor of ~2 reduction in fakes compared to cut-based

τ -ID measurements with 13 TeV data

- Tau ID efficiency measured from Z → ττ → τ_μτ_h events using a Tag (μ) & Probe (τ_h) method.
 Data/MC SF consistent with 1
- $e \rightarrow \tau_h \& \mu \rightarrow \tau_h$ fake rate measured from $Z \rightarrow ee \& Z \rightarrow \mu\mu$ events, respectively
- Jet → τ_h fakes measured from W(µν)+jets events

CMS-PAS-TAU-16-002, CMS DP-2016/040

τ_h energy scale measured by fitting $m_{vis}(\mu \tau_h)$ and $m_{vis}(\tau_h)$ distributions

Events / bin CMS $h^{\pm}h^{\mp}h^{\pm}$ decay mode 4.5 E τ ES -3% 4.0 E tt + jets 3.5 70 Electrowea 3.0 E Exp. unc. 2.5 2.0 1.5 1.0 0.5 0.0 Obs./Exp. 1.2 1.0 0.8 0.6 1.0 1.2

24th Jan 2017

Mis-Identification Probability

Fake rate measured in W+jets events

Boosted Scenario

- High mass resonances (e.g. radion) may decay to pair of high p_T Higgs bosons
- Taus from the Higgs boson can be collimated and/or the decay products can be overlapped

τ reconstruction in boosted regime

- Start from a large CA8 jet (Cambridge-Aachen R=0.8)
- Use subjet(sj) finding algorithm and require 2 subjets:
 - p_T(sj1,sj2) > 10 GeV
 - Max(mass(sj1),mass(sj2))/ mass(jet)< 0.667
- In semileptonic final state the lepton is considered a subjet at this stage
- Use subjets as seeds for Tau reconstruction
- Then the tau reconstruction proceeds using the standard HPS algorithm

Boosted tau ID performance

tau reco efficiency vs tau p_T

Tau $|\eta| < 2.3$ and $p_T > 20$, Loose Isolation Higgs $|\eta| < 2.3$

Major improvement in fully hadronic channel

Boosted tau ID performance Tau $|\eta| < 2.3$ and $p_T > 20$, $H \rightarrow \tau\tau$ reco efficiency vs Higgs p_T Higgs $|\eta| < 2.3$

Major improvement in fully hadronic channel

Boosted tau ID performance

Mis-Identification Probability vs large Cone Jet p_T

The fake probability increases significantly. However, the background contributions at such high p_T is smaller

Validation with data

High $p_T Z \rightarrow \tau \tau \rightarrow \mu \tau_h$ events (Tight muon selection and Loose MVA isolation for τ_h)

tau identification at the trigger

- Tau identification at the trigger level is constrained by timing as well as rates
- Tau ID at Level-1 Trigger (Electronics)
 - No possibility of using tracker detector
 - A simpler algorithm developed using energy deposits in the trigger towers (ECAL + HCAL towers)
- Tau ID at High Level Trigger (Computing Farm)
 - No possibility of using offline algorithm yet due to timing constraint
 - A simple cone based algorithm employed at HLT
 - Based on particle-flow with regional tracking

Summary of tau identification at Level-1

Improved algorithm in run-2 compared to run-1

• Clustering: Create tau clusters from Trigger Towers

 \bullet

L1 tau-trigger performance

- Very good position resolution, thanks to TT granularity at L1
- Very good E_T response and resolution, thanks to in-situ calibration of L1 tau

L1 tau-trigger performance

Thanks to the re-designing of the L1 tau trigger for Run-2 we were able to keep di-tau trigger thresholds at ~30 to 35 GeV

Tau identification at HLT

- Needed to control timing
- Build L2 calo tau-jets seeded by L1 tau candidates
 - Require two calo tau-jets with $p_T > 26 \text{ GeV } \& |\eta| < 2.2$

• L2.5:

- Regional pixel tracking around the calo taus
- Use pixel tracks to reconstruct vertices
- Candidates are required to pass pixel track based isolation
- L3:
 - Particle flow with regional pixel tracking. Regions defined around L2.5 candidates
 - Simple cone based algorithm (leading track finding)
 - Combined (track + photon) isolation

HLT tau performance

High Level Trigger efficiency of the τ leg of the $\mu \tau_h$ (loose isolation, $p_T > 20$ GeV, seeded by single- μ Level-1) trigger for the $H \rightarrow \tau_{\mu} \tau_h$ analysis

Combined L1 and High Level trigger efficiency of the τ leg of the $\mu \tau_h$ (loose isolation, $p_T > 20$ GeV, seeded by cross $\mu + \tau$ Level-1) trigger for the H $\rightarrow \tau_\mu \tau_h$ analysis

HLT tau performance

Per-leg combined L1 and High Level trigger efficiency of the di- τ_h (medium isolation, $p_T > 35$ GeV, seeded by di- τ Level-1) trigger for

the H $\rightarrow \tau_h \tau_h$ analysis

High Level Trigger efficiency of the τ_h leg of the $\tau_h + E_T^{miss}$ (medium isolation, $p_T > 50$ GeV, seeded by E_T^{miss} Level-1) trigger for the H[±] $\rightarrow \tau_h v_\tau$ analysis

Summary

- CMS tau reconstruction algorithm is one of the biggest beneficiary of the particle-flow method
 - PF helps reconstruct individual decay modes => improving significantly the tau identification capability compared to leading track algorithms
 - Furthermore, the MVA based tau isolation significantly improve suppression of the jet to tau fake rate
- There is already a very good effort to identify taus in boosted regime. Efforts are made to validate the method from data (very few events with high $p_T Z$ events)
- The tau algorithm at level-1 trigger re-designed for LHC run-2 (thanks to Phase-1 stage-2 trigger upgrade) => Able to keep the trigger threshold similar or less than run-1
 - More studies ongoing for further improvement for 2017 data taking

BACKUP

Boosted tau ID Data/Simulation Comparison in the Semi-leptonic Final State

Data is selected with isolated single muon trigger (p_T > 22 GeV) in 2016 and correspond to an integrated luminosity of 4 /fb

Lepton Selection:

- μ: Tight identification with Isolation applied, p_T >30 GeV and lηI<2.5
- τ: Tau Identification with loose MVA based isolation, p_T >30 GeV and lηl<2.3

Pair Selection:

- ΔR(μ,τ)<0.8 and SVFit p_T(μ,τ) >200 GeV
- The lepton pair with the highest pt of the invariant visible system is selected → maximize number of events
- Veto events with additional identified leptons of the same flavor (p_T> 20 GeV)→<u>reduce events from leptons faking taus</u>
- Veto events with b-tagged jets medium working point→reduce events from top production
- Veto events with transverse mass (M_T (μ, τ)<50 GeV)

→reduce events from W+jets background

HLTtau paths

HLT_IsoMu21_eta2p1_LooseIsoPFTau20_Single L1 seeded by L1_SingleMu20er

HLT_IsoMu19_eta2p1_LooseIsoPFTau20 seeded by L1_Mu18er_Tau20er

HLT_DoubleMediumIsoPFTau35_Trk1_eta2p1_ Reg seeded by L1_DoubleIsoTau28er

HLT_LooselsoPFTau50_Trk30_eta2p1_MET90 seeded by L1_ETM80

MVA ID variables

MVA ID variables