Phase Transition in an Ising Model without Detailed Balance

Chandan Dasgupta Indian Institute of Science and International Centre for Theoretical Sciences Bangalore

ISPCM-2019, Bangalore, February 2019

Collaborators

Manoj Kumar, ICTS Aakash Sarkar (summer student)

Phase Transitions in Out-of-Equilibrium Systems

Active systems consisting of self-propelled particles that can generate systematic motion from internal or ambient sources of energy.

These essentially out-of-equilibrium systems exhibit phase transitions, such as motility induced liquid-gas phase separation.

Nonequilibrium phase transition in an Ising-like system Two-dimensional ferromagnetic Ising model on a square lattice with nearest-neighbour interactions

Update rule: modified version of the Metropolis rule that does not satisfy detailed balance

Metropolis rule:

Proposed change $\sigma_i \to -\sigma_i$: change in energy ΔE .

If $\Delta E \leq 0$, accept change with probability 1 If $\Delta E > 0$, accept change with probability $\exp[-\Delta E/T]$

Modified update rule:

Define $\delta E \equiv \Delta E + E_0$. If $\delta E \leq 0$, accept change with probability 1 If $\delta E > 0$, accept change with probability $\exp[-\delta E/T]$

 $E_0 < 0$: spin flips are promoted ("active") $E_0 > 0$: spin flips are made less probable ("persistent"). On a square lattice, $\Delta E = 0, \pm 4J, \pm 8J$. If $E_0 \leq -8J, \ \delta E \leq 0$, i.e. all proposed spin flips are accepted. This corresponds to the Metropolis rule with effective temperature $T_{\rm eff} \rightarrow \infty$.

If $E_0 \ge 8J$, $\delta E \ge 0$.

Proposed change $\sigma_i \to -\sigma_i$ is accepted with probability $\exp[-(\Delta E + E_0)/T]$. Proposed change $-\sigma_i \to \sigma_i$ is accepted with

probability $\exp[-(-\Delta E + E_0)/T]$.

$$\frac{P(\sigma_i \to -\sigma_i)}{P(-\sigma_i \to \sigma_i)} = \exp[-2\Delta E/T]$$

This corresponds to detailed balance at effective temperature $T_{\text{eff}} = T/2$. For $-8J < E_0 < 8J$, it is not possible to find an unique effective temperature for which the transition probabilities for all possible values of ΔE satisfy detailed balance.

Non-equilibrium Ising model

Does it exhibit a order-disorder transition? If it does, then are the critical exponents the same as those of the equilibrium 2D Ising transition?

Curie-Weiss Molecular Field Theory

Discontinuity in m for negative Eo. Discontinuity in temperature derivative of m for positive values of Eo <8J

Monte Carlo simulations with modified update rule

$$\begin{split} m(T,L) &= \frac{1}{N} \sum_{i} \sigma_{i}, \\ U_{4}(T,L) &= 1 - \frac{\langle m^{4} \rangle}{3 \langle m^{2} \rangle^{2}}, \\ c(T,L) &= \frac{1}{N k_{B} T^{2}} \left(\langle E^{2} \rangle - \langle E \rangle^{2} \right) \\ \chi(T,L) &= \frac{1}{N k_{B} T} \left(\langle M^{2} \rangle - \langle M \rangle^{2} \right) \end{split}$$

Transition temperature increases from 0 as Eo is increased from -8 to 8

Finite-size scaling

$$\begin{split} m(T,L) &= L^{-\beta/\nu} \mathcal{M} \left((T-T_c) L^{1/\nu} \right), \\ U_4(T,L) &= \mathcal{U} \left((T-T_c) L^{1/\nu} \right), \\ c(T,L) &= L^{\alpha/\nu} \mathcal{C} \left((T-T_c) L^{1/\nu} \right), \\ \chi(T,L) &= L^{\gamma/\nu} \mathcal{X} \left((T-T_c) L^{1/\nu} \right), \end{split}$$

Binder cumulant

Specific Heat and Susceptibility

Scaling collapse for the susceptibility

Summary of results

	T_c	α	β	γ	ν
$E_0 = 0$	2.269	0	0.125	1.75	1
(known results)					
$E_0 = 2$	3.1274(1)	0	0.123(3)	1.70(5)	0.98(3)
(This paper)					
$E_0 = -2$	1.3608(5)	0	0.124(5)	1.71(4)	0.99(2)
(This paper)					

The phase transition in the non-equilibrium model is in the same universality class as that of the equilibrium Ising model. Further test of equilibration (Boltzmann statistics)

For a system at equilibrium,

$$\frac{dE}{dT} = \frac{1}{k_B T^2} \left(\langle E^2 \rangle - \langle E \rangle^2 \right)$$

Conclusion:

- The steady state of the model considered here is not described by Boltzmann statistics.
- However, the phase transition in this model is in the same universality class as that of the equilibrium Ising model.
- Lack of detailed balance is irrelevant in the RG sense??