Transport in a classical disordered systems

Manoj Kumar

February 15, 2019
Collaborations:
Abhishek Dhar, Anupam Kundu, Manas Kulkarni, and David Huse

Brief Introduction

- Disordered systems without noninteracting particles exhibit Anderson localization (AL) whereby normal modes (NMs) of the system form spatially localized states, e.g, 1D systems found to be a thermal insulator.
- A natural question is to ask what happens upon introducing the interactions. Is the system show a transition to conducting state? If so, what is the critical strength of interaction?
- In quantum systems, these questions has been rigorously studied in Literature. But in classical systems, there is no complete understanding.
- We study the energy transport in a classical disordered nonlinear system where nonlinearity results in the destruction of AL because of nonintegrability of the system.

The Model

$m_{i}=1, k_{i} \in[1-\Delta, 1+\Delta], \Delta$: Disordered strength.
$\ddot{x}_{1}=-k_{1} x_{1}-\nu\left[\left(x_{1}-x_{0}\right)^{3}+\left(x_{1}-x_{2}\right)^{3}\right]-\gamma \dot{x}_{1}+\eta_{L}$,
$\ddot{x}_{i}=-k_{i} x_{i}-\nu\left[\left(x_{i}-x_{i-1}\right)^{3}+\left(x_{i}-x_{i+1}\right)^{3}\right], \quad i=2, \cdots, N-1$
$\ddot{x}_{N}=-k_{N} x_{N}-\nu\left[\left(x_{N}-x_{N-1}\right)^{3}+\left(x_{N}-x_{N+1}\right)^{3}\right]-\gamma \dot{x_{N}}+\eta_{R}$.

- The Gaussian white noise satisfy the fluctuation dissipation relation: $\left\langle\eta_{L, R}(t) \eta_{L, R}\left(t^{\prime}\right)\right\rangle=2 \gamma k_{B} T_{L, R} \delta\left(t-t^{\prime}\right)$ with $\left\langle\eta_{L, R}\right\rangle=0$.

Numerical Details

- Quantity of interest is to measure

$$
\begin{gather*}
\left\langle J_{N}\right\rangle=\sum_{l}\left\langle f_{l, I-1} \dot{x}_{l}\right\rangle /(N-1), \kappa=\lim _{N \rightarrow \infty} J N /\left(T_{L}-T_{R}\right) . \\
f_{l, l-1}=-\frac{\partial U\left(x_{I}-x_{I-1}\right)}{\partial x_{l}}=\nu\left(x_{I-1}-x_{l}\right)^{3} . \tag{2}
\end{gather*}
$$

- Important point is to note that Eq. of motion is invariant under $T_{L, R} \rightarrow s T_{L, R},\left\{x_{l}\right\} \rightarrow\left\{s^{1 / 2} x_{l}\right\}$ and $\nu \rightarrow \nu / s$, which implies $\kappa\left(s T_{L}, s T_{R}, \nu\right)=\kappa\left(T_{L}, T_{R}, s \nu\right)$.
- We set $\nu=1, T=\left(T_{L}+T_{R}\right) / 2$, and $\left(T_{L}-T_{R}\right)=T / 2$ (i.e. $\left.T_{L}=1.25 T, T_{R}=0.75 T\right)$.
- Simulation is performed using velocity-Verlet algorithm. $t_{\text {eq }} \sim 10^{10}-10^{11}, d t=0.005$. Numerical data is averaged over 50 disorder samples.

Simulation Results

- $\Delta<\Delta_{c}(T)$

$$
\kappa_{N}(\Delta, T)=\kappa_{\infty}(\Delta, T) \frac{1}{1+\ell / N}
$$

- $\Delta>\Delta_{c}(T)$

$$
\kappa_{N}(\Delta, T)=A e^{-N / \xi}+\kappa_{\infty}(\Delta, T)
$$

- Point symbols are the simulated values of κ whereas the solid lines are the best non-linear curve fits κ below and above $\Delta_{c}(T)$.

Conductivity as a function of temperature

- Without disorder $(\Delta=0), \kappa \sim T$ and saturates at high T.
- With disorder, κ decays higher than any power-law.
- Going down to $T=0.005, \kappa \sim T^{8}$, which crosses over T^{4} at $T \gtrsim 0.01$.
- Below $T=0.005$, we reach our computational limitation because of the huge impact of fluctuations ($t_{\text {eq }}$ increases rapidly).
- A black solid line is the best fit: $\kappa(T) \sim \exp \left(-1.27 / T^{1 / 2}\right)$.

Temperature Profile

- $T_{i}=\left\langle p_{i}^{2}\right\rangle$.
- The analytical fits to the T-profiles can be obtained by solving $-\kappa(T) \partial T(x) / \partial x=J$ with $\kappa \sim T$ for low Δ and $\kappa \sim e^{-B / T^{1 / 2}}$ for high Δ.
- Fig. (c) for a very small $T=0.01$ and high $\Delta=0.5$ shows a kind of step profile as an indication of MBL.
(Roeck, Dhar, Huveneers, and Schütz, J. Stat.
Phys, 167, 1143, 2017)

Conclusions

- We studied $\kappa(N, \Delta, T)$ in a classical disordered nonlinear system.
- We found $\Delta_{c}(T)$ below and above which the scaling of $\kappa_{N}(\Delta, T)$ is remarkably different.
- For ordered chain, $\kappa \sim T$.
- For disorder chain, $\kappa \sim \exp \left(-B / T^{1 / 2}\right)$.
- The system show the signatures of MBL.

