

Transport in a classical disordered systems

Manoj Kumar

February 15, 2019

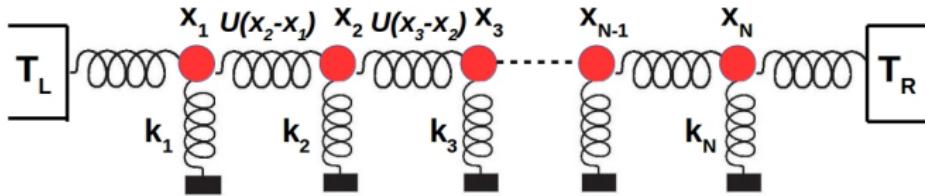
Collaborations:

Abhishek Dhar, Anupam Kundu, Manas Kulkarni, and David Huse

Brief Introduction

- ▶ Disordered systems without noninteracting particles exhibit Anderson localization (AL) whereby normal modes (NMs) of the system form spatially localized states, e.g, 1D systems found to be a thermal insulator.
- ▶ A natural question is to ask what happens upon introducing the interactions. Is the system show a transition to conducting state? If so, what is the critical strength of interaction?
- ▶ In quantum systems, these questions has been rigorously studied in Literature. But in classical systems, there is no complete understanding.
- ▶ We study the energy transport in a classical disordered nonlinear system where nonlinearity results in the destruction of AL because of nonintegrability of the system.

The Model



$$\mathcal{H} = \sum_{i=1,N} \left[\frac{p_i^2}{2m_i} + k_i \frac{x_i^2}{2} \right] + \sum_{i=1}^{N+1} \nu \frac{(x_i - x_{i-1})^4}{4}, \quad (1)$$

$m_i = 1, k_i \in [1 - \Delta, 1 + \Delta]$, Δ : Disordered strength.

$$\ddot{x}_1 = -k_1 x_1 - \nu[(x_1 - x_0)^3 + (x_1 - x_2)^3] - \gamma \dot{x}_1 + \eta_L,$$

$$\ddot{x}_i = -k_i x_i - \nu[(x_i - x_{i-1})^3 + (x_i - x_{i+1})^3], \quad i = 2, \dots, N-1$$

$$\ddot{x}_N = -k_N x_N - \nu[(x_N - x_{N-1})^3 + (x_N - x_{N+1})^3] - \gamma \dot{x}_N + \eta_R.$$

- ▶ The Gaussian white noise satisfy the fluctuation dissipation relation: $\langle \eta_{L,R}(t) \eta_{L,R}(t') \rangle = 2\gamma k_B T_{L,R} \delta(t - t')$ with $\langle \eta_{L,R} \rangle = 0$.

Numerical Details

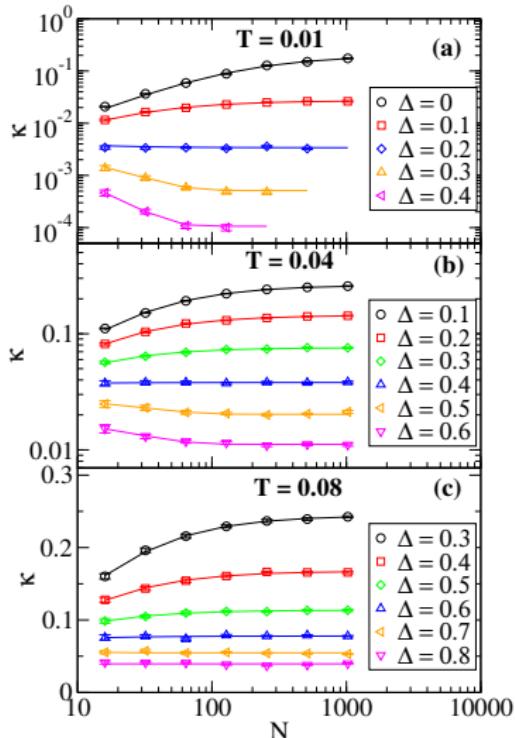
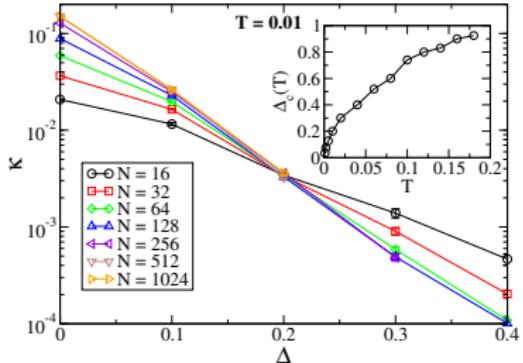
- ▶ Quantity of interest is to measure

$$\langle J_N \rangle = \sum_I \langle f_{I,I-1} \dot{x}_I \rangle / (N - 1), \quad \kappa = \lim_{N \rightarrow \infty} JN / (T_L - T_R).$$

$$f_{I,I-1} = -\frac{\partial U(x_I - x_{I-1})}{\partial x_I} = \nu(x_{I-1} - x_I)^3. \quad (2)$$

- ▶ Important point is to note that Eq. of motion is invariant under $T_{L,R} \rightarrow sT_{L,R}$, $\{x_I\} \rightarrow \{s^{1/2}x_I\}$ and $\nu \rightarrow \nu/s$, which implies $\kappa(sT_L, sT_R, \nu) = \kappa(T_L, T_R, s\nu)$.
- ▶ We set $\nu = 1$, $T = (T_L + T_R)/2$, and $(T_L - T_R) = T/2$ (i.e. $T_L = 1.25T$, $T_R = 0.75T$).
- ▶ Simulation is performed using velocity-Verlet algorithm. $t_{\text{eq}} \sim 10^{10} - 10^{11}$, $dt = 0.005$. Numerical data is averaged over 50 disorder samples.

Simulation Results



► $\Delta < \Delta_c(T)$

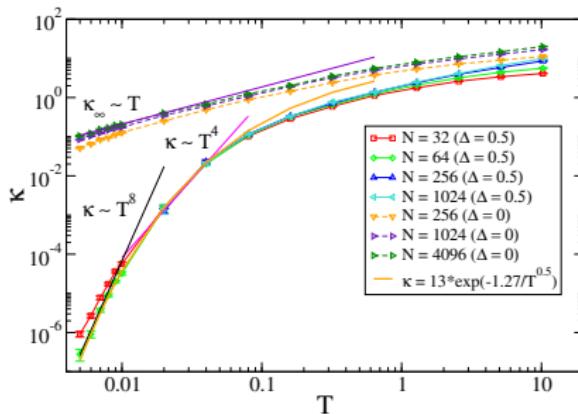
$$\kappa_N(\Delta, T) = \kappa_\infty(\Delta, T) \frac{1}{1 + \ell/N}$$

► $\Delta > \Delta_c(T)$

$$\kappa_N(\Delta, T) = A e^{-N/\xi} + \kappa_\infty(\Delta, T)$$

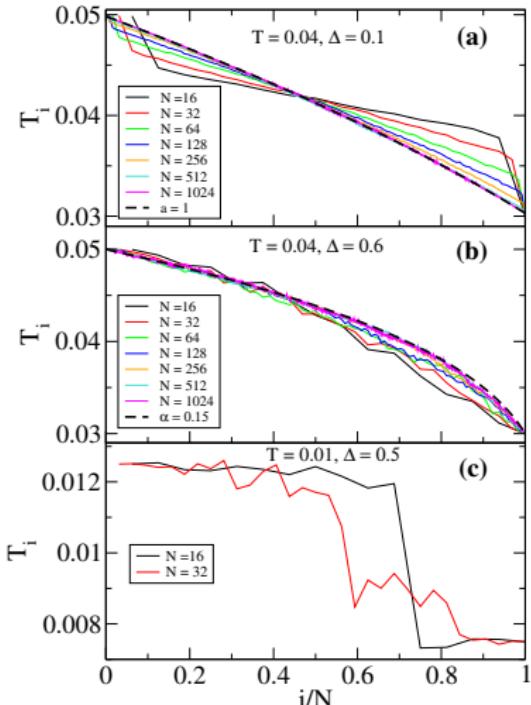
► Point symbols are the simulated values of κ whereas the solid lines are the best non-linear curve fits κ below and above $\Delta_c(T)$.

Conductivity as a function of temperature



- ▶ Without disorder ($\Delta = 0$), $\kappa \sim T$ and saturates at high T .
- ▶ With disorder, κ decays higher than any power-law.
- ▶ Going down to $T = 0.005$, $\kappa \sim T^8$, which crosses over T^4 at $T \gtrsim 0.01$.
- ▶ Below $T = 0.005$, we reach our computational limitation because of the huge impact of fluctuations (t_{eq} increases rapidly).
- ▶ A black solid line is the best fit: $\kappa(T) \sim \exp(-1.27/T^{1/2})$.

Temperature Profile



- ▶ $T_i = \langle p_i^2 \rangle$.
- ▶ The analytical fits to the T -profiles can be obtained by solving $-\kappa(T) \partial T(x) / \partial x = J$ with $\kappa \sim T$ for low Δ and $\kappa \sim e^{-B/T^{1/2}}$ for high Δ .
- ▶ Fig. (c) for a very small $T = 0.01$ and high $\Delta = 0.5$ shows a kind of step profile as an indication of MBL.

(Roeck, Dhar, Huvaneers, and Schütz, J. Stat. Phys, 167, 1143, 2017)

Conclusions

- ▶ We studied $\kappa(N, \Delta, T)$ in a classical disordered nonlinear system.
- ▶ We found $\Delta_c(T)$ below and above which the scaling of $\kappa_N(\Delta, T)$ is remarkably different.
 - ▶ For ordered chain, $\kappa \sim T$.
 - ▶ For disorder chain, $\kappa \sim \exp(-B/T^{1/2})$.
- ▶ The system show the signatures of MBL.