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Anderson localization
Single-particle localization (Anderson 1958) 
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à Transport in finite system of linear dimension ;
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Diffusive metal (Ohm’s law) Insulator

Conductance à



‘Gang of four’, E. Abrahams et al. (1979)
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o All states localized in 1d

and 2d.
o Critical point with scale

invariant conductance "<
in 3d.
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Anderson localization is not limited to random systems

Quasiperiodic systems can have localized states and metal-insulator 
transitions, even in 1d
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1d Aubry-Andre model
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o Deterministic but never repeating

o Disorder averaging ≡ Averaging over ensemble of :



Self-dual Critical point (" = 1)
&' = 1

All states
delocalized

Ballistic transport

All states
localized

&

Self-similar critical states

( ) ∝ )+,- g ) ∼ exp(−)/5)

Ostlund et al. (1983), Ostlund & Pandit (1984), Kohmoto (1983), ..

Real space Momentum space Duality

1d Aubry-Andre model



Self-dual generalizations of Aubry-Andre model to higher dimensions
Devakul & Huse, Phys. Rev. B 96 (2017) 
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Diffusive to localized transition
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*Same as 3d Anderson transition

“Higher dimensional Aubry-Andre model”



Could there be a single-parameter scaling description of 
metal-insulator transition in quasiperiodic systems?

o Is there a well-defined !-function a la ‘Gang of Four’?

o Nature of transport at the critical point and its dependence on dimension?

" # ∝ #% Ø Diffusive, & = ( − 2 ?
Ø Ballistic, & = ( − 1 ?
Ø Subdiffusive, & < ( − 2 ?
Ø Superdiffusive, ( − 2 < & < ( − 1 ?

ü 1d Aubry-Andre à Subdiffusive at ‘high temperatures’ 
Purkayastha et al. (2017, 2018), Varma et al. (2017)

o What happens in higher dimensions?

o Does having same critical exponent - as 3d Anderson imply
single-parameter scaling for 3d Aubry-Andre?
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Zero-temperature conductance

Ø ‘Gang of Four’ à Thouless conductance
(‘Closed system conductance’) %8(:) ∼

=>:
=Φ>
@AØ Open-system (Landauer) conductance

%,(:)ß Recursive Green’s function 
method



Ø No single-parameter scaling in 1d and 2d quasiperiodic model
One dimension

!" #, % ∝ %'())

Critical point

Open system

o Even typical conductances are 
non-monotonic function of %

à +-function ill defined
strictly no single-parameter scaling

+-function from overall scaling à

Closed system

Critical point

Localized

Ballistic



!-function from overall scaling à

o !-function jumps discontinuously at the transition

o No one-parameter scaling collapse.
o Multifractal fluctuations of "# as a function of $
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Ø Similar story in 2d, no single parameter scaling

Superdiffusive

Subdiffusive critical state

Localized
Non-monotonic !"($)
à ill-defined &-function 

o Discontinuous jump of overall &-
function across the transition

*System sizes up to 1000)

Open system



Ø Approximate single-parameter scaling in 3d quasiperiodic system 

o Continuous and monotonic 
!-function across the diffusive-

localized transition

o No sharp diffusive-ballistic 
transition in open system,

Crossover à
Diffusive à Superdiffusive à Ballistic
à Breakdown of duality

Open system

"#

Single-parameter scaling à

$ ≃ 1.60 ± 0.04



Why care about localization in quasiperiodic systems?

o Experimental realizations of MBL in cold atomic systems ß 1d Aubry

Andre + interaction

o Distinct universality classes for MBL transition in 1d random and 

quasiperiodic systems.

o MBL is more robust in quasiperiodic systems than in the random systems 

due to lack of rare regions à Possibility of MBL in higher dimensions

Summary and outlook

o Violation of single-parameter scaling in 1d and 2d Aubry-Andre and 

the way it fails.

o Approximate single-parameter scaling in 3d.

o Subdiffusive critical states in 1d, 2d and 3d.

Theory, e.g. RG, for higher-dimensional quasiperiodic systems? 
Effect of interaction and many-body localization (MBL)? 


