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What is a spin glass?



Spin glass history

Classical example of spin glass: noble metals weakly diluted with transition metal
ions, coupled via the RKKY interaction,

J(R) = J0
cos(2kFR + φ0)

(kFR)3

Emergent properties:
no long-range order
down to T = 0

phase transition to
short-range ordered,
“glassy” phase

diverging relaxation
times, memory,
rejuvenation etc. R

0

J(R)



The EA model

Simplify to the essential properties, disorder and
frustration to yield the Edwards-Anderson (EA) model,

H = −1
2

∑
i,j

Jij sisj, si = ±1

where Jij are quenched, random variables.

?

Coupling distributions

Gaussian

-J JJij

P(Jij)

bimodal

-J JJij

P(Jij)



Universality

A glass phase only exists at T = 0 for this model. Is the critical behavior the same for
both coupling distributions?

At finite temperatures:

Gaussian bimodal

vanishing energy gap a finite gap 4J

continuous scaling “freezing”

ξ ∼ T−ν ξ ∼ exp(cT )?

ν ≈ 3.6 ν =∞?, ν = 4.8?

η = 0 η > 0?

entropy exponent θS = 0.5

A number of results suggesting universality, but no full consensus yet.



Degeneracies

At T = 0 physics is described by the ground states.

Gaussian

-J JJij

P(Jij)

bimodal

-J JJij

P(Jij)

Unique ground state.
Exponentially many ground states,

NGS ∼ exp(L2s0).



Phase diagrams

Finite-temperature transition in 3D, but spin-glass order only at T = 0 in 2D.
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Zero temperature

Behavior at T = 0 is quite clearly not consistent.

Gaussian bimodal

unique ground state exponentially many ground states

sti�ness exponent θ ≈ −0.3 θ = 0

domain-wall fractal dimension df ≈ 1.3 ?

entropy exponent θS = 0.5

We should aim to:

be able to determine ground states for large systems

be able to sample degenerate ground states for the bimodal model



Matching on auxiliary graph

Use mapping of the Ising problem to minimum-cut:

−H =
∑
〈ij〉

Jij sisj = W + + W− −W± = K − 2W±,

GS search again corresponds to
minimum-weight perfect
matching problem
(Thomas & Middleton, 2007; Pardella &

Liers, 2008)

matching solution always
corresponds to spin configuration
for planar graphs

we use a windowing technique to
also treat fully periodic
boundaries

space complexity is O(V )



Windowing technique

Determine exact ground-states for fully periodic systems in polynomial time.



Ising spin glass in 2D

Complex energy landscape leads to slow relaxation: sizes restricted to L ≈ 128 (MC)
or maybe L = 256 (GS techniques).

A newly developed combinatorial optimization method allows us to treat large
system sizes up to 10 000× 10 000 spins exactly (for T = 0).

−→



Spin sti�ness and zero-temperature scaling

Edwards-Anderson model: H = −
∑
〈ij〉 Jij sisj, si = ±1

Ferromagnet (Peierls)

L

∆E ∼ Ld−1

Spin glass (Bray/Moore, 1987)

Distribution of couplings evolving under
RG transformations, asymptotic width
scales as

J(L) ∼ JLθ(d).

Spin-sti�ness exponent θ determines
lower critical dimension. For θ < 0,

ξ ∼ T−ν , ν = −1/θ.

Numerically, θ can be determined from
inducing droplets or domain walls with a
change of boundary conditions,

∆E = |EAP − EP| ∼ Lθ.



Ground-state energy

Average ground-state energy per spin.
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Defect energies

Defect energy.
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Fractal dimension

Fractal dimension of domain wall.
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Results

Perform calculations for periodic-free and periodic-periodic boundary conditions.

PFBC PPBC
−e∞ 1.3147876(7) 1.314788(3)
θ -0.2793(3) -0.2788(11)
df 1.27319(9) 1.2732(5)

Results are fully consistent with each other.

Based on SLE and further assumptions, Amoruso et al. (2006) proposed

df = 1 +
3

4(3 + θ)
.

df = 1.27319(9) would imply θ = −0.2546(9) which is not compatible with the direct
estimate.



Sampling degenerate states

How well does it work?
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Problems:

breaking of degeneracies depends on cluster size

clusters cannot be flipped independently



Bimodal results
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Bimodal results
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Domain walls again

For the bimodal model, definition of domain wall is not unique.



Fractal dimension

Uniform sampling makes a di�erence.
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Fractal dimension

Uniform sampling makes a di�erence.
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Phase diagrams

Finite-temperature transition in 3D, but spin-glass order only at T = 0 in 2D.
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The layered model

Gaussian and bimodal model are very di�erent at T = 0

how could we connect (and hence understand) these cases?

construct models with tunable degeneracy

Put m layers of bimodal couplings on each bond:

J=+2 J=­4 J=0

Hm = −
∑
ij

J m
ij sisj, J m

ij ≡
1√
m

m∑
k=1

J(k)
ij , J(k)

ij = ±1.
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The layered model (cont’d)

J=+2 J=­4 J=0

Hm = −
∑
ij

J m
ij sisj, J m

ij ≡
1√
m

m∑
k=1

J(k)
ij , J(k)

ij = ±1.

The probability distribution of J m
ij is then a binomial,

P̃(J m
α ) =

m∑
j=0

(
m
j

)
pm−j(1− p)jδ

(
J m
α −

m− 2j√
m

)
The case m→∞ corresponds to the Gaussian model, and m = 1 to the bimodal case.
The binomial model is hence an interpolation between these extremes.
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The layered model: degeneracies

How does the binomial model behave in terms of degeneracies?

We can show rigorously that on d-dimensional hypercubic la�ices the entropy per
spin of any energy level is bounded by

S0 ≤ (
√

d/2m + 1/N) ln 2,

where N = Ld is the number of spins.

Hence

there is a unique ground-state pair for m→∞, N finite

degenerate ground-state pairs are expected if N →∞, m→∞ with N/
√
m

fixed.

The result depends on the order of taking limits.
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The layered model: entropy
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The layered model: defect energies

Model interpolates the di�erent behaviors of m = 1 and m→∞ in defect-energy
scaling.
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The layered model: defect energies

Model interpolates the di�erent behaviors of m = 1 and m→∞ in defect-energy
scaling.
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The layered model: crossover length
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Conclusions

Domain walls:
new techniques allow to study systems up to 10 000× 10 000 spins
windowing method enables ground-state calculations for toroidal graphs
careful FSS analysis yields e∞ = −1.3147876(7), θ = −0.2793(3) and
df = 1.27319(9) for the Gaussian model
not consistent within error bars with df = 1 + 3/[4(3 + θ)]
cluster updating technique allows uniform sampling of degenerate ground states
θ = 0 and df = 1.279(2) for bimodal model
additional results (not shown) for distributions

Layered model:
m layers of bimodal couplings
continuous interpolation between bimodal and Gaussian model
can prove uniqueness of ground states in continuous limit,

S0 ≤ (
√
d/2m + 1/N) ln 2

interpolating behavior of θ with crossover length L∗(m)
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