

Domain walls and layers in Ising spin glasses

Martin Weigel

Applied Mathematics Research Centre, Coventry University, Coventry, United Kingdom

6th Indian Statistical Physics Community Meeting
ICTS, Bangalore, February 16, 2019

H. Khoshbakht and MW, Phys. Rev. B 97, 064410 (2018)
M.-S. Vaezi, G. Ortiz, MW, and Z. Nussinov, Phys. Rev. Lett. 121, 080601 (2018)

What is a spin glass?

LITTLE TIPSY SPIN GLASSES

QTY

Little Tipsy Spin Glasses (#3561)

\$98.00

Sold Out

Out of Stock

★★★★★ 5.0 (5) Write a review

DESCRIPTION

GIFT INCLUDES

Serve and sip your favorite beverage with a unique stemless design that allows each glass to oxygenate while swirling and swiveling spill free. Hand blown from lead free Italian crystal, each elegant little glass holds 3 ounces and the set of four comes packaged in Olive & Cocoa® gift wrap with ribbon.

Share this product:

Email to a friend

[Enlarge](#)

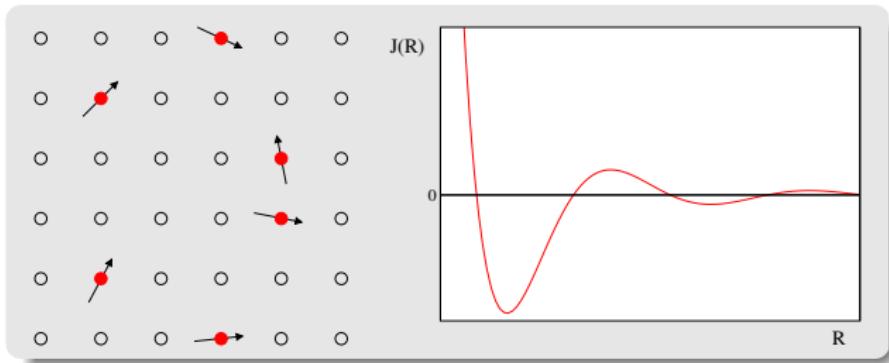
Spin glass history

Classical example of spin glass: noble metals weakly diluted with transition metal ions, coupled via the RKKY interaction,

$$J(R) = J_0 \frac{\cos(2k_F R + \phi_0)}{(k_F R)^3}$$

Emergent properties:

- no long-range order down to $T = 0$
- phase transition to short-range ordered, “glassy” phase
- diverging relaxation times, memory, rejuvenation etc.

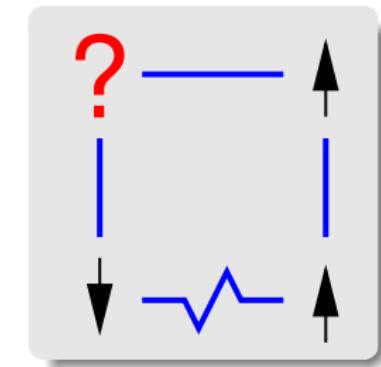


The EA model

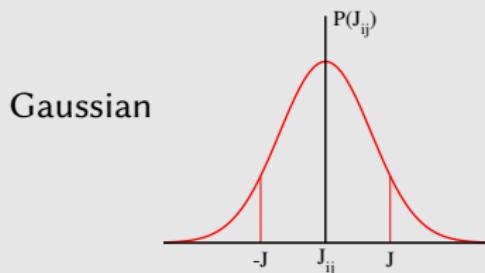
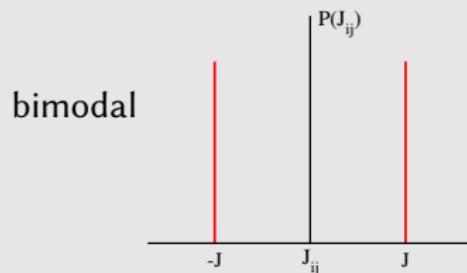
Simplify to the essential properties, **disorder** and **frustration** to yield the Edwards-Anderson (EA) model,

$$\mathcal{H} = -\frac{1}{2} \sum_{i,j} J_{ij} s_i s_j, \quad s_i = \pm 1$$

where J_{ij} are *quenched*, random variables.



Coupling distributions



Universality

A glass phase only exists at $T = 0$ for this model. Is the critical behavior the same for both coupling distributions?

At finite temperatures:

Gaussian

vanishing energy gap α

continuous scaling

$\xi \sim T^{-\nu}$

$\nu \approx 3.6$

$\eta = 0$

entropy exponent

bimodal

finite gap $4J$

“freezing”

$\xi \sim \exp(cT)$?

$\nu = \infty?$, $\nu = 4.8?$

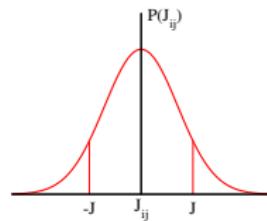
$\eta > 0?$

$\theta_S = 0.5$

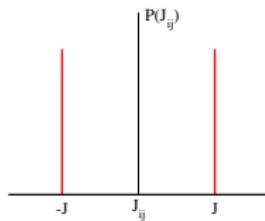
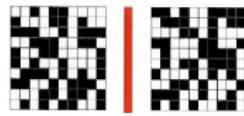
Degeneracies

At $T = 0$ physics is described by the ground states.

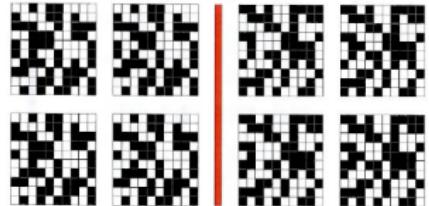
Gaussian



bimodal



Unique ground state.

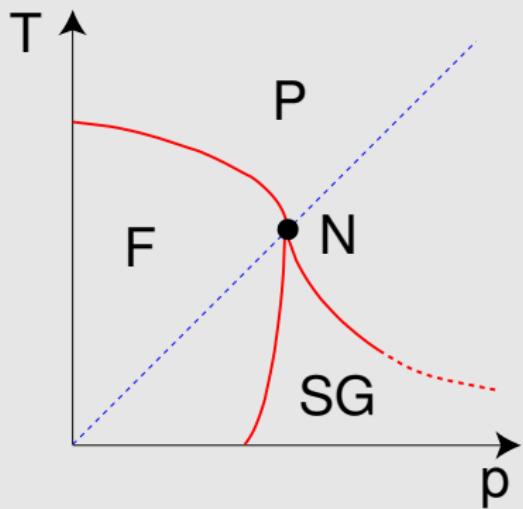
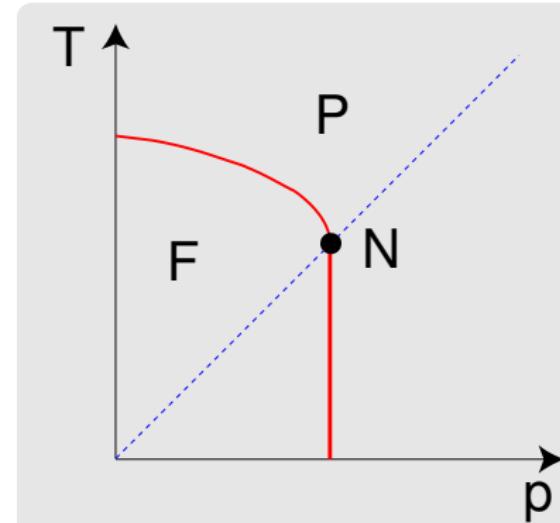


Exponentially many ground states,

$$N_{\text{GS}} \sim \exp(L^2 s_0).$$

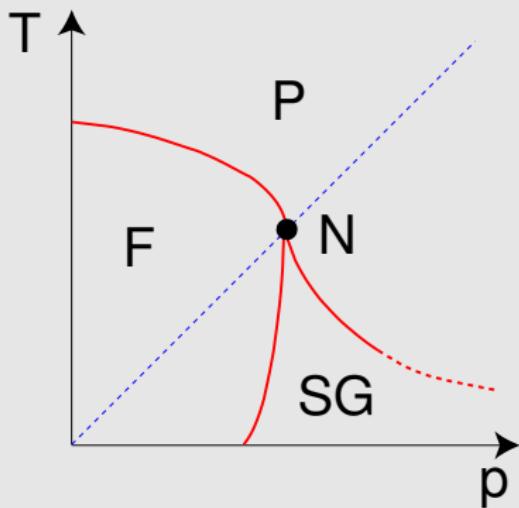
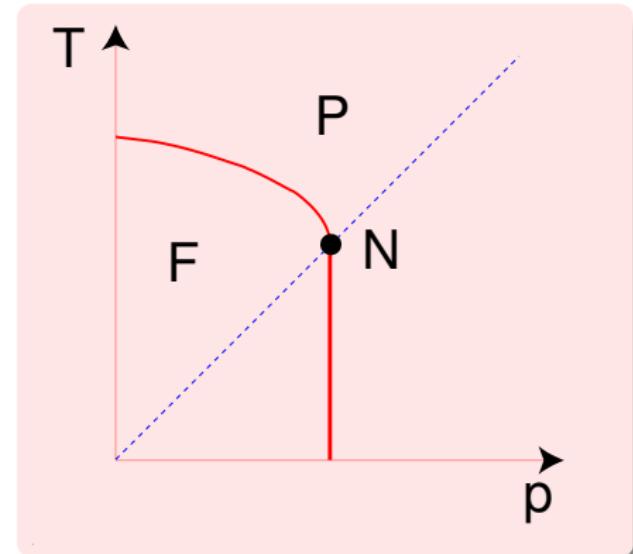
Phase diagrams

Finite-temperature transition in 3D, but spin-glass order only at $T = 0$ in 2D.



Phase diagrams

Finite-temperature transition in 3D, but spin-glass order only at $T = 0$ in 2D.



Zero temperature

Behavior at $T = 0$ is quite clearly not consistent.

Gaussian	bimodal
unique ground state	exponentially many ground states
stiffness exponent $\theta \approx -0.3$	$\theta = 0$
domain-wall fractal dimension $d_f \approx 1.3$?
entropy exponent	$\theta_S = 0.5$

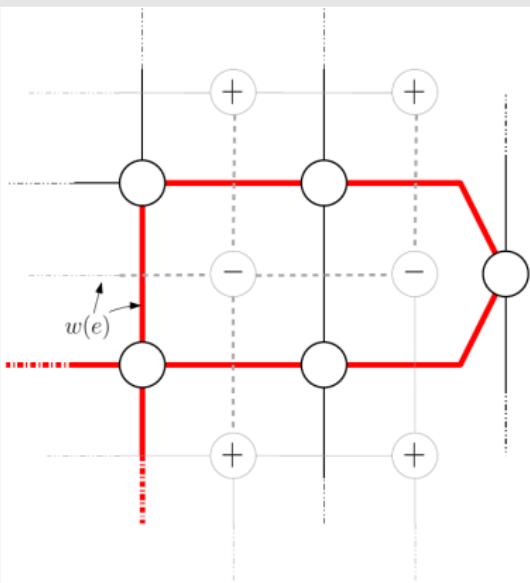
We should aim to:

- be able to **determine ground states** for large systems
- be able to **sample degenerate ground states** for the bimodal model

Matching on auxiliary graph

Use mapping of the Ising problem to minimum-cut:

$$-\mathcal{H} = \sum_{\langle ij \rangle} J_{ij} s_i s_j = W^+ + W^- - W^\pm = K - 2W^\pm,$$



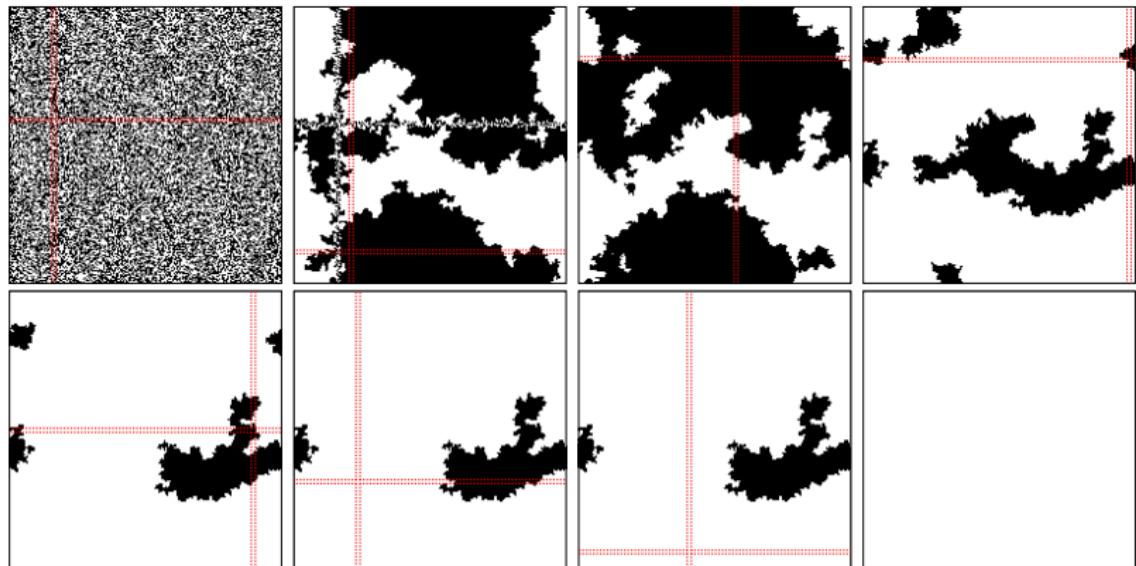
- GS search again corresponds to **minimum-weight perfect matching problem**

(Thomas & Middleton, 2007; Pardella & Liers, 2008)

- matching solution always corresponds to spin configuration for **planar** graphs
- we use a windowing technique to also treat fully periodic boundaries
- **space complexity is $O(V)$**

Windowing technique

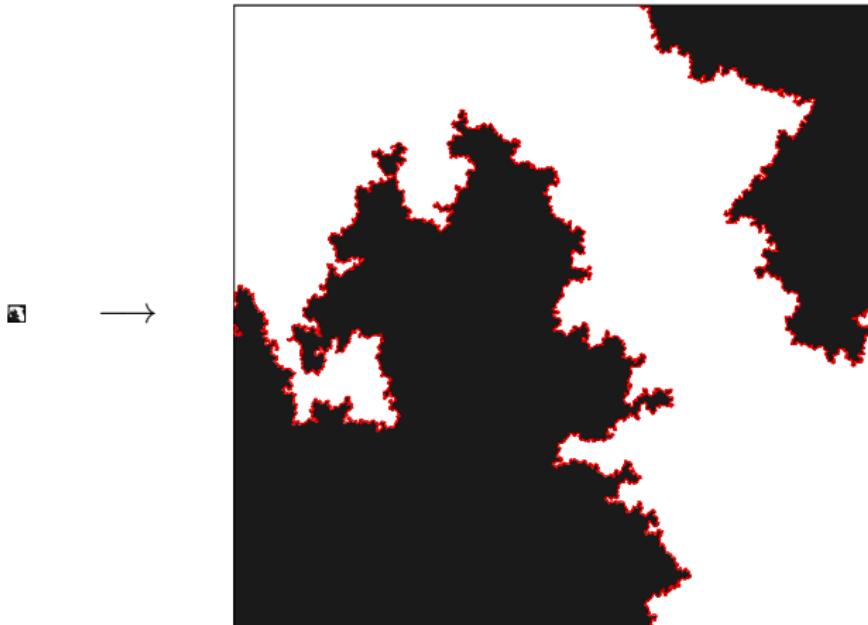
Determine exact ground-states for fully periodic systems in polynomial time.



Ising spin glass in 2D

Complex energy landscape leads to **slow relaxation**: sizes restricted to $L \approx 128$ (MC) or maybe $L = 256$ (GS techniques).

A newly developed **combinatorial optimization** method allows us to treat large system sizes up to $10\,000 \times 10\,000$ spins **exactly** (for $T = 0$).

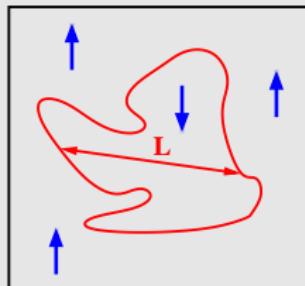


Spin stiffness and zero-temperature scaling

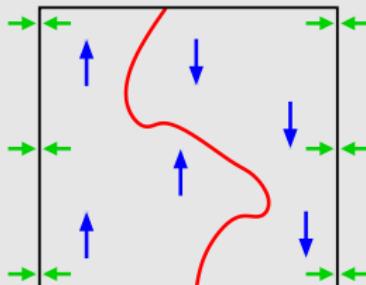
Edwards-Anderson model: $\mathcal{H} = - \sum_{\langle ij \rangle} J_{ij} s_i s_j, \quad s_i = \pm 1$

Ferromagnet

(Peierls)



$$\Delta E \sim L^{d-1}$$



Spin glass

(Bray/Moore, 1987)

Distribution of couplings evolving under RG transformations, asymptotic width scales as

$$J(L) \sim JL^{\theta(d)}.$$

Spin-stiffness exponent θ determines lower critical dimension. For $\theta < 0$,

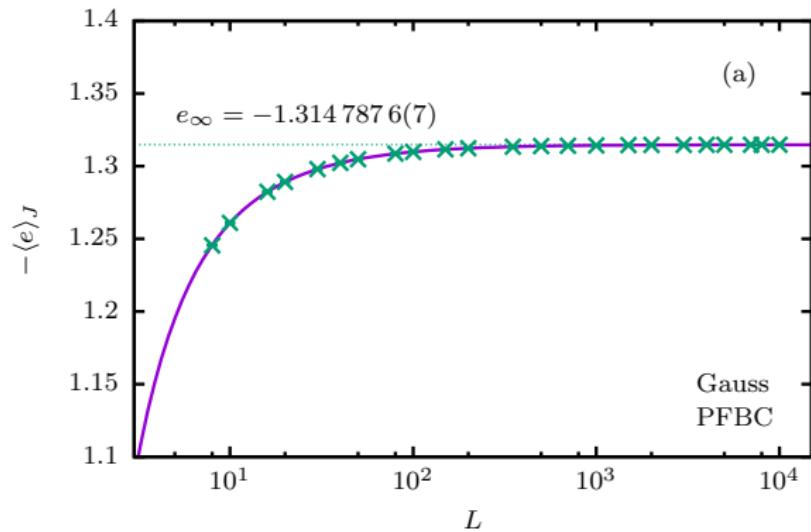
$$\xi \sim T^{-\nu}, \quad \nu = -1/\theta.$$

Numerically, θ can be determined from inducing droplets or domain walls with a change of *boundary conditions*,

$$\Delta E = |E_{AP} - E_P| \sim L^\theta.$$

Ground-state energy

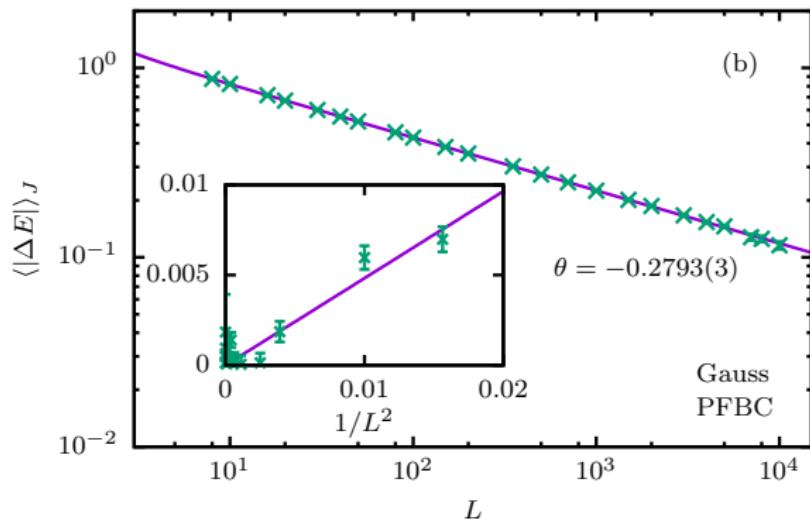
Average ground-state energy per spin.



$$\langle e(L) \rangle_J = e_\infty + \hat{A}_E L^{-(d-\theta)} + (\hat{C}_E - e_\infty/2)L^{-1} - (\hat{C}_E/2)L^{-2}$$

Defect energies

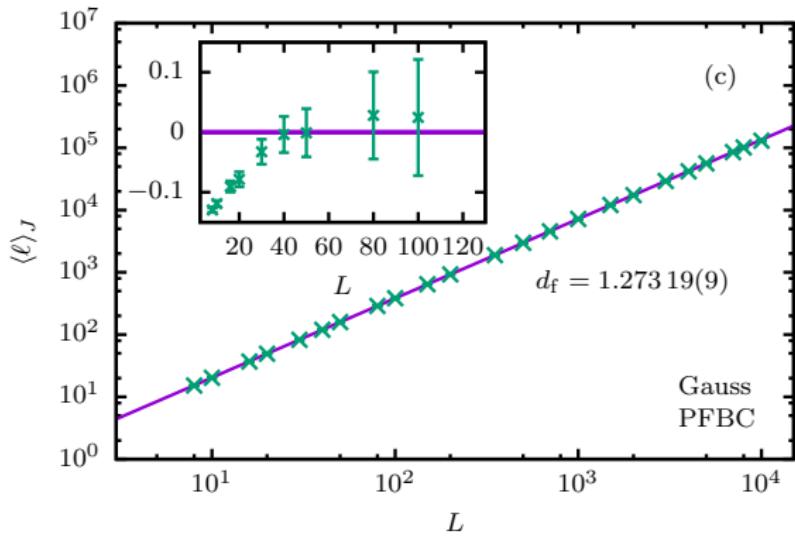
Defect energy.



$$\langle |\Delta E(L)| \rangle_J(L) = A_\theta L^\theta (1 + B_\theta L^{-\omega}) + \frac{C_\theta}{L} + \frac{D_\theta}{L^2} + \dots ,$$

Fractal dimension

Fractal dimension of domain wall.



$$\langle \ell \rangle_J(L) = A_\ell L^{d_f} (1 + B_\ell L^{-\omega}) + \frac{C_\ell}{L} + \frac{D_\ell}{L^2} + \dots$$

Results

Perform calculations for periodic-free and periodic-periodic boundary conditions.

	PFBC	PPBC
$-e_\infty$	1.3147876(7)	1.314788(3)
θ	-0.2793(3)	-0.2788(11)
d_f	1.27319(9)	1.2732(5)

Results are fully consistent with each other.

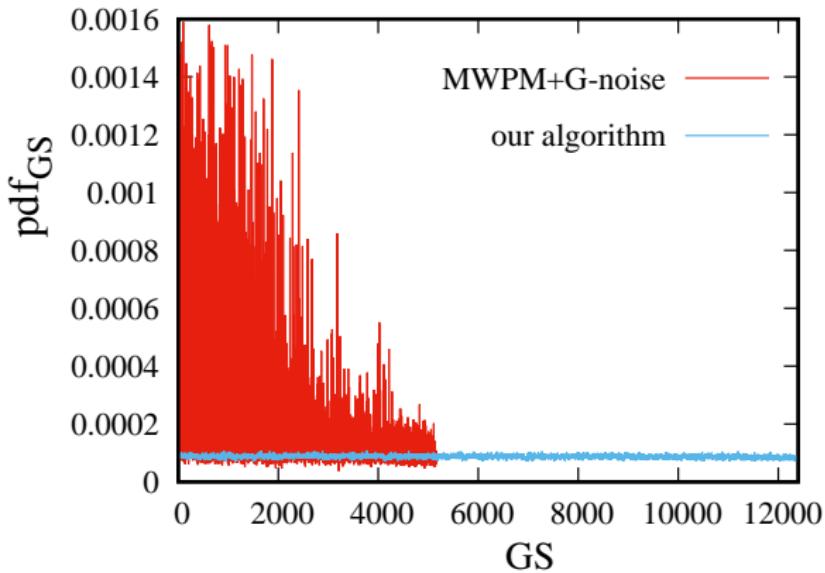
Based on SLE and further assumptions, Amoruso et al. (2006) proposed

$$d_f = 1 + \frac{3}{4(3 + \theta)}.$$

$d_f = 1.27319(9)$ would imply $\theta = -0.2546(9)$ which is **not compatible** with the direct estimate.

Sampling degenerate states

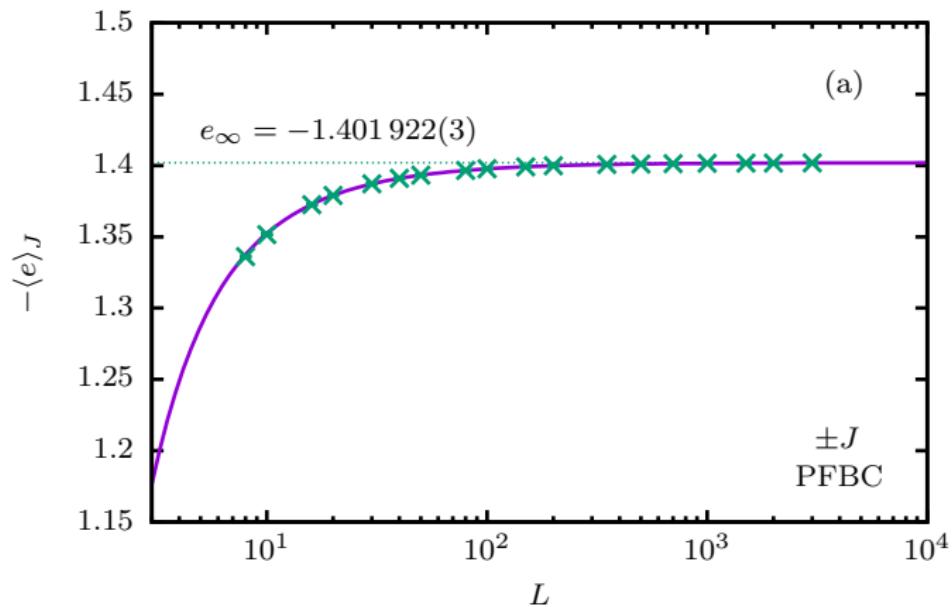
How well does it work?



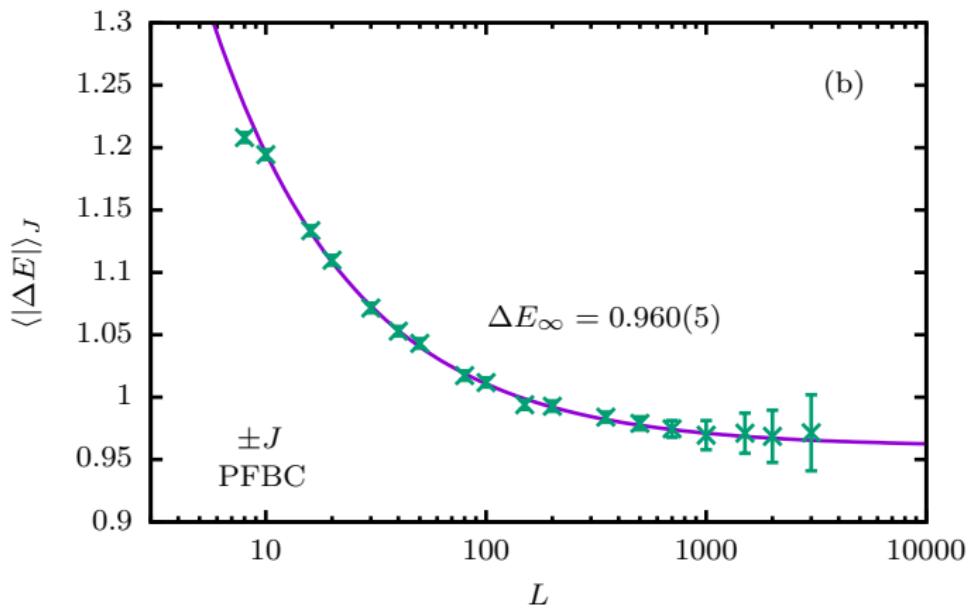
Problems:

- breaking of degeneracies depends on cluster size
- clusters cannot be flipped independently

Bimodal results



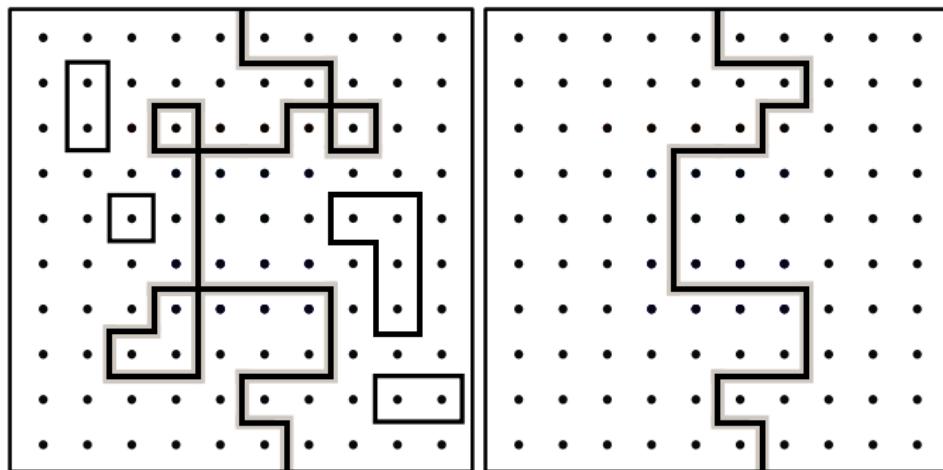
Bimodal results



$$\theta = 0$$

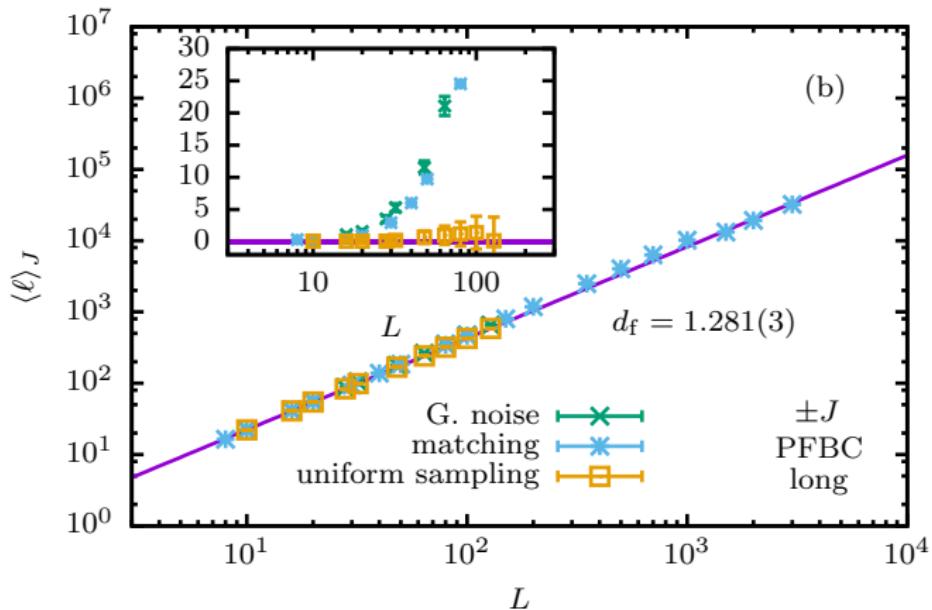
Domain walls again

For the bimodal model, definition of domain wall is not unique.



Fractal dimension

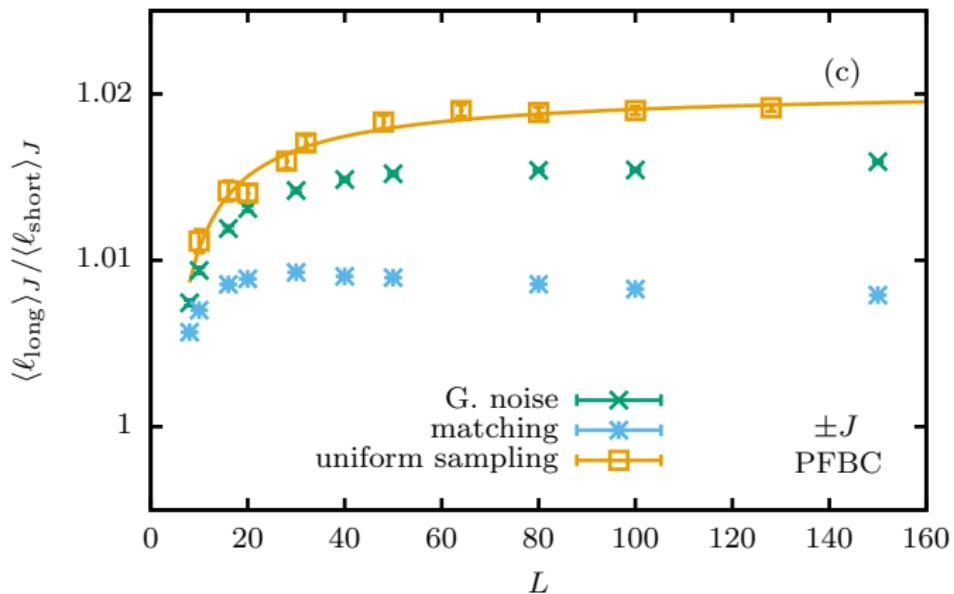
Uniform sampling makes a difference.



short walls: $d_f = 1.279(2)$, long walls: $d_f = 1.281(3)$

Fractal dimension

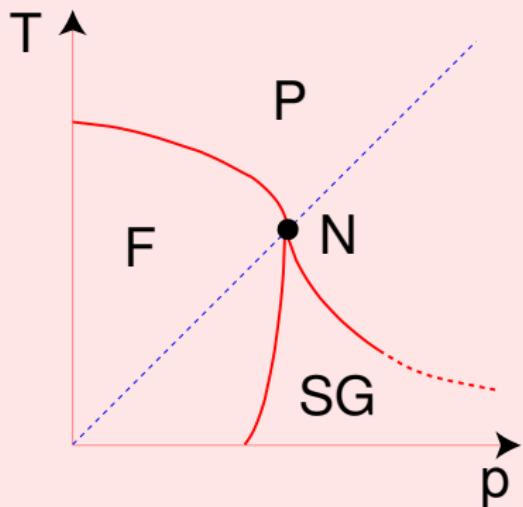
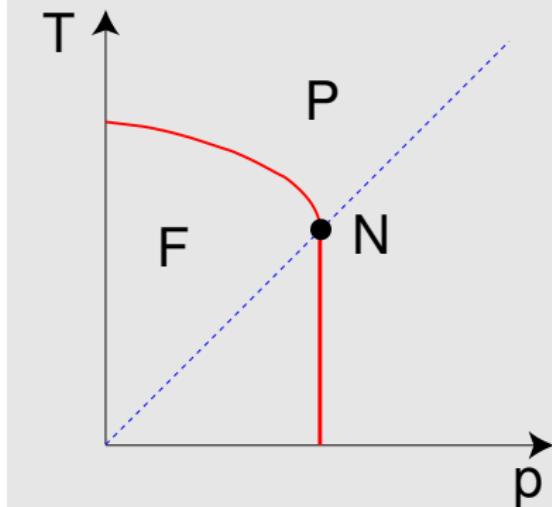
Uniform sampling makes a difference.



short walls: $d_f = 1.279(2)$, long walls: $d_f = 1.281(3)$

Phase diagrams

Finite-temperature transition in 3D, but spin-glass order only at $T = 0$ in 2D.



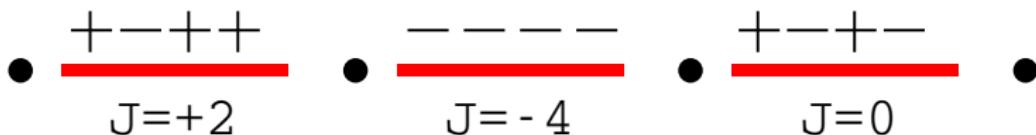
The layered model

- Gaussian and bimodal model are very different at $T = 0$
- how could we connect (and hence understand) these cases?
- construct models with **tunable degeneracy**

The layered model

- Gaussian and bimodal model are very different at $T = 0$
- how could we connect (and hence understand) these cases?
- construct models with **tunable degeneracy**

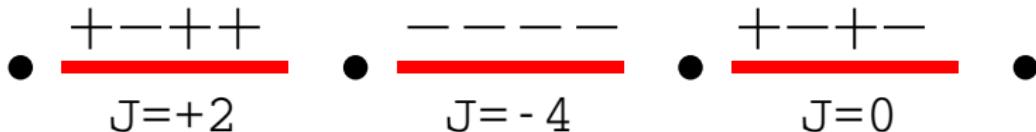
Put m layers of bimodal couplings on each bond:



The layered model

- Gaussian and bimodal model are very different at $T = 0$
- how could we connect (and hence understand) these cases?
- construct models with **tunable degeneracy**

Put m layers of bimodal couplings on each bond:

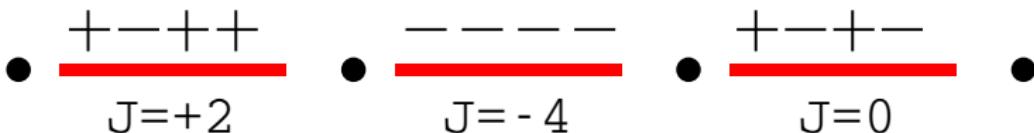


$$H_m = - \sum_{ij} \mathcal{J}_{ij}^m s_i s_j, \quad \mathcal{J}_{ij}^m \equiv \frac{1}{\sqrt{m}} \sum_{k=1}^m J_{ij}^{(k)}, \quad J_{ij}^{(k)} = \pm 1.$$

The layered model (cont'd)

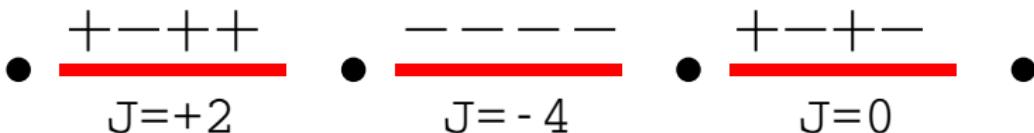


The layered model (cont'd)



$$H_m = - \sum_{ij} \mathcal{J}_{ij}^m s_i s_j, \quad \mathcal{J}_{ij}^m \equiv \frac{1}{\sqrt{m}} \sum_{k=1}^m J_{ij}^{(k)}, \quad J_{ij}^{(k)} = \pm 1.$$

The layered model (cont'd)

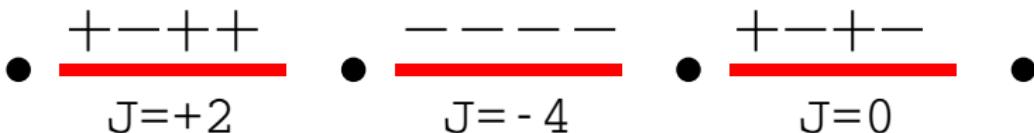


$$H_m = - \sum_{ij} \mathcal{J}_{ij}^m s_i s_j, \quad \mathcal{J}_{ij}^m \equiv \frac{1}{\sqrt{m}} \sum_{k=1}^m J_{ij}^{(k)}, \quad J_{ij}^{(k)} = \pm 1.$$

The probability distribution of \mathcal{J}_{ij}^m is then a *binomial*,

$$\tilde{P}(\mathcal{J}_{\alpha}^m) = \sum_{j=0}^m \binom{m}{j} p^{m-j} (1-p)^j \delta\left(\mathcal{J}_{\alpha}^m - \frac{m-2j}{\sqrt{m}}\right)$$

The layered model (cont'd)



$$H_m = - \sum_{ij} \mathcal{J}_{ij}^m s_i s_j, \quad \mathcal{J}_{ij}^m \equiv \frac{1}{\sqrt{m}} \sum_{k=1}^m J_{ij}^{(k)}, \quad J_{ij}^{(k)} = \pm 1.$$

The probability distribution of \mathcal{J}_{ij}^m is then a *binomial*,

$$\tilde{P}(\mathcal{J}_{\alpha}^m) = \sum_{j=0}^m \binom{m}{j} p^{m-j} (1-p)^j \delta\left(\mathcal{J}_{\alpha}^m - \frac{m-2j}{\sqrt{m}}\right)$$

The case $m \rightarrow \infty$ corresponds to the Gaussian model, and $m = 1$ to the bimodal case. The binomial model is hence an **interpolation** between these extremes.

The layered model: degeneracies

How does the binomial model behave in terms of degeneracies?

The layered model: degeneracies

How does the binomial model behave in terms of degeneracies?

We can show rigorously that on d -dimensional hypercubic lattices the entropy per spin of *any* energy level is bounded by

$$S_0 \leq (\sqrt{d/2m} + 1/N) \ln 2,$$

where $N = L^d$ is the number of spins.

The layered model: degeneracies

How does the binomial model behave in terms of degeneracies?

We can show rigorously that on d -dimensional hypercubic lattices the entropy per spin of *any* energy level is bounded by

$$S_0 \leq (\sqrt{d/2m} + 1/N) \ln 2,$$

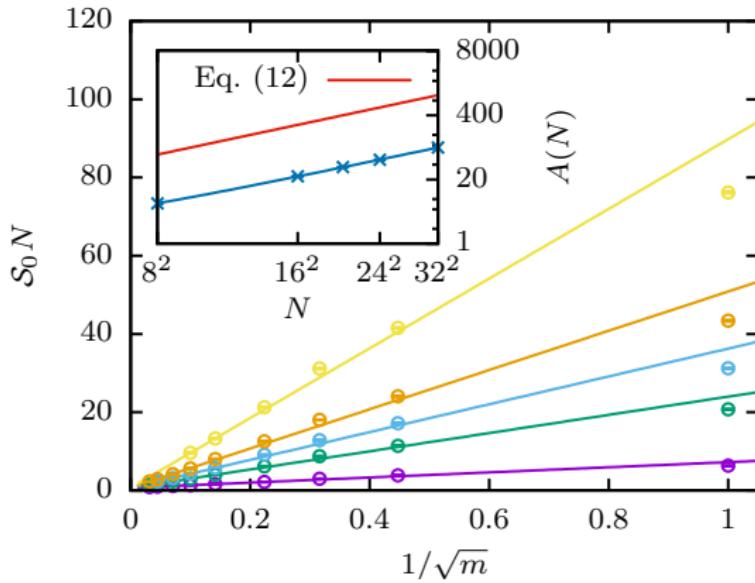
where $N = L^d$ is the number of spins.

Hence

- there is a **unique ground-state pair** for $m \rightarrow \infty$, N finite
- **degenerate ground-state pairs** are expected if $N \rightarrow \infty$, $m \rightarrow \infty$ with N/\sqrt{m} fixed.

The result depends on the order of taking limits.

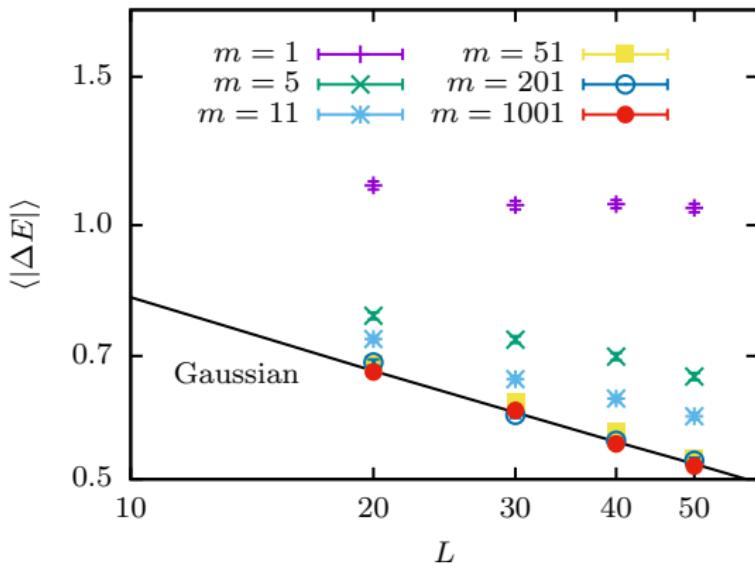
The layered model: entropy



$$S_0 N = \left(\frac{A(N)}{\sqrt{m}} + 1 \right) \ln 2, \quad A(N) = aN + b.$$

The layered model: defect energies

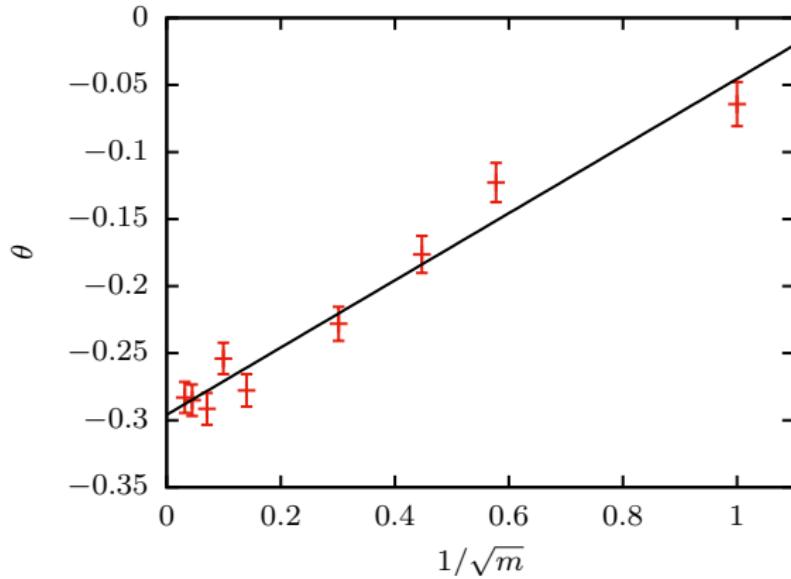
Model interpolates the different behaviors of $m = 1$ and $m \rightarrow \infty$ in defect-energy scaling.



There is an m dependent crossover length $L^*(m)$.

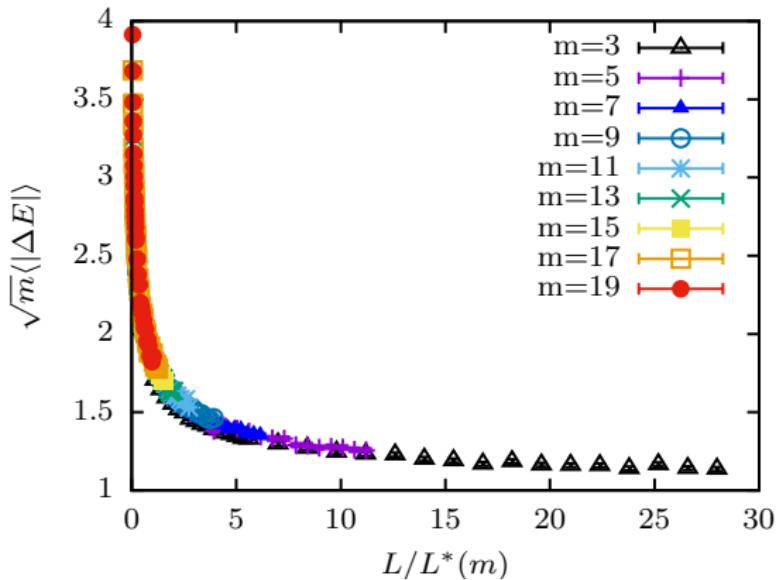
The layered model: defect energies

Model interpolates the different behaviors of $m = 1$ and $m \rightarrow \infty$ in defect-energy scaling.



There is an m dependent crossover length $L^*(m)$.

The layered model: crossover length



Crossover length

$$L^*(m) \sim m^{-1/2\theta} \approx m^{1.8}$$

Model appears continuous for $L < L^*(m)$ and discrete for $L > L^*(m)$.

Conclusions

Domain walls:

- new techniques allow to study systems up to $10\,000 \times 10\,000$ spins
- windowing method enables ground-state calculations for toroidal graphs
- careful FSS analysis yields $e_\infty = -1.3147876(7)$, $\theta = -0.2793(3)$ and $d_f = 1.27319(9)$ for the Gaussian model
- not consistent within error bars with $d_f = 1 + 3/[4(3 + \theta)]$
- cluster updating technique allows uniform sampling of degenerate ground states
- $\theta = 0$ and $d_f = 1.279(2)$ for bimodal model
- additional results (not shown) for distributions

Layered model:

- m layers of bimodal couplings
- continuous interpolation between bimodal and Gaussian model
- can prove uniqueness of ground states in continuous limit,

$$S_0 \leq (\sqrt{d/2m} + 1/N) \ln 2$$

- interpolating behavior of θ with crossover length $L^*(m)$

H. Khoshbakht and MW, Phys. Rev. B 97, 064410 (2018)

M. Vaezi, G. Ortiz, MW, and Z. Nussinov, Phys. Rev. Lett. 121, 080601 (2018)