

Transport and the breakdown of single-parameter scaling at the localization transition in quasiperiodic systems

Sumilan Banerjee

Indian Institute of Science

6th Indian Statistical Physics Community Meeting,
ICTS, Bangalore, February 15, 2018

Supported by

- The Infosys Foundation
- DST, India

Jagannath Sutradhar (IISc)

Subroto Mukerjee (IISc)

arXiv:1810.12931 (2018)

Rahul Pandit (IISc)

Anderson localization

Single-particle localization (Anderson 1958)

$$\mathcal{H} = -t \sum_{\langle ij \rangle} (c_i^\dagger c_j + h.c.) - \sum_i \epsilon_i n_i$$

$$\text{Random} \rightarrow \epsilon_i \in [-W, W]$$

Two distinct possibilities →

Extended states

$$|\psi(r)|^2 \sim \frac{1}{L^d}$$

Critical point
($d \geq 3$)
 W_c, ϵ_c

Localized states

$$|\psi(r)|^2 \sim \frac{e^{-\frac{r}{\xi}}}{\xi^d}$$

$$W, \epsilon$$

→ Transport in finite system of linear dimension L

Conductance → $G(L) = \sigma L^{d-2}$

Diffusive metal (Ohm's law)

$$G(L) \sim G_0 \exp(-L/\xi)$$

Insulator

Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions

'Gang of four', E. Abrahams et al. (1979)

 β function \rightarrow

$$\frac{d \ln(g(L))}{d \ln L} = \beta(g)$$

(continuous and monotonic) function of dimensionless conductance $g = G/(e^2/h)$ only

- All states localized in 1d and 2d.
- Critical point with scale invariant conductance g_c in 3d.

Anderson localization is not limited to random systems

Quasiperiodic systems can have localized states and metal-insulator transitions, *even in 1d*

1d Aubry-Andre model

$$\mathcal{H} = -t \sum_{\langle ij \rangle} (c_i^\dagger c_j + h.c.) - \sum_i \epsilon_i n_i$$

b , irrational number,

$$\text{e.g. } b = \frac{\sqrt{5}-1}{2} = \lim_{n \rightarrow \infty} \frac{F_{n-1}}{F_n}$$

Fibonacci numbers, $F_n = 1, 2, 3, 5, \dots$

- Deterministic but never repeating
- Disorder averaging \equiv Averaging over ensemble of ϕ

1d Aubry-Andre model

Self-similar critical states

All states
delocalized

Ballistic transport

$$g(L) \propto L^{d-1}$$

All states
localized

$$g(L) \sim \exp(-L/\xi)$$

Self-dual Critical point ($d = 1$)

$$V_c = 1$$

Momentum space

← Duality →

Real space

V

Ostlund et al. (1983), Ostlund & Pandit (1984), Kohmoto (1983), ..

Self-dual generalizations of Aubry-Andre model to higher dimensions

Devakul & Huse, Phys. Rev. B 96 (2017) "Higher dimensional Aubry-Andre model"

Three dimensions

Diffusive to localized transition

$$\xi \sim (V - V_c)^{-\nu}$$

$$\nu \simeq 1.6$$

*Same as 3d Anderson transition

Could there be a single-parameter scaling description of metal-insulator transition in quasiperiodic systems?

- Is there a well-defined β -function *a la 'Gang of Four'*?
- Nature of transport at the critical point and its dependence on dimension?

$$g(L) \propto L^\alpha$$

- Diffusive, $\alpha = d - 2$?
- Ballistic, $\alpha = d - 1$?
- Subdiffusive, $\alpha < d - 2$?
- Superdiffusive, $d - 2 < \alpha < d - 1$?

- ✓ 1d Aubry-Andre \rightarrow Subdiffusive at 'high temperatures'

Purkayastha et al. (2017, 2018), Varma et al. (2017)

- What happens in higher dimensions?
- Does having same critical exponent ν as 3d Anderson imply single-parameter scaling for 3d Aubry-Andre?

Zero-temperature conductance

- ‘Gang of Four’ → Thouless conductance
('Closed system conductance')
- Open-system (Landauer) conductance

$$g_T(E) \sim \frac{\left(\frac{\partial^2 E}{\partial \Phi^2}\right)}{\delta_E}$$

$g_L(E) \leftarrow$ Recursive Green’s function method

➤ No single-parameter scaling in 1d and 2d quasiperiodic model

One dimension

Closed system

- Even typical conductances are **non-monotonic function** of L
- β -function ill defined
strictly no single-parameter scaling

β -function from overall scaling →

β -function from overall scaling \rightarrow

- β -function jumps discontinuously at the transition
- No one-parameter scaling collapse.
- Multifractal fluctuations of g_T as a function of L

➤ Similar story in 2d, no single parameter scaling

Superdiffusive

Subdiffusive critical state

Localized

Non-monotonic $g_L(L)$
→ ill-defined β -function

- Discontinuous jump of overall β -function across the transition

*System sizes up to 1000^2

➤ *Approximate single-parameter scaling in 3d quasiperiodic system*

Open system

Single-parameter scaling →

- Continuous and monotonic β -function across the diffusive-localized transition
- No sharp diffusive-ballistic transition in open system,

Crossover → Diffusive → Superdiffusive → Ballistic → Breakdown of duality

Summary and outlook

- Violation of single-parameter scaling in 1d and 2d Aubry-Andre and the way it fails.
- Approximate single-parameter scaling in 3d.
- Subdiffusive critical states in 1d, 2d and 3d.

Theory, e.g. RG, for higher-dimensional quasiperiodic systems?
Effect of interaction and many-body localization (MBL)?

Why care about localization in quasiperiodic systems?

- Experimental realizations of MBL in cold atomic systems ← 1d Aubry Andre + interaction
- Distinct universality classes for MBL transition in 1d random and quasiperiodic systems.
- MBL is more robust in quasiperiodic systems than in the random systems due to lack of rare regions → Possibility of MBL in higher dimensions