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Anderson localization
Single-particle localization (Anderson 1958)
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Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions

'Gang of four', E. Abrahams et al. (1979)
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Anderson localization is not limited to random systems

Quasiperiodic systems can have localized states and metal-insulator

transitions, even in 1d

1d Aubry-Andre model
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e.g. b =

n

Fibonacci numbers, F, = 1,2,3,5, ...

o Deterministic but never repeating

o Disorder averaging = Averaging over ensemble of ¢



1d Aubry-Andre model

Self-similar critical states
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Ostlund et al. (1983), Ostlund & Pandit (1984), Kohmoto (1983), ..



Self-dual generalizations of Aubry-Andre model to higher dimensions

Devakul & Huse, Phys. Rev. B 96 (2017)

Three dimensions
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"Higher dimensional Aubry-Andre model”

Diffusive to localized transition

(r) § ~ V- Vc)_v

v =1.6
*Same as 3d Anderson transition



Could there be a single-parameter scaling description of
metal-insulator transition in quasiperiodic systems?

o s there a well-defined g-function a la ‘Gang of Four'?

o Nature of transport at the critical point and its dependence on dimension?
» Diffusive,a =d —2 ?

» Ballistic,a =d —17?

» Subdiffusive, a <d — 2 ?
» Superdiffusive,d -2 <a<d—-17

g(L) o« L*

v" 1d Aubry-Andre - Subdiffusive at ‘high femperatures’
Purkayastha et al. (2017, 2018), Varma et al. (2017)

o What happens in higher dimensions?

o Does having same critical exponent v as 3d Anderson imply
single-parameter scaling for 3d Aubry-Andre?
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» No single-parameter scaling in 1d and
One dimension
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o Even typical conductances are
non-monotonic function of L

- [-function ill defined
strictly no single-parameter scaling

B-function from overall scaling >



B-function from overall scaling >
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o f-function jumps discontinuously at the transition

o No one-parameter scaling collapse.
o Multifractal fluctuations of g as a function of L
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» Similar story in 2d, no single parameter scaling
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» Approximate single-parameter scaling in 3d quasiperiodic system

Open system Single-parameter scaling >
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Summary and outlook

o Violation of single-parameter scaling in 1d and 2d Aubry-Andre and

the way it fails.
o Approximate single-parameter scaling in 3d.
o Subdiffusive critical states in 1d, 2d and 3d.

Theory, e.g. RG, for higher-dimensional quasiperiodic systems?
Effect of interaction and many-body localization (MBL)?

Why care about localization in quasiperiodic systems?

o Experimental realizations of MBL in cold atomic systems < 1d Aubry
Andre + interaction

o Distinct universality classes for MBL transition in 1d random and
quasiperiodic systems.

o MBL is more robust in quasiperiodic systems than in the random systems
due to lack of rare regions - Possibility of MBL in higher dimensions



