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Active Matter

e Collection of self-propelled ‘active’ agents

» Generate directed motion consuming energy {rom
environment

 Intrinsically driven out of equilibrium

* Relevant in a wide range of disciplines

 Many examples : nature and
artificial




 Novel collective behaviour

- Swarming/flocking

- Motility induced phase separation

- Absence of well defined pressure
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# Even at the single particle level: Rich behaviour

- Non-Boltzmann stationary state

- Anomalous dynamics

Study a simple model ...




Active Brownian Particle (ABP)

e Overdamped particle moving with a constant speed v,

e Two dimensions: position (x,y) and orientation ¢

* Orientation undergoes rotational diffusion

. . ) ®
Langevin equations e Starting at
origin, oriented along x:
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Rotational diffusion Whit-é hoise
constant (delta-correlated)

[Bechinger et. al. Rev Mod Phys 2016]

[Cates & Tailleur, EPL 2013]
and manv more...




 Recast ABP dynamics

= &,(t) = vy cos ¢(t)
= Sy(t) = vosin ¢(t)

o Effective noise 1s different than white-noise

¢ = \/2Dg n,(t)

Correlated <§$( )é-a:( )) ~ Uge_DR|t_t’| -




Long time (t >> 1/D.) Short time (t << 1/D )

Diffusive, similar to
passive Brownian motion

Very different:
signature of activity

Effective diffusion constant =

‘and characterize ...



Short-time Regime (t << 1/D.,)

U.B., S. N. Majumdar, A. Rosso, G. Schehr, Phys. Rev. E 2018




Short-time: Anisotropy

« Effective equation for short-time t << 1/Dy

T = wgcos o(t) . 2
iy | (s 2w (12 )
¢ = V2Dg n4(t) Y X V@

Position
distribution

Analyze marginal distributions
(x,t) and P(y,t) separately

P(x,y;t)

th Integral techniques ...
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Exact probability distribution
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Short-time: P(y,t)
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« Mapping to Random Acceleration Process

e (Gaussian distribution

3 3y*
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(9,1 \/ 4R Dt eXp[ 4U8DRt3]

1 Variance:
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Summary so far...

e Strong signatures of activity at short-times
Anisotropy

Non-trivial position distribution

e Crossover to passive Brownian behaviour at
times larger than 1/Dy




Presence of external potential

« ABP diffusing in an external potential
— Numerical studies

- Experiments

e Strong signatures of activity at long-times: Non-
Boltzmann stationary state

e Crossover to Boltzmann-like state
[Takatori et. al., Nat. Comm. 2015]

[Pototsky & Stark, EPL 2012] [Solon Cates & Tailleur, EPJ Spl. Topics 2015]

ij feW exact results

[Malakar et. al., arXiv: 1902.04171]
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* 2d harmonic potential | U(z,y) = 5

e Langevin equation

T = —ux + vgcoso(t)
y = —py + vosin o(f)

¢ = \/2Dg 1,(t).

 Two competing time-scales: trap (1/p) and
rotational diffusion (1/Dg)

Passive Brownian particle — Ornstein-Uhlenbeck process
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Stationary state

e Crossover from single peak to delocalized ring
away from trap center




Position distribut

« Moment evolution equation

My = —Dr(k —1)*My; +voe "k My_1; +1 M)

« Difficult to solve 1n general, even 1n the stationary
state

o Limiting cases:

e Strongly passive: Dpr — 5or
e Strongly active : Dp -0~

Non-Boltzmann




Passive limit (D, |

 Radial distribution: Gaussian at all times

Prad (Ta t) =

Q;LDR

va(1 — e—2mt)

exp

;LDR’I"Q

R e )

o Stationary state given by large t limit

e Rotationally symmetric

Pstat (ZE, y)
3 -




S ] ve limil :ER )
 Time-dependent radial distribution

_ L vo(l —e™H)
Praa(r,t) = oo — e—ﬂt)(s {r .

The particle 1s likely to be away from the center of the trap, the distance growing with time
until ‘boundary’ is reached

e Stationary distribution: rotationally symmetric
for D, -0+




Conclusions

e Active Brownian motion in 2d
- Diffusive behaviour at long-times

- Non-trivial anisotropic short-time
properties

e Exact distribution at short-times

* ABP 1n presence of a trap
- Exact results i two limiting cases




Thank youl
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