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What is a spin glass?

LITTLE TIPSY SPIN GLASSES

Little Tipsy Spin Glasses (#3561) s9800  SoldOu

Out of Stock

DESCRIPTION GIFT INCLUDES

Serve and sip your favorite beverage with a unique stemless design that
allows each glass to oxygenate v

ile swirling and swiveling spill free. Hand

blown from lead free Italian crystal, each elegant little glass holds 3 ounces

and the set of four comes packaged in Olive & Cocoa® gift wrap with ribbon.
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Spin glass history

Classical example of spin glass: noble metals weakly diluted with transition metal
ions, coupled via the RKKY interaction,
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The EA model

Simplify to the essential properties, disorder and
frustration to yield the Edwards-Anderson (EA) model, ?
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where J; are quenched, random variables. * —\/\—

Coupling distributions
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Universality

A glass phase only exists at T = 0 for this model. Is the critical behavior the same for

both coupling distributions?

At finite temperatures:

Gaussian
vanishing energy gap a
continuous scaling
En T
v~ 3.6
n=20

entropy exponent

bimodal
finite gap 4/
“freezing”
& ~ exp(cT)?
v=0o0?v=428?
n>0?
fs=0.5



Degeneracies

At T = 0 physics is described by the ground states.
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Exponentially many ground states,
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Unique ground state.
Nos ~ exp(L%sp).



Phase diagrams

Finite-temperature transition in 3D, but spin-glass order only at T = 0 in 2D.
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Finite-temperature transition in 3D, but spin-glass order only at T = 0 in 2D.
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Zero temperature

Behavior at T = 0 is quite clearly not consistent.

Gaussian bimodal
unique ground state exponentially many ground states
stiffness exponent § ~ —0.3 0=0
domain-wall fractal dimension dr ~ 1.3 ?
entropy exponent fs=0.5

We should aim to:
o be able to determine ground states for large systems

o be able to sample degenerate ground states for the bimodal model



Matching on auxiliary graph

Use mapping of the Ising problem to minimum-cut:

—H = Jysisi= W+ W — WE = K— 2w,
(if)

o GS search again corresponds to
i T minim.um-weight perfect
matching problem

(Thomas & Middleton, 2007; Pardella &

M
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Liers, 2008)

- - ) o matching solution always
w(e) corresponds to spin configuration
for planar graphs
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o we use a windowing technique to
+ + also treat fully periodic
boundaries

o space complexity is O(V)




Windowing technique

Determine exact ground-states for fully periodic systems in polynomial time.




Ising spin glass in 2D

Complex energy landscape leads to slow relaxation: sizes restricted to L ~ 128 (MC)
or maybe L = 256 (GS techniques).

A newly developed combinatorial optimization method allows us to treat large
system sizes up to 10000 x 10 000 spins exactly (for T = 0).




Spin stiffness and zero-temperature scaling

Edwards-Anderson model: H = — Z<,»j> Jijsisj,  si=*£1

Ferromagnet (Peierls)

t

Spin glass (Bray/Moore, 1987)

Distribution of couplings evolving under
RG transformations, asymptotic width
scales as

JO) ~ L.

Spin-stiffness exponent 6 determines
lower critical dimension. For 6 < 0,

E~NTTY, v=—1/6.

Numerically, € can be determined from
inducing droplets or domain walls with a
change of boundary conditions,

AE = |Eap — Bp| ~ L°.




Average ground-state energy per spin.
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Defect energy.
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Fractal dimension

Fractal dimension of domain wall.
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Results

Perform calculations for periodic-free and periodic-periodic boundary conditions.

PFBC PPBC
—eo 1.3147876(7) | 1.314788(3)
0 -0.2793(3) -0.2788(11)
de 1.27319(9) 1.2732(5)

Results are fully consistent with each other.

Based on SLE and further assumptions, Amoruso et al. (2006) proposed

3

=1+ 150

dr = 1.27319(9) would imply 6 = —0.2546(9) which is not compatible with the direct
estimate.



Sampling degenerate states

How well does it work?
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Problems:
o breaking of degeneracies depends on cluster size

o clusters cannot be flipped independently
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Domain walls again

For the bimodal model, definition of domain wall is not unique.
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Fractal dimension

Uniform sampling makes a difference.
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Fractal dimension

Uniform sampling makes a difference.
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Finite-temperature transition in 3D, but spin-glass order only at T = 0 in 2D.
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o Gaussian and bimodal model are very different at T =0
o how could we connect (and hence understand) these cases?

o construct models with tunable degeneracy



The layered model

o Gaussian and bimodal model are very different at T = 0
o how could we connect (and hence understand) these cases?

o construct models with tunable degeneracy

Put m layers of bimodal couplings on each bond:
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The layered model

o Gaussian and bimodal model are very different at T = 0
o how could we connect (and hence understand) these cases?

o construct models with tunable degeneracy

Put m layers of bimodal couplings on each bond:
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J=+2 J=-4 J=0
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The layered model (cont’d)
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J=+2 J=-4 J=0
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ij
The probability distribution of 7" is then a binomial,

P =Y <rjn> p" (1 — pyo (JZT - m\;;)

Jj=0




The layered model (cont’d)

m
m m_
_Z‘Z’j SiSjs u = Z ij u
ij k=1

The probability distribution of 7" is then a binomial,

P =Y <T> p" (1 — pyo (JZT - m\;;)

Jj=0

The case m — oo corresponds to the Gaussian model, and m = 1 to the bimodal case.
The binomial model is hence an interpolation between these extremes.



How does the binomial model behave in terms of degeneracies?



The layered model: degeneracies

How does the binomial model behave in terms of degeneracies?

We can show rigorously that on d-dimensional hypercubic lattices the entropy per
spin of any energy level is bounded by

So < (v/d/2m+1/N)In2,

where N = L% is the number of spins.



The layered model: degeneracies

How does the binomial model behave in terms of degeneracies?

We can show rigorously that on d-dimensional hypercubic lattices the entropy per
spin of any energy level is bounded by

So < (v/d/2m+1/N)In2,

where N = L% is the number of spins.

Hence
o there is a unique ground-state pair for m — oo, N finite
o degenerate ground-state pairs are expected if N — 0o, m — oo with N/\/m
fixed.
The result depends on the order of taking limits.
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The layered model: defect energies

Model interpolates the different behaviors of m = 1 and m — oo in defect-energy
scaling.
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There is an m dependent crossover length L*(m).



The layered model: defect energies

Model interpolates the different behaviors of m = 1 and m — oo in defect-energy
scaling.
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There is an m dependent crossover length L*(m).



The layered model: crossover length
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Crossover length
L*(m) ~ m71/20 ~ m1.8

Model appears continuous for L < L*(m) and discrete for L > L*(m).



Conclusions

Domain walls:
o new techniques allow to study systems up to 10 000 x 10 000 spins
o windowing method enables ground-state calculations for toroidal graphs
o careful FSS analysis yields e, = —1.3147876(7), 8 = —0.2793(3) and

Qo
Qo
Qo

(*]

dr = 1.27319(9) for the Gaussian model

not consistent within error bars with df = 1+ 3/[4(3 + 0)]

cluster updating technique allows uniform sampling of degenerate ground states
0 = 0 and dr = 1.279(2) for bimodal model

additional results (not shown) for distributions

Layered model:

(%]

Qo
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m layers of bimodal couplings
continuous interpolation between bimodal and Gaussian model
can prove uniqueness of ground states in continuous limit,

So < (v/d/2m+1/N)In2

interpolating behavior of § with crossover length L*(m)
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