Transport in a classical disordered systems
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Brief Introduction

Disordered systems without noninteracting particles exhibit
Anderson localization (AL) whereby normal modes (NMs) of
the system form spatially localized states, e.g, 1D systems
found to be a thermal insulator.

A natural question is to ask what happens upon introducing
the interactions. Is the system show a transition to conducting
state? If so, what is the critical strength of interaction?

In quantum systems, these questions has been rigorously
studied in Literature. But in classical systems, there is no
complete understanding.

We study the energy transport in a classical disordered
nonlinear system where nonlinearity results in the destruction
of AL because of nonintegrability of the system.



The Model
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X1 = —kua —v[(x1 — x0) + (1 — x2)*] — v+,
o= —kixi —v[(xi —xi1)> + (6 = xip1)’], i =2, N1
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» The Gaussian white noise satisfy the fluctuation dissipation

relation: <77L,R(t)77L,R(t/)> = 2’7/(3 T[_7R5(t — t/) with
(nL,r) = 0.



Numerical Details

Quantity of interest is to measure
(In) = 22 {f—1X) /(N = 1), k = limy o0 IN/(TL — Tg).

oU(x1 — xj—1)

aX/ = I/(X/_l — X/)3. (2)

fl1-1=—
Important point is to note that Eq. of motion is invariant
under Ty gr — sTir, {xi} — {s*/?x} and v — v/s, which
implies k(sTy,sTr,v) = k(Ty, Tr, sv).
Wesetv=1,T = (TL -+ TR)/Q, and (TL — TR) = T/2 (|e
T, =125T,Tgr =0.75T).
Simulation is performed using velocity-Verlet algorithm.

teq ~ 1010 — 1011, dt = 0.005. Numerical data is averaged
over 50 disorder samples.



Simulation Results
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» Point symbols are the simulated values of x whereas the solid

lines are the best non-linear curve fits k below and above
A(T).
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Conductivity as a function of temperature
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Without disorder (A = 0), k ~ T and saturates at high T.
With disorder, x decays higher than any power-law.

Going down to T = 0.005, x ~ T8, which crosses over T* at
T = 0.01.

Below T = 0.005, we reach our computational limitation
because of the huge impact of fluctuations (t., increases
rapidly).

A black solid line is the best fit: x(T) ~ exp(—1.27/T?).
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Temperature Profile
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» T, = (p?).

» The analytical fits to the
T-profiles can be obtained by
solving —k(T)0T(x)/0x = J
with k ~ T for low A and
ks ~ e B/T'? for high A.

» Fig. (c) for a very small
T =0.01 and high A=0.5
shows a kind of step profile as
an indication of MBL.
(Roeck, Dhar, Huveneers, and Schiitz, J. Stat.

Phys, 167, 1143, 2017)



Conclusions

We studied (N, A, T) in a classical disordered nonlinear
system.

We found A.(T) below and above which the scaling of
kn(A, T) is remarkably different.

For ordered chain, Kk ~ T.
For disorder chain, k ~ exp(—B/T?).

The system show the signatures of MBL.



